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Abstract

In this work, we build a generic architecture of Convo-

lutional Neural Networks to discover empirical properties

of neural networks. Our first contribution is to introduce

a state-of-the-art framework that depends upon few hyper

parameters and to study the network when we vary them.

It has no max pooling, no biases, only 13 layers, is purely

convolutional and yields up to 95.4% and 79.6% accuracy

respectively on CIFAR10 and CIFAR100. We show that the

nonlinearity of a deep network does not need to be contin-

uous, non expansive or point-wise, to achieve good perfor-

mance. We show that increasing the width of our network

permits being competitive with very deep networks. Our

second contribution is an analysis of the contraction and

separation properties of this network. Indeed, a 1-nearest

neighbor classifier applied on deep features progressively

improves with depth, which indicates that the representa-

tion is progressively more regular. Besides, we defined and

analyzed local support vectors that separate classes locally.

All our experiments are reproducible and code is available

online, based on TensorFlow.

1. Introduction

Classification in high dimension requires building a rep-

resentation that reduces a lot of variability while being dis-

criminative. For example, in the case of images, there are

geometric variabilities such as affine roto-translation, scal-

ing changes, color changes, lighting, or intra-class variabili-

ties such as style. Deep networks have been shown to be co-

variant to such actions [1, 16], to linearize them [24, 22, 30]

and combing those strategies permit building invariants to

them [3, 20, 9]. The creation of those invariants corresponds

to a contraction of feature space, while separating the differ-

ent classes. Convolutional Neural Networks (CNNs) consist

of cascades of convolutional operators and non-linearities,

and lead to state-of-the-art results on benchmarks where

enough data are available [15, 11].

Geometric variabilities can be successfully handled by

prior representations such as scattering transforms [23, 4,

20, 19, 25]. They use cascades of wavelet transform and

complex modulus to build a representation which is covari-

ant to the action of several groups of variabilities. Invariants

to those variabilities are built by linear averaging that does

not require to be learned, which corresponds to a contrac-

tion of the space along the orbits of those groups. Such pri-

ors can be derived from the physical laws that permit gen-

erating natural signals, such as the euclidean group. They

lead to state-of-the-art results when all the groups of vari-

abilities of the problem are understood, since in this case

one only has a problem of variance. However, in the case of

complex images datasets such as CIFAR10, CIFAR100 or

ImageNet, understanding the nature of the non-geometrical

invariants that are built remains an open question.

Several works address the problem to understand theo-

retically CNNs, but most of them assume the existence of

a low-dimensional structure [26]. As in [22], we chose in-

stead to have an empirical analysis. Our objective is to de-

termine general properties which were not predictable by

the theory and to characterize them rigorously. Are there

restrictions on the property of a non-linearity? How can

one estimate a decision boundary? Can we find layerwise

properties built by the deep cascade? Is there a layerwise

dimensionality reduction?

In a classification task, one builds an estimator of

the class for a test set using the samples of a training

dataset. The intrinsic dimension of the classes is a quite

low-dimensional structure in comparison with the origi-

nal dimension of the signals, thus a classification task re-

quires estimating a (often non-linear) projection onto a low-

dimensional space. Observe that building this estimator is

equal to estimating the boundary of classification of this

task. It can be done in several ways that are related to each

others. First, one can estimate the group of symmetry of

the classification task as suggested in [20, 4]. Those papers

suggest that a deep network could potentially build a lin-

ear approximation of the group of symmetry of a classifica-
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tion task. For example, in the case of a CNN, all the layers

are covariant with the action of translation which is a linear

sub-group of symmetry of a classification problem, and this

variability should be reduced. However, the class should

not collapse when an averaging in translation is performed

since they would become indistiguishable and lead to clas-

sification errors, thus [20] proposes to introduce a notion

of support vectors. They are vectors of different classes,

which prevent the collapsing of different classes by indi-

cating to the algorithm that it should carefully separate the

different classes at those points. It means the deep network

should not contract this part of the space, and they should

build a classification boundary. Secondly, one could use the

smoothness of the data. It means for example building an

intermediate representation of the data that projects them

into a lower dimensional structure, for which building esti-

mators of the class is simpler. For instance, it can be poten-

tially done by linearizing high dimensional symmetries and

then applying a projection.

