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Abstract

Semantic labelling and instance segmentation are two
tasks that require particularly costly annotations. Starting
from weak supervision in the form of bounding box detec-
tion annotations, we propose a new approach that does not
require modification of the segmentation training proced-
ure. We show that when carefully designing the input labels
from given bounding boxes, even a single round of training
is enough to improve over previously reported weakly su-
pervised results. Overall, our weak supervision approach
reaches ∼95% of the quality of the fully supervised model,
both for semantic labelling and instance segmentation.

1. Introduction
Convolutional networks (convnets) have become the de

facto technique for pattern recognition problems in com-
puter vision. One of their main strengths is the ability to
profit from extensive amounts of training data to reach top
quality. However, one of their main weaknesses is that they
need a large number of training samples for high quality
results. This is usually mitigated by using pre-trained mod-
els (e.g. with ∼ 106 training samples for ImageNet clas-
sification [37]), but still thousands of samples are needed
to shift from the pre-training domain to the application do-
main. Applications such as semantic labelling (associating
each image pixel to a given class) or instance segmentation
(grouping all pixels belonging to the same object instance)
are expensive to annotate, and thus significant cost is in-
volved in creating large enough training sets.

Compared to object bounding box annotations, pixel-
wise mask annotations are far more expensive, requiring
∼15× more time [25]. Cheaper and easier to define, box
annotations are more pervasive than pixel-wise annotations.
In principle, a large number of box annotations (and images
representing the background class) should convey enough
information to understand which part of the box content is
foreground and which is background. In this paper we ex-
plore how much one can close the gap between training a

Training sample,
with box annotations

Test image, fully
supervised result

Test image, weakly
supervised result

Figure 1: We propose a technique to train semantic labelling
from bounding boxes, and reach 95% of the quality ob-
tained when training from pixel-wise annotations.

convnet using full supervision for semantic labelling (or in-
stance segmentation) versus using only bounding box an-
notations.

Our experiments focus on the 20 Pascal classes [9] and
show that using only bounding box annotations over the
same training set we can reach ∼ 95% of the accuracy
achievable with full supervision. We show top results for
(bounding box) weakly supervised semantic labelling and,
to the best of our knowledge, for the first time report results
for weakly supervised instance segmentation.

We view the problem of weak supervision as an issue
of input label noise. We explore recursive training as a
de-noising strategy, where convnet predictions of the pre-
vious training round are used as supervision for the next
round. We also show that, when properly used, “classic
computer vision” techniques for box-guided instance seg-
mentation are a source of surprisingly effective supervision
for convnet training.

In summary, our main contributions are:

− We explore recursive training of convnets for weakly
supervised semantic labelling, discuss how to reach
good quality results, and what are the limitations of
the approach (Section 3.1).

− We show that state of the art quality can be reached
when properly employing GrabCut-like algorithms to
generate training labels from given bounding boxes,
instead of modifying the segmentation convnet train-
ing procedure (Section 3.2).
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− We report the best known results when training us-
ing bounding boxes only, both using Pascal VOC12
and VOC12+COCO training data, reaching compar-
able quality with the fully supervised regime (Section
4.2).

− We are the first to show that similar results can be
achieved for the weakly supervised instance segment-
ation task (Section 6).

2. Related work
Semantic labelling. Semantic labelling may be tackled
via decision forests [38] or classifiers over hand-crafted su-
perpixel features [11]. However, convnets have proven par-
ticularly effective for semantic labelling. A flurry of vari-
ants have been proposed recently [32, 26, 5, 24, 48, 18, 46].
In this work we use DeepLab [5] as our reference imple-
mentation. This network achieves state-of-the-art perform-
ance on the Pascal VOC12 semantic segmentation bench-
mark and the source code is available online.
Almost all these methods include a post-processing step to
enforce a spatial continuity prior in the predicted segments,
which provides a non-negligible improvement on the results
(2 ∼ 5 points). The most popular technique is DenseCRF
[20], but other variants are also considered [19, 2].

Weakly supervised semantic labelling. In order to keep
annotation cost low, recent work has explored different
forms of supervision for semantic labelling: image labels
[29, 28, 27, 30, 42], points [3], scribbles [44, 23], and
bounding boxes [8, 27]. [8, 27, 15] also consider the case
where a fraction of images are fully supervised. [44] pro-
poses a framework to handle all these types of annotations.
In this work we focus on box level annotations for se-
mantic labelling of objects. The closest related work are
thus [8, 27]. BoxSup [8] proposes a recursive training pro-
cedure, where the convnet is trained under supervision of
segment object proposals and the updated network in turn
improves the segments used for training. WSSL [27] pro-
poses an expectation-maximisation algorithm with a bias to
enable the network to estimate the foreground regions. We
compare with these works in the result sections. Since all
implementations use slightly different networks and train-
ing procedures, care should be taken during comparison.
Both [8] and [27] propose new ways to train convnets under
weak supervision. In contrast, in this work we show that
one can reach better results without modifying the training
procedure (compared to the fully supervised case) by in-
stead carefully generating input labels for training from the
bounding box annotations (Section 3).

Instance segmentation. In contrast to instance agnostic
semantic labelling that groups pixels by object class, in-
stance segmentation groups pixels by object instance and

ignores classes.
Object proposals [35, 16] that generate segments (such as
[34, 21]) can be used for instance segmentation. Similarly,
given a bounding box (e.g. selected by a detector), GrabCut
[36] variants can be used to obtain an instance segmentation
(e.g. [22, 7, 41, 40, 47]).
To enable end-to-end training of detection and segmentation
systems, it has recently been proposed to train convnets for
the task of instance segmentation [14, 33]. In this work we
explore weakly supervised training of an instance segment-
ation convnet. We use DeepMask [33] as a reference imple-
mentation for this task. In addition we re-purpose DeepLab-
v2 network [6], originally designed for semantic segmenta-
tion, for the instance segmentation task.

3. From boxes to semantic labels

The goal of this work is to provide high quality semantic
labelling starting from object bounding box annotations.
We design our approach aiming to exploit the available in-
formation at its best. There are two sources of information:
the annotated boxes and priors about the objects. We integ-
rate these in the following cues:

C1 Background. Since the bounding boxes are expected
to be exhaustive, any pixel not covered by a box is labelled
as background.

C2 Object extend. The box annotations bound the extent
of each instance. Assuming a prior on the objects shapes
(e.g. oval-shaped objects are more likely than thin bar or
full rectangular objects), the box also gives information on
the expected object area. We employ this size information
during training.

C3 Objectness. Other than extent and area, there are ad-
ditional object priors at hand. Two priors typically used are
spatial continuity and having a contrasting boundary with
the background. In general we can harness priors about
object shape by using segment proposal techniques [35],
which are designed to enumerate and rank plausible object
shapes in an area of the image.

3.1. Box baselines

We first describe a naive baseline that serves as start-
ing point for our exploration. Given an annotated bounding
box and its class label, we label all pixels inside the box
with such given class. If two boxes overlap, we assume the
smaller one is in front. Any pixel not covered by boxes is
labelled as background.

Figure 2 left side and Figure 3c show such example an-
notations. We use these labels to train a segmentation net-



work with the standard training procedure. We employ the
DeepLabv1 approach from [5] (details in Section 4.1).

Recursive training. We observe that when applying the
resulting model over the training set, the network outputs
capture the object shape significantly better than just boxes
(see Figure 2). This inspires us to follow a recursive training
procedure, where these new labels are fed in as ground truth
for a second training round. We name this recursive training
approach Naive.

The recursive training is enhanced by de-noising the con-
vnet outputs using extra information from the annotated
boxes and object priors. Between each round we improve
the labels with three post-processing stages:

1. Any pixel outside the box annotations is reset to back-
ground label (cue C1).

2. If the area of a segment is too small compared to its
corresponding bounding box (e.g. IoU< 50%), the
box area is reset to its initial label (fed in the first
round). This enforces a minimal area (cue C2).

3. As it is common practice among semantic labelling
methods, we filter the output of the network to better
respect the image boundaries. (We use DenseCRF [20]
with the DeepLabv1 parameters [5]). In our weakly su-
pervised scenario, boundary-aware filtering is particu-
larly useful to improve objects delineation (cue C3).

The recursion and these three post-processing stages are
crucial to reach good performance. We name this recurs-
ive training approach Box, and show an example result in
Figure 2.

Ignore regions. We also consider a second variant Boxi

that, instead of using filled rectangles as initial labels, we
fill in the 20% inner region, and leave the remaining inner
area of the bounding box as ignore regions. See Figure 3d.
Following cues C2 and C3 (shape and spatial continuity pri-
ors), the 20% inner box region should have higher chances
of overlapping with the corresponding object, reducing the
noise in the generated input labels. The intuition is that the
convnet training might benefit from trading-off lower recall
(more ignore pixels) for higher precision (more pixels are
correctly labelled). Starting from this initial input, we use
the same recursive training procedure as for Box.

Despite the simplicity of the approach, as we will see in
the experimental section 4, Box / Boxi is already competit-
ive with the current state of the art.

However, using rectangular shapes as training labels is
clearly suboptimal. Therefore, in the next section, we pro-
pose an approach that obtains better results while avoiding
multiple recursive training rounds.

3.2. Box-driven segments

The box baselines are purposely simple. A next step in
complexity consists in utilising the box annotations to gen-
erate an initial guess of the object segments. We think of
this as “old school meets new school”: we use the noisy out-
puts of classic computer vision methods, box-driven figure-
ground segmentation [36] and object proposal [35] tech-
niques, to feed the training of a convnet. Although the out-
put object segments are noisy, they are more precise than
simple rectangles, and thus should provide improved res-
ults. A single training round will be enough to reach good
quality.