Understanding the nature of the classification boundary

in the deep learning framework is especially hard, because

the non-linear modules used are increasingly more com-

plex, while improving progressively the benchmarks. For

example, max pooling [14], spatial transformers [13], local

contrast normalization [15], attention networks [8], resnet

[11], make the mathematical analysis even more difficult,

since the way they are combined is mainly defined by a

complex engineering process of trial and error based on the

final accuracy of the network. However, [27] showed that

a simple cascade of convolutions and ReLUs is enough to

achieve good performances on standard datasets. The ques-

tion of simplicity of a deep network is raised: what does

simple mean? How simple can a deep network be, while

leading to state-of-the-arts results?

Section 2 describes our architecture that depends upon

few hyper parameters but leads to excellent numerical per-

formances. Secondly, we discuss the variation of the

hyper parameters of our architectures. Then, Section 3

shows that the representation built by a deep network is

progressively more regular. Finally, we introduce a no-

tion of local support vectors which avoid the collapsing

of classes, in Section 4. All experiments are reproducible

using TensorFlow, via a software that is available on-

line at: https://github.com/edouardoyallon/

deep_separation_contraction/.

2. A sandbox to understand deep networks

We build a class of CNNs that depends on two hyper-

parameters: its width and a non-linearity. We demonstrate

that this framework is flexible and simple. First, we de-

scribe the setting that permits our network to reach the state

of the art. Then, we vary those two hyper-parameters and

observe counter-intuitive properties: a non-linearity does

not need to be contractive, nor point wise, and a wide deep

network generalizes better than a tight one.

2.1. A spare pipeline for evaluation

We describe the architecture that we used during all our

experiment, with the datasets CIFAR10 and CIFAR100. It

will depend only on K ∈ N, which is the width of our

network, and ρ a non-linear function. Our deep network

consists of the cascade of 13 convolutional layers Wn with

non-linearity ρ. The spatial support of the kernel is 3 × 3,

and except for the first layer, the number of input and output

layers is fixed equal to K . The output of the final convolu-

tional layer is linearly and globally spatially averaged by A,

and then reduced to the number of classes of the problem by

a projection L. We did not learn any biases in the convolu-

tional layers, however we subtract the mean Exn from our

feature maps, which is estimated on all the dataset via the

standard batch normalization technique [12]. In this case we

are in a similar setting as [21], which proves that if Wn is

unitary then for any depths the network preserves the energy

of the input signal and is non-expansive. For computational

speed-up, we apply a spatial stride of 2 at the output of the

layers 6 and 10. Figure 1 describes our network, which can

be formally summarized for an input x, via x0 = x, and:

xn+1 = ρWn(xn − Exn)

We trained our network via a SGD with momentum 0.9 to

minimize the standard negative cross-entropy. We used a

batch size of 128, and the training lasts 120 000 iterations.

We used an initial learning rate of 0.25, that we divided by

two every 10 000 iterations. To avoid overfitting, we apply

4 regularizations. First, a weight decay of 0.0002 that corre-

sponds to a l2 regularization. Then, we used dropout every

two layers, starting at the second layer, that randomly sets

40% of the coefficients to 0: this is our main trick to achieve

good performances. Thirdly, we used spatial batch normal-

ization regularization that is supposed to remove instabili-

ties during the training, as developed in [12]. Finally, we

applied standard random flipping and cropping techniques

as data augmentation. Observe that we did not use any bias,

simply removing the mean and did not use any non-linear

pooling. Our architecture is thus kept as simple as possible,

as in [27] but it only depends only on a few hyper parame-

ters: its width and the non-linearity. Without any contrary

mentions, we used ρ = ReLU since it has heuristically been

shown to achieve better performances. The first layer will

always have a ReLU non-linearity.

CIFAR10 and CIFAR100 are two datasets of colored im-

ages of size 32 × 32. The training set consists of 50 000

images, that are separated into 10 and 100 balanced classes

respectively for CIFAR10 and CIFAR100. The testing set

consists in 10 000 images. Those datasets are preprocessed

using a standard procedure of whitening.

https://github.com/edouardoyallon/deep_separation_contraction/
https://github.com/edouardoyallon/deep_separation_contraction/
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Figure 1. Schematic representation of our architecture. Our net-

work is a cascade of block Bl, l being the input size of the con-

volutional operator, followed by an averaging A and a projection

L.