3.2.1 GrabCut baselines

GrabCut [36] is the established technique to estimate an ob-
ject segment from its bounding box. We propose to use
a modified version of GrabCut, which we call GrabCut+,
where HED boundaries [43] are used as pairwise term in-
stead of the typical RGB colour difference. (The HED
boundary detector is trained on the generic boundaries of
BSDS500 [1]). We considered other GrabCut variants, such
as [7, 40]; however, the proposed GrabCut+ gives higher
quality segments (see supplementary material).
Similar to Boxi, we also consider a GrabCut+i variant,
which trades off recall for higher precision. For each
annotated box we generate multiple (∼ 150) perturbed
GrabCut+ outputs. If 70% of the segments mark the pixel
as foreground, the pixel is set to the box object class. If less
than 20% of the segments mark the pixels as foreground, the
pixel is set as background, otherwise it is marked as ignore.
The perturbed outputs are generated by jittering the box co-
ordinates (±5%) as well as the size of the outer background
region considered by GrabCut (from 10% to 60%). An ex-
ample result of GrabCut+i can be seen in Figure 3g.

3.2.2 Adding objectness

With our final approach we attempt to better incorporate
the object shape priors by using segment proposals [35].
Segment proposals techniques are designed to generate a
soup of likely object segmentations, incorporating as many
“objectness” priors as useful (cue C3).

We use the state of the art proposals from MCG [34]. As
final stage the MCG algorithm includes a ranking based on
a decision forest trained over the Pascal VOC 2012 dataset.
We do not use this last ranking stage, but instead use all the
(unranked) generated segments. Given a box annotation, we
pick the highest overlapping proposal as a corresponding
segment.

Building upon the insights from the baselines in Section
3.1 and 3.2, we use the MCG segment proposals to supple-
ment GrabCut+. Inside the annotated boxes, we mark as



Example Output after After After Ground
input rectangles 1 training round 5 rounds 10 rounds truth

Figure 2: Example results of using only rectangle segments and recursive training (using convnet predictions as supervision
for the next round), see Section 3.1.

foreground pixels where both MCG and GrabCut+ agree;
the remaining ones are marked as ignore. We denote this
approach as MCG ∩ GrabCut+ or M ∩ G+ for short.

Because MCG and GrabCut+provide complementary
information, we can think of M ∩ G+ as an improved ver-
sion of GrabCut+i providing a different trade-off between
precision and recall on the generated labels (see Figure 3i).

The BoxSup method [8] also uses MCG object proposals
during training; however, there are important differences.
They modify the training procedure so as to denoise inter-
mediate outputs by randomly selecting high overlap propos-
als. In comparison, our approach keeps the training pro-
cedure unmodified and simply generates input labels. Our
approach also uses ignore regions, while BoxSup does not
explore this dimension. Finally, BoxSup uses a longer train-
ing than our approach.

Section 4 shows results for the semantic labelling task,
compares different methods and different supervision re-
gimes. In Section 5 we show that the proposed approach
is also suitable for the instance segmentation task.

4. Semantic labelling results

Our approach is equally suitable (and effective) for
weakly supervised instance segmentation as well as for se-
mantic labelling. However, only the latter has directly com-
parable related work. We thus focus our experimental com-
parison efforts on the semantic labelling task. Results for
instance segmentation are presented in Section 6.

Section 4.1 discusses the experimental setup, evaluation,
and implementation details for semantic labelling. Section
4.2 presents our main results, contrasting the methods from
Section 3 with the current state of the art. Section 4.3 fur-
ther expands these results with a more detailed analysis,
and presents results when using more supervision (semi-
supervised case).

4.1. Experimental setup

Datasets. We evaluate the proposed methods on the Pas-
cal VOC12 segmentation benchmark [9]. The dataset con-
sists of 20 foreground object classes and one background
class. The segmentation part of the VOC12 dataset contains

1 464 training, 1 449 validation, and 1 456 test images. Fol-
lowing previous work [5, 8], we extend the training set with
the annotations provided by [12], resulting in an augmented
set of 10 582 training images.
In some of our experiments, we use additional training im-
ages from the COCO [25] dataset. We only consider im-
ages that contain any of the 20 Pascal classes and (follow-
ing [48]) only objects with a bounding box area larger than
200 pixels. After this filtering, 99 310 images remain (from
training and validation sets), which are added to our training
set. When using COCO data, we first pre-train on COCO
and then fine-tune over the Pascal VOC12 training set.
All of the COCO and Pascal training images come with se-
mantic labelling annotations (for fully supervised case) and
bounding box annotations (for weakly supervised case).

Evaluation. We use the “comp6” evaluation protocol.
The performance is measured in terms of pixel intersection-
over-union averaged across 21 classes (mIoU). Most of our
results are shown on the validation set, which we use to
guide our design choices. Final results are reported on the
test set (via the evaluation server) and compared with other
state-of-the-art methods.

Implementation details. For all our experiments we use
the DeepLab-LargeFOV network, using the same train and
test parameters as [5]. The model is initialized from a
VGG16 network pre-trained on ImageNet [39]. We use a
mini-batch of 30 images for SGD and initial learning rate of
0.001, which is divided by 10 after a 2k/20k iterations (for
Pascal/COCO). At test time, we apply DenseCRF [20]. Our
network and post-processing are comparable to the ones
used in [8, 27].

Note that multiple strategies have been considered to
boost test time results, such as multi-resolution or model
ensembles [5, 18]. Here we keep the approach simple and
fixed. In all our experiments we use a fixed training and
test time procedure. Across experiments we only change
the input training data that the networks gets to see.



(a) Input image (b) Ground truth (c) Box (d) Boxi

(e) GrabCut (f) GrabCut+ (g) GrabCut+i (h) MCG (i) M ∩ G+

Figure 3: Example of the different segmentations obtained starting from a bounding box annotation. Grey/pink/magenta
indicate different object classes, white is background, and ignore regions are beige. M ∩ G+ denotes MCG ∩ GrabCut+.
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Figure 4: Segmentation quality versus training round for
different approaches, see also Tables 1 and 2. Pas-
cal VOC12 validation set results. “Previous best (rect-
angles/segments)” corresponds to WSSLR/BoxSupMCG in
Table 2.

4.2. Main results

Box results. Figure 4 presents the results for the recurs-
ive training of the box baselines from Section 3.1. We see
that the Naive scheme, a recursive training from rectangles
disregarding post-processing stages, leads to poor qual-
ity. However, by using the suggested three post-processing
stages, the Box baseline obtains a significant gain, getting
tantalisingly close to the best reported results on the task [8].
Details of the contribution of each post-processing stage are
presented in the supplementary material. Adding ignore re-

Method val. mIoU

- Fast-RCNN 44.3
GT Boxes 62.2

Weakly
supervised

Box 61.2
Boxi 62.7
MCG 62.6

GrabCut+ 63.4
GrabCut+i 64.3
M ∩ G+ 65.7

Fully supervised DeepLabours [5] 69.1

Table 1: Weakly supervised semantic labelling results for
our baselines. Trained using Pascal VOC12 bounding boxes
alone, validation set results. DeepLabours indicates our
fully supervised result.

gions inside the rectangles (Box → Boxi) provides a clear
gain and leads by itself to state of the art results.
Figure 4 also shows the result of using longer training for
fully supervised case. When using ground truth semantic
segmentation annotations, one training round is enough to
achieve good performance; longer training brings marginal
improvement. As discussed in Section 3.1, reaching good
quality for Box/Boxi requires multiple training rounds in-
stead, and performance becomes stable from round 5 on-
wards. Instead, GrabCut+/M ∩ G+ do not benefit from ad-
ditional training rounds.

Box-driven segment results. Table 1 evaluates res-
ults on the Pascal VOC12 validation set. It in-
dicates the Box/Boxi results after 10 rounds, and
MCG/GrabCut+/GrabCut+i/M∩G+ results after one round.
“Fast-RCNN” is the result using detections [10] to generate
semantic labels (lower-bound), “GT Boxes” considers the



box annotations as labels, and DeepLabours indicates our
fully supervised segmentation network result obtained with
a training length equivalent to three training rounds (upper-
bound for our results). We see in the results that using ig-
nore regions systematically helps (trading-off recall for pre-
cision), and that M∩G+ provides better results than MCG and
GrabCut+ alone.
Table 2 indicates the box-driven segment results after 1
training round and shows comparison with other state of
the art methods, trained from boxes only using either Pascal
VOC12, or VOC12+COCO data. BoxSupR and WSSLR

both feed the network with rectangle segments (comparable
to Boxi), while WSSLS and BoxSupMCG exploit arbitrary
shaped segments (comparable to M ∩ G+). Although our
network and post-processing is comparable to the ones in
[8, 27], there are differences in the exact training procedure
and parameters (details in supplementary material).
Overall, our results indicate that - without modifying the
training procedure - M ∩ G+ is able to improve over previ-
ously reported results and reach 95% of the fully-supervised
training quality. By training with COCO data [25] before
fine-tuning for Pascal VOC12, we see that with enough ad-
ditional bounding boxes we can match the full supervision
from Pascal VOC 12 (68.9 versus 69.1). This shows that the
labelling effort could be significantly reduced by replacing
segmentation masks with bounding box annotations.

4.3. Additional results

Semi-supervised case. Table 2 compares results in the
semi-supervised modes considered by [8, 27], where some
of the images have full supervision, and some have only
bounding box supervision. Training with 10% of Pascal
VOC12 semantic labelling annotations does not bring much
gain to the performance (65.7 versus 65.8), this hints at the
high quality of the generated M ∩ G+ input data.

By using ground-truth annotations on Pascal plus bound-
ing box annotations on COCO, we observe 2.5 points gain
(69.1→ 71.6 , see Table 2). This suggests that the over-
all performance could be further improved by using extra
training data with bounding box annotations.

Boundaries supervision. Our results from MCG,
GrabCut+, and M ∩ G+ all indirectly include inform-
ation from the BSDS500 dataset [1] via the HED boundary
detector [43]. These results are fully comparable to
BoxSup-MCG [8], to which we see a clear improvement.
Nonetheless one would like to know how much using dense
boundary annotations from BSDS500 contributes to the
results. We use the weakly supervised boundary detection
technique from [17] to learn boundaries directly from the
Pascal VOC12 box annotations. Training M ∩ G+ using
weakly supervised HED boundaries results in 1 point loss
compared to using the BSDS500 (64.8 versus 65.7 mIoU

Super-
vision

#GT
images

#Weak
images

Method
val. set
mIoU

test set
mIoU FS%

VOC12 (V)

Weak - V10k

Bearman et al. [3] 45.1 - -
BoxSupR [8] 52.3 - -
WSSLR[27] 52.5 54.2 76.9
WSSLS[27] 60.6 62.2 88.2