Methods Depth #params CIFAR10 CIFAR100

Ours 13 28M 95.4 79.6

SGDR [17] 28 150M 96.2 82.3

RoR [31] 58 13M 96.2 80.3

WResNet [29] 28 37M 95.8 80.0

All-CNN [27] 9 1.3M 92.8 66.3

Table 1. Accuracy on CIFAR10 and CIFAR100 for state-of-the-

arts supervised deep networks. Depth and number of parameters

are reported to perform a fair comparison.

The number of parameters used by our network with CI-

FAR10 is 9 × (3K + 12K2) + 10K . To get our best ac-

curacy, we used K = 512 which corresponds roughly to

28M parameters, that lead to 95.4% and 79.6% accuracies

on CIFAR10 and CIFAR100 respectively, which is an ex-

cellent performance according to Table 1. Thus, we are in a

state-of-the-art setting to perform an analysis of the features

learned.

2.2. Weakening the nonlinearity

Contraction phenomenon is a necessary step to explain

the tremendous dimensionality reduction of the space that

occurs. A network cannot be purely linear, since some clas-

sification problems are not linearly separated: indeed a lin-

ear operator can only contract along straight lines. Should

ρ also be a contracting operator? We study specifically the

pointwise non linearity ρ in a CNN and its necessary condi-

tions to reach good classification accuracy.

2.2.1 Unneccesity to contract via ρ

Since the AlexNet [15], non-linearity is often chosen to be

a ReLU(x) = max(0, x). This is a non-expansive function,

e.g. |ReLU(x)−ReLU(y)| ≤ |x− y|, and also continuous.

Consequently, the cascade of linear operators of norm less

than 1 and this non-linearity is non-expansive which is a

convenient property to the reduce or maintain the volume

of the data.

Modulus non-linearity in complex network have been

also suggested to remove the phase of a signal, which cor-

responds in several frameworks to a translation variability

[19, 3] . For instance, if the linear operator consists in

a wavelet transform with appropriate mother wavelet [18],

then the spectrum of each convolution with a wavelet is lo-

calized in Fourier. This implies that a small enough transla-

tion in the spatial domain will also result in a phase multipli-

cation in the spatial domain. Applying a modulus removes

this variability. As a classical result of signal theory, ob-

serve also that an averaged rectified signal is approximately

equal to the average of its complex envelope [18]. Conse-

quently, cascaded with an average pooling, a ReLU and a

modulus might have the same use.

Experimentally, it is possible to build a deep network that

leads to 89.0% accuracy on CIFAR10, with K = 256, with

the non-linearity chosen as:

ρ(x) = sign(x)(
√

|x|+ 0.1)

In the neighborhood of 0, this non-linearity is not continu-

ous in 0, has an arbitrary large derivative, and preserves the

sign of the signal. It shows that continuity property, lips-

chitz property or removing the phase of the signals are not

necessary conditions to obtain a good accuracy. It suggests

that more refinement in the mathematical analysis of ρ is

required.

2.2.2 Degree of non-linearity

In this subsection, we try to weaken the traditional property

of pointwise non-linearity. Indeed, being non-linear is es-

sential to ensure that the different classes can be separated,

however the recent work on ResNet [11] suggests that it is

not necessary to apply a pointwise non-linearity, thanks to

identity mapping that can be interpreted as the the concate-

nation of a linear block (the identity) and a non-linear block.

In this case, a non-linearity is applied only on a half of the

feature maps. We investigate the question to understand if

this property generalizes to our architecture by introducing

a ReLU with a degree k
K

of non-linearity that we apply to a
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Figure 2. Accuracy when varying the degree of non-linearity k

K
,

reported with K = 32 and K = 128. When k = K, one ob-

tains 88.0% and 94.7% respectively for K = 32 and K = 128.