BoxSupMCG[8] 62.0 64.6 91.6
Boxi 62.7 63.5 90.0
M ∩ G+ 65.7 67.5 95.7

Semi V1.4k V9k

WSSLR[27] 62.1 - -
BoxSupMCG[8] 63.5 66.2 93.9
WSSLS[27] 65.1 66.6 94.5
M ∩ G+ 65.8 66.9 94.9

Full V10k -
BoxSup [8] 63.8 - -
WSSL [27] 67.6 70.3 99.7

DeepLabours [5] 69.1 70.5 100
VOC12 + COCO (V+C)

Weak - V+C
110k

Boxi 65.3 66.7 91.1
M ∩ G+ 68.9 69.9 95.5

Semi V10k C123k BoxSupMCG[8] 68.2 71.0 97.0
C100k M ∩ G+ 71.6 72.8 99.5

Full V+C133k -
BoxSup [8] 68.1 - -
WSSL [27] 71.7 73 99.7

V+C110k DeepLabours [5] 72.3 73.2 100

Table 2: Semantic labelling results for validation and
test set; under different training regimes with VOC12
(V) and COCO data (C). Underline indicates full supervi-
sion baselines, and bold are our best weakly- and semi-
supervised results. FS%: performance relative to the best
fully supervised model (DeepLabours). Discussion in Sec-
tions 4.2 and 4.3.

on Pascal VOC12 validation set). We see then that although
the additional supervision does bring some help, it has a
minor effect and our results are still rank at the top even
when we use only Pascal VOC12 + ImageNet pre-training.

Different convnet results. For comparison purposes with
[8, 27] we used DeepLabv1 with a VGG-16 network in our
experiments. To show that our approach also generalizes
across different convnets, we also trained DeepLabv2 with
a ResNet101 network [6]. Table 3 presents the results.
Similar to the case with VGG-16, our weakly supervised
approach M ∩ G+ reaches 93%/95% of the fully supervised
case when training with VOC12/VOC12+COCO, and the
weakly supervised results with COCO data reach similar
quality to full supervision with VOC12 only.

5. From boxes to instance segmentation
Complementing the experiments of the previous sec-

tions, we also explore a second task: weakly supervised in-



Image Ground
truth Box Boxi M ∩ G+

Semi
supervised
M ∩ G+

Fully
supervised

Figure 5: Qualitative results on VOC12. Visually, the results from our weakly supervised method M ∩ G+ are hardly distin-
guishable from the fully supervised ones.

Supervision Method mIoU FS%
VOC12

Weak M ∩ G+ 69.4 93.2
Full DeepLabv2-ResNet101 [6] 74.5 100

VOC12 + COCO
Weak M ∩ G+ 74.2 95.5
Full DeepLabv2-ResNet101 [6] 77.7 100

Table 3: DeepLabv2-ResNet101 network semantic la-
belling results on VOC12 validation set, using VOC12 or
VOC12+COCO training data. FS%: performance relative
to the full supervision. Discussion in Section 4.3.

stance segmentation. To the best of our knowledge, these
are the first reported experiments on this task.

As object detection moves forward, there is a need to
provide richer output than a simple bounding box around
objects. Recently [14, 33, 31] explored training convnets
to output a foreground versus background segmentation of
an instance inside a given bounding box. Such networks
are trained using pixel-wise annotations that distinguish
between instances. These annotations are more detailed and
expensive than semantic labelling, and thus there is interest
in weakly supervised training.

The segments used for training, as discussed in Section
3.2, are generated starting from individual object bounding
boxes. Each segment represents a different object instance
and thus can be used directly to train an instance segmenta-

tion convnet. For each annotated bounding box, we gener-
ate a foreground versus background segmentation using the
GrabCut+ method (Section 3.2), and train a convnet to re-
gress from the image and bounding box information to the
instance segment.

6. Instance segmentation results
Experimental setup. We choose a purposely simple in-
stance segmentation pipeline, based on the “hyper-columns
system 2” architecture [14]. We use Fast-RCNN [10] detec-
tions (post-NMS) with their class score, and for each detec-
tion estimate an associated foreground segment. We estim-
ate the foreground using either some baseline method (e.g.
GrabCut) or using convnets trained for the task [33, 6].

For our experiments we use a re-implementation of
the DeepMask [33] architecture, and additionally we re-
purpose a DeepLabv2 VGG-16 network [6] for the instance
segmentation task, which we name DeepLabBOX.

Inspired by [45, 4], we modify DeepLab to accept four
input channels: the input image RGB channels, plus a bin-
ary map with a bounding box of the object instance to seg-
ment. We train the network DeepLabBOX to output the
segmentation mask of the object corresponding to the input
bounding box. The additional input channel guides the net-
work so as to segment only the instance of interest instead of
all objects in the scene. The input box rectangle can also be
seen as an initial guess of the desired output. We train using
ground truth bounding boxes, and at test time Fast-RCNN



Supervision Method mAPr
0.5 mAPr

0.75 ABO

-

Rectangle 21.6 1.8 38.5
Ellipse 29.5 3.9 41.7
MCG 28.3 5.9 44.7

GrabCut 38.5 13.9 45.8
GrabCut+ 41.1 17.8 46.4

VOC12

Weak DeepMask 39.4 8.1 45.8
DeepLabBOX 44.8 16.3 49.1

Full DeepMask 41.7 9.7 47.1
DeepLabBOX 47.5 20.2 51.1

VOC12 + COCO

Weak DeepMask 42.9 11.5 48.8
DeepLabBOX 46.4 18.5 51.4

Full DeepMask 44.7 13.1 49.7
DeepLabBOX 49.4 23.7 53.1

Table 4: Instance segmentation results on VOC12 valida-
tion set. Underline indicates the full supervision baseline,
and bold are our best weak supervision results. Weakly su-
pervised DeepMask and DeepLabBOX reach comparable
results to full supervision. See Section 6 for details.

detection boxes are used.
We train DeepMask and DeepLabBOX using

GrabCut+ results either over Pascal VOC12 or
VOC12+COCO data (1 training round, no recursion
like in Section 3.1), and test on the VOC12 validation set,
the same set of images used in Section 4. The augmented
annotation from [12] provides per-instance segments for
VOC12. We do not use CRF post-processing for neither of
the networks.
Following instance segmentation literature [13, 14] we
report in Table 4 mAPr at IoU threshold 0.5 and 0.75.
mAPr is similar to the traditional VOC12 evaluation, but
using IoU between segments instead of between boxes.
Since we have a fixed set of windows, we can also report
the average best overlap (ABO) [35] metric to give a
different perspective on the results.

Baselines. We consider five training-free baselines:
simply filling in the detection rectangles (boxes) with fore-
ground labels, fitting an ellipse inside the box, using the
MCG proposal with best bounding box IoU, and using
GrabCut and GrabCut+ (see Section 3.2), initialized from
the detection box.

Analysis. The results table 4 follows the same trend as
the semantic labelling results in Section 4. GrabCut+
provides the best results among the baselines considered
and shows comparable performance to DeepMask, while
our proposed DeepLabBOX outperforms both techniques.
We see that our weakly supervised approach reaches∼ 95%

Figure 6: Example result from our weakly supervised
DeepMask (VOC12+COCO) model.

of the quality of fully-supervised case (both on mAPr
0.5

and ABO metrics) using two different convnets, DeepMask
and DeepLabBOX, both when training with VOC12 or
VOC12+COCO.

Examples of the instance segmentation results from
weakly supervised DeepMask (VOC12+COCO) are shown
in Figure 6. Additional example results are presented in the
supplementary material.

7. Conclusion
The series of experiments presented in this paper

provides new insights on how to train pixel-labelling con-
vnets from bounding box annotations only. We showed
that when carefully employing the available cues, recurs-
ive training using only rectangles as input can be surpris-
ingly effective (Boxi). Even more, when using box-driven
segmentation techniques and doing a good balance between
accuracy and recall in the noisy training segments, we can
reach state of the art performance without modifying the
segmentation network training procedure (M∩G+). Our res-
ults improve over previously reported ones on the semantic
labelling task and reach ∼ 95% of the quality of the same
network trained on the ground truth segmentation annota-
tions (over the same data). By employing extra training data
with bounding box annotations from COCO we are able to
match the full supervision results. We also report the first
results for weakly supervised instance segmentation, where
we also reach ∼ 95% of the quality of the fully-supervised
training.

Our current approach exploits existing box-driven seg-
mentation techniques, treating each annotated box indi-
vidually. In future work we would like to explore co-
segmentation ideas (treating the set of annotations as a
whole), and consider even weaker forms of supervision.
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Supplementary material
A. Content

This supplementary material provides additional quant-
itative and qualitative results:

• Section B analyses the contribution of the post-
processing stages during recursive training (Figure
S1).

• Section C discusses training differences of our ap-
proach in contrast to the related work.

• We report a comparison of different GrabCut-like
methods on Pascal VOC12 boxes in Section D.

• Section E (Figure S2) shows visualization of the dif-
ferent variants of the proposed segmentation inputs ob-
tained from bounding box annotations for weakly su-
pervised semantic segmentation.

• Detailed performance of each class for semantic la-
belling is reported in Section F (Table S2).

• Section G provides additional qualitative results for
weakly supervised semantic segmentation on Pascal
VOC12 (Figure S3).

• Qualitative results for instance segmentation are
shown in Section H (Figure S4 and Figure S5).

B. Recursive training with boxes
In Section 3 of the main paper we recursively train a con-

vnet directly on the full extend of bounding box annotations
as foreground labels, disregarding post-processing stages.
We name this recursive training approach Naive. Us-
ing this supervision and directly applying recursive training
leads to significant degradation of the segmentation output
quality, see Figure S1.

To improve the labels between the training rounds three
post-processing stages are proposed. Here we discuss them
in more detail:

1. Box enforcing: Any pixel outside the box annotations
is reset to background label (cue C1, see Section 3 in
the main paper).

2. Outliers reset: If the area of a segment is too small
compared to its corresponding bounding box (e.g.
IoU< 50%), the box area is reset to its initial label
(fed in the first round). This enforces a minimal area
(cue C2).