The maximum accuracies are then respectively 89.8% and 94.7%,

which indicates that a point-wise non-linearity is not necessary the

optimal configuration.

feature map x(u, l), where u is the spatial variable and l the

index of the feature map, defined by:

ReLUK
k (x)(u, l) ,

{

ReLU(x(u, l)), if l ≤ k

x(u, l), otherwise

In the case k = 0, we have an almost linear network

(there is the ReLU non-linearity at the first layer), and when

k = K , it is a standard deepnetwork with point-wise non-

linearity. Figure 2 reports the numerical accuracy when we

vary k, fixing K equal to 32 or 128. A linear deep net-

work performs poorly, leading to an accuracy of roughly

70% on CIFAR10. We see that there is a plateau when
k
K

≥ 0.6 = k0

K
, and that the maximum accuracy is not

necessary obtained for k = K . Our networks could reach

89.8% and 94.4% classification accuracy respectively for

K = 32 and K = 128.

This is an opportunity to reinterpret the non-linearity.

Let τ be a cyclic translation of {1, ...,K}, e.g.

τ([1, ...,K]) = [K, 1, ...,K − 1], such that we define:

τ(x)(u, l) , x(u, τ(l)). In this case, τ is a linear opera-

tor that translates cyclically the channels of a feature map.

Observe that:

ReLUK
k x = τ ◦ ReLUK

1 ◦ ...τ ◦ ReLUK
1

︸ ︷︷ ︸

k times

x

In this setting, one might interpret a CNN with depth N

and width K as a CNN of depth NK and width K , since

it is also a cascade of NK ReLUK
1 non-linearities and

{τ,Wn}n linear operators. In this work, τ is fixed, yet it
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Figure 3. Accuracy when varying K on CIFAR100 dataset, the

axis of K is in log scale.

might be learned as well. It means also that if k < K , by

increasing the number of layers, a CNN using a ReLU non-

linearity can be rewritten with a ReLUk
K non-linearity. For

k < k0, we tried to increase the depth of the deep network

to recover its best accuracy since there will be as much non-

linearity as in the case k = K , and we know there exists

an optimal solution. However, our network was not able to

perform as well, which implies that there is an issue with

the optimization. Restricting the non-linearity application

to only one feature map could help future analysis, since it

gives explicitly the coefficients that exhibits non-linear ef-

fects. Finally, the only hyper parameter that remains is the

number of feature maps K of the layers, that we study in

the next final subsection.

2.3. Increasing the width

In this section, we show that increasing K increases the

classification accuracy of the network. [29] reports also this

observation, which is not obvious since increasing K in-

creases by K2 the number of parameters and could lead to

a severe overfitting. Besides, since a final dimensionality

reduction must occur at the last layer, one could expect that

the intermediate layers might have a small number of fea-

ture maps. Figure 3 and 4 reports the numerical accuracy

respectively on CIFAR10 and CIFAR100, with respect to

K . Setting K = 512 leads to 95.4% and 79.6% accuracy

respectively on CIFAR10 and CIFAR100, while K = 16
leads to 79.8% and 30.6% accuracy on CIFAR10 and CI-

FAR100 respectively. It is not clear if the reason of this

improvement is the optimization or if it is a structural rea-

son. Nevertheless, it indicates that increasing the number of

feature maps is a simple way to improve the network accu-

racy.
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Figure 4. Accuracy when varying K on CIFAR10 dataset, the axis

of K is in log scale.

3. Contracting the space

Regularity of a representation with respect to the classes

is necessary to classify high-dimensional samples. Regular-

ity means here that a supervised classifier builds a covering

of the full data space with training samples via ε-balls that

is small in term of volume or number of balls, yet that it still

generalizes well [28]. The issue is that it is hard to track this

measure. For example, assume the data lay on a 2D or 3D

manifold and are smooth with respect to the classes, then it

is possible to build a classifier which is locally affine using

manifold learning techniques. In particular, this implies that

the euclidean metric is locally meaningful. We take a sec-

ond example: when a nearest neighbor obtains good gener-

alization properties on a test set. In this case, our problem is

regular since it means again that locally the euclidean met-

ric is meaningful and that the representation of the train-

ing set is mostly covering the data space. We show that

supervised deep networks progressively build a representa-

tion where euclidean distance becomes more meaningful.

Indeed, we numerically demonstrate that the performance

of local classifiers, e.g. which assign a class by giving more

important weights to points of the training set that are in a

neighborhood of the testing sample, progressively improves

with depth.

In this section and the following, in order to save com-

putation time, we used the network previously introduced

with K = 32 and ρ = ReLU. Numerically, we however

tried several parameters as a sanity check that our conclu-

sion generalizes to any values of K , to avoid a loss in gener-

ality. With K = 32, the accuracy of the network is 88.0%.

IncreasingK to 512 should approximatively increase all the

reported results by 7 absolute percents of accuracy.

Translation is one of the symmetries of the image classi-

fication problem, thus it is necessary to remove this vari-

ability, even if the features are not extracted at the final

layer. In the following, we perform our experiments us-

ing x̄ , Ax ∈ R
32. We have the following ǫ separation

property, thanks to non-expansivity of averaging operators:

‖x− y‖ ≥ ‖x̄− ȳ‖ ≥ ǫ (1)

It means that a separation by ǫ of the averaged signals im-

plies a separation by at least ǫ of any translated versions of

the original signals. We denote the features at depth n of the

training set by X̄n
train = {x̄n, x ∈ training} and the features

of depth n of the testing set by X̄n
test = {x̄n, x ∈ testing}.

For a given x, xn or x̄n, we write its class y(x), y(xn) or

y(x̄n) since there is no confusion possible.

3.1. A progressively more regular representation

Brutal contraction via a linear projection of the space

would not preserve the distances between different classes.

Yet, with a cascade of linear and non linear operators, it

would be possible to progressively contract the space with-

out losing in discriminability [21]. Several works [30, 22]

reported that linear separability of deep features increases

with depth. It might (but this is not the only solution) indi-

cate that intra-class variabilities are progressively linearized

[20], until the last layer, such that a final linear projector

can build invariants. Following this approach, we start by

applying a Gaussian SVM at each depth n, which is a dis-

criminative locally linear classifier, with a fixed bandwith.

Indeed, observe here that the case of an infinite bandwidth

corresponds to a linear SVM. We train it on the standard-

ized features X̄n
train corresponding to the training set at depth

n and test it on X̄n
test, via a Gaussian SVM with bandwith

equal to the average l2 norm of the points of the training

set. We only cross-validate once the regularization param-

eter at one layer and then kept the parameters of the SVM

constant. Figure 5 reports that the accuracy of this classi-

fier increases at regular step with depth, which confirms the

features become more separable.

In fact, we prove this Gaussian SVM acts as a local clas-

sifier. A 1 nearest neighbor (1-NN) classifier is a naive and

simple non-parametric classifier for high-dimensional sig-

nals, that simply assigns to a point the class of its closest

neighbor. It can be interpreted as a local classifier with

adaptive bandwith [5]. It is unbiased, yet it bears a lot of

variance. Besides, resampling the data will affect a lot the

classification results. We train a 1-NN on X̄n
train and test it

on X̄n
test. We denote by a x(k) the result of the k-th closest

neighbor of a point, that is distinct of itself. We observe in

Figure 5 that a 1-NN trained on X̄n
train and tested on X̄n

test

performs nearly as well as a Gaussian SVM. Besides, the

progression of this classifier is almost linear with respect

to the depth. It means that the representation built by a

deep network is in fact progressively more regular, which



2 4 6 8 10 12
n

40

50

60

70

80

90

100

%
 a
cc
u
ra
cy

Accuracy of the CNN
NN
SVM

Figure 5. Accuracy on CIFAR10 at depth n via a Gaussian SVM

and 1-NN. The size of the network is K = 32 and its accuracy on

the testing set is 88.0%.

explains why the Gaussian SVM accuracy progressively im-

proves.

3.2. A progressive reduction of the space

We want to quantify the contraction of the space per-

formed by our CNN. In this subsection, we show that the

samples of a same class define a structure that progressively

becomes low-dimensional. We investigate the question to

understand if the progressive improvement of the 1-NN is

due to a dimensionality reduction. First, we check wether

a linear dimensionality reduction is implemented by our

CNN. To this end, we apply a PCA on the features X̄n
train

belonging to the same class at each depth n. As a normal-

ization, the features at each depth n were globally standard-

ized. In other words, the data at each depth are in the l2

balls of radius 32. Remember that in our case, x̄n ∈ R
32.