3. CRF: As it is common practice among semantic la-
belling methods, we filter the output of the network

Box enf.+Outliers reset+CRF
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Naive recursive trainingNaive

Figure S1: Recursive training from rectangles only as input.
Validation set results. All methods use only rectangles as
initial input, except “previous best (segments)“.

to better respect the image boundaries. (We use Den-
seCRF [20] with the DeepLabv1 parameters [5]). In
our weakly supervised scenario, boundary-aware fil-
tering is particularly useful to improve objects delin-
eation (cue C3).

Results. Figure S1 presents results of the recursive train-
ing using boxes as input and shows the contribution of
the post-processing stages. We see that the naive recurs-
ive training is ineffectual. However as soon as some con-
straints (box enforcing and outliers reset, cues C1+C2) are
enforced, the quality improves dramatically after the first
round of recursive training. These results already improve
over previous work considering rectangles only input [8, 27]
(both using a similar convnet to ours) and achieve 3 points
improvement over [27] (from 52.5 to 55.6 mIoU, see Figure
S1 “Box enf.+Outliers reset”).

Even more, when also adding CRF filtering (+ cue C3)
over the training set, we see a steady grow after each round,
stabilizing around 61% mIoU. This number is surprisingly
close to the best results obtained using more sophisticated
techniques [8], which achieve around 62% mIoU (see Fig-
ure S1 and Table S2).

Our results indicate that recursive training of a convnet
is robust to input noise as soon as appropriate care is taken
to de-noise the output between rounds, enabled by given
bounding boxes and object priors.

C. Training details in comparison with BoxSup
and WSSL

In this work we focus on box level annotations for se-
mantic labelling of objects. The closest related work are
thus [8, 27]. Since all implementations use slightly differ-
ent networks and training procedures, care should be taken



during comparison. Both [8] and [27] propose new ways
to train convnets under weak supervision. Both of the ap-
proaches build upon the DeepLab network [5], however,
there are a few differences in the network architecture.

WSSL [27] employs 2 different variants of the DeepLab
architecture with small and large receptive field of view
(FOV) size. For each experiment WSSL evaluates with
both architectures and reports the best result obtained (us-
ing boxes or segments as input). BoxSup [8] uses their own
implementation of the DeepLab with the small FOV. In our
approach all the experiments employ the DeepLab architec-
ture with the large FOV.

There are also differences in the training procedure. For
SGD WSSL uses a mini-batch of 20-30 images and fine-
tunes the network for about 12 hours (number of epochs is
not specified) with the standard learning parameters (fol-
lowing [5]). In the SGD training BoxSup uses a mini-batch
size of 20 and the learning rate is divided by 10 after every
15 epochs. The training is terminated after 45 epochs. We
use a mini-batch of 30 images for SGD and the learning rate
is divided by 10 after every 2k iterations, ~6 epochs. Our
network is trained for 6k iterations, ~18 epochs.

Similarly to our approach, the BoxSup method [8] uses
MCG object proposals during training. However, there are
important differences. They modify the training procedure
so as to denoise intermediate outputs by randomly selecting
high overlap proposals. In comparison, our approach keeps
the training procedure unmodified and simply generates in-
put labels. Our approach also uses ignore regions, while
BoxSup does not explore this dimension.

WSSL [27] proposes an expectation-maximisation al-
gorithm with a bias to enable the network to estimate the
foreground regions. In contrast, in our work we show that
one can reach better results without modifying the training
procedure (compared to the fully supervised case) by in-
stead carefully generating input labels for training from the
bounding box annotations (Section 3.2 in the main paper).

D. GrabCut variants
As discussed in Section 3.2 in the main paper we pro-

pose to employ box-guided instance segmentation to in-
crease quality of the input data. Our goal is to have weak
annotations with maximal quality and minimal loss in re-
call. In Section 3.1 in the main paper we explored how far
could we get with just using boxes as foreground labels.
However, to obtain results of higher quality several rounds
of recursive training are needed. Starting from less noisier
object segments we would like to reach better performance
with just one training round.

For this purpose we explore different GrabCut-like [36]
techniques, the corresponding quantitative results are in
Table S1. For evaluation we use the mean IoU meas-
ure. Previous work evaluated using the 50 images from the

GrabCut dataset [36], or 1k images with one salient object
[7]. The evaluation of Table S1 compares multiple methods
over 3.4k object windows, where the objects are not salient,
have diverse sizes and occlusions level. This is a more chal-
lenging scenario than usually considered for GrabCut-like
methods.

Method mIoU

GrabCut
variants

DenseCut [7] 52.5
Bbox-Seg+CRF [27] 71.1

GrabCut [36] 72.9
KGrabCut [40] 73.5

GrabCut+ 75.2

Table S1: GrabCut variants, evaluated on Pascal VOC12
validation set. See Section D for details.

GrabCut [36] is the established technique to estimate
an object segment from its bounding box. To further im-
prove its quality we propose to use better pairwise terms.
We name this variant GrabCut+. Instead of the typical
RGB colour difference the pairwise terms in GrabCut+
are replaced by probability of boundary as generated by
HED [43]. The HED boundary detector is trained on
the generic boundaries of BSDS500 [1]. Moving from
GrabCut to GrabCut+ brings a ∼ 2 points improve-
ment, see Table S1.
We also experimented with other variants such as
DenseCut [7] and KGrabCut [40] but did not obtain sig-
nificant gains.

[27] proposed to perform foreground/background seg-
mentation by using DenseCRF and the 20% of the centre
area of the bounding box as foreground prior. This ap-
proach is denoted Bbox-Seg+CRF in Table S1 and under-
performs compared to GrabCut and GrabCut+.

E. Examples of input segmentations
Figure S2 presents examples of the considered weak an-

notations. This figure extends Figure 3 of the main paper.

F. Detailed test set results for semantic la-
belling

In Table S2, we present per class results on the Pascal
VOC12 test set for the methods reported in the main paper
in Table 2.

On average with our weakly supervised results we
achieve ∼ 95% quality of full supervision across all classes
when training with VOC12 only or VOC12+COCO.

G. Qualitative results for semantic labelling
Figure S3 presents qualitative results for semantic la-

belling on Pascal VOC12. The presented semantic la-



belling examples show that high quality segmentation can
be achieved using only detection bounding box annotations.
This figure extends Figure 5 of the main paper.

H. Qualitative results for instance segmenta-
tions

Figure S4 illustrates additional qualitative results for
instance segmentations given by the weakly supervised
DeepMask and DeepLabBOX models. This figure comple-
ments Figure 6 from the main paper.

Figure S5 shows examples of instance segmentation
given by different methods. Our proposed weakly super-
vised DeepMask model achieves competitive performance
with fully supervised results and provides higher quality
output in comparison with box-guided segmentation tech-
niques. The DeepLabBOX model also provides similar res-
ults, see Table 4 in the main paper.



Training

data

Super-

vision
Method mean plane bike bird boat bottle bus car cat chair cow table dog horse

motor

bike

per

son
plant sheep sofa train tv

VOC12

weak

Box 62.2 62.6 24.5 63.7 56.7 68.1 84.3 75.0 72.3 27.2 63.5 61.7 68.2 56.0 70.9 72.8 49.0 66.7 45.2 71.8 58.3

Boxi 63.5 67.7 25.5 67.3 58.0 62.8 83.1 75.1 78.0 25.5 64.7 60.8 74.0 62.9 74.6 73.3 50.0 68.5 43.5 71.6 56.7

M ∩ G+ 67.5 78.1 31.1 72.4 61.0 67.2 84.2 78.2 81.7 27.6 68.5 62.1 76.9 70.8 78.0 76.3 51.7 78.3 48.3 74.2 58.6

semi M ∩ G+ 66.9 75.8 32.3 75.9 60.1 65.7 82.9 75.0 79.5 29.5 68.5 60.6 76.2 68.6 76.9 75.2 53.2 76.6 49.5 73.8 58.6

full
WSSL [27] 70.3 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3

DeepLabours [5] 70.5 85.3 38.3 79.4 61.4 68.9 86.4 82.1 83.6 30.3 74.5 53.8 78.0 77.0 83.7 81.8 55.6 79.8 45.9 79.3 63.4

VOC12

+

COCO

weak
Boxi 66.7 69.0 27.5 77.1 61.9 65.3 84.2 75.5 83.2 25.7 73.6 63.6 78.2 69.3 75.3 75.2 51.0 73.5 46.2 74.4 60.4

M ∩ G+ 69.9 82.5 33.4 82.5 59.5 65.8 85.3 75.6 86.4 29.3 77.1 60.8 80.7 79.0 80.5 77.6 55.9 78.4 48.6 75.2 61.5

semi
BoxSup [8] 71.0 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1

M ∩ G+ 72.8 87.6 37.7 86.7 65.5 67.3 86.8 81.1 88.3 30.7 77.3 61.6 82.7 79.4 84.1 82.0 60.3 84.0 49.4 77.8 64.7

full
WSSL [27] 72.7 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1

DeepLabours [5] 73.2 88.8 37.3 83.8 66.5 70.1 89.0 81.4 87.3 30.2 78.8 61.6 82.4 82.3 84.4 82.2 59.1 85.0 50.8 79.7 63.8

Table S2: Per class semantic labelling results for methods trained using Pascal VOC12 and COCO. Test set results. Bold indicates the best performance with the
same supervision and training data. M ∩ G+ denotes the weakly or semi supervised model trained with MCG ∩ Grabcut+.
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Figure S2: Different segmentations obtained starting from a bounding box. White is background and ignore regions are
beige. M ∩ G+ denotes MCG ∩ Grabcut+.
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Figure S3: Qualitative results on VOC12. M ∩ G+ denotes the weakly supervised model trained on MCG ∩ Grabcut+.



DeepMask

DeepLabBOX

Figure S4: Example results from the DeepMask and DeepLabBOX models trained with Pascal VOC12 and COCO using box
supervision. White boxes illustrate Fast-RCNN detection proposals used to output the segments which have the best overlap
with the ground truth segmentation mask.
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Figure S5: Qualitative results of instance segmentation on VOC12. Example result from the DeepMask model are trained
with Pascal VOC12 and COCO supervision. White boxes illustrate Fast-RCNN detection proposals used to output the
segments which have the best overlap with the ground truth segmentation mask.