Figure 6 represents the cumulated variances of the K = 32
principal component axis of a given class at different depth

n. The obtained diagram and conclusions are not specific to

this class. The accumulated variance indicates the propor-

tion of energy that is explained by the first axis. The slope

of a curve is an indicator of the dimension of the classes: as

a plateau is reached, the last components are not useful to

represent the class for classifiers based on l2 distances. The

first observation is that the variance seems to be uniformly

reduced with depth. However, certain plots of successive

depths are almost indisguishable: it indicates that almost no

variance reduction has been performed. Except for the last

layer, the decay of the 20 last eigenvalues is slow: this is not

surprising since nothing indicates that the dimension should

be reduced and small variance coefficients might be impor-

tant for the classification task. The very last layer exhibits

a large variance reduction and is low-dimensional, yet this
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Figure 6. Cumulated variances of the principal component of a

given class at different depths n, for a network trained on CI-

FAR10 with K = 32. In general, one observes a reduction of

variance with depth. Best viewed in color.

is logical since by construction, the final features should be

linearly separable and be in space of dimension 10.

We then focus on the contraction of the intra-class dis-

tances. As a cascade of non-expansive operators, a deep net-

work is also non-expansive up to a multiplicative constant.

In particular, the intra-class distances should be smaller.

In Subsection 3.1, we observed that the euclidean metric

was in fact meaningful: this could indicate low-dimensional

manifold structure. Under this hypothesis, in a similar fash-

ion as [10], we study the average intra-class distances. As

a normalization, the features X̄n
train at depth n are standard-

ized over the dataset. On CIFAR10 (where each of the 10

classes has 5000 samples) we compute an estimation of the

average distances of the intra-class samples of the features

X̄n
train at depth n for the class c:

1

50002

∑

x̄n∈X̄n

train

y(xn)=c

∑

x̄′
n∈X̄n

train

y(x′

n
)=c

‖x̄n − x̄′
n‖

Figure 7 reports this value for different classes c and differ-

ent depths n. One sees that the intra-class distances do not

strictly decrease with depth, except on the last layer, which

must be low-dimensional since the features are, up to pro-

jection, in a space of size 10. This is due to two phenomena:

the normalization procedure whose choice can drastically

change the final results and the averaging. Indeed, let us as-

sume here that ‖Wn‖ ≤ 1, then if x, x̃ are in the same class,

‖xn+1 − x̃n+1‖ ≤ ‖xn − x̃n‖, but this does not imply that

‖x̄n+1 − x̄′
n+1‖ ≤ ‖x̄n − x̄′

n‖, since the averaging is a

projection and could break the distance inequality.

Those two experiments indicate we need to refine our

measurement of contraction to explain the progressive and
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constant improvement of a 1-NN. Specifically, one should

estimate the local intrinsic dimension: this is not possi-

ble since we do not have enough available samples in each

neighborhood [7].

4. Local support vectors for building a variable

bandwidth classification boundary

Our objective is to quantify at each depth n, the regular-

ity of the representation constructed by a deep net in order

to understand the progressive contraction of the space. In

other words, we need to build a measure of this regularity.

The contraction of the space is global, but we know from be-

low that neighbors are meaningful: we woud like to explain

how they separate the different classes. We thus introduce

a notion of local support vectors. In the case of a SVM,

a support vector corresponds to samples of the training set

that delimit different classes, by interpolating a hyperplane

between them [6]. It means that a support vectors permits

to avoid the collapsing of the boundary classification [20].

But in our case, we do not have enough samples to estimate

the exact boundaries. Local support vectors corresponds to

support vectors defined by a local neighborhood. In other

words, at depth n, the set of support vectors is defined as

Γn = {x̄n, y(x̄
(1)
n ) 6= y(x̄n)} ⊂ X̄n

train which is the set of

nearest neighbors that have a different class. In this section

for a finite set X , we denote its cardinality by |X |.

4.1. Margin

In this subsection, we numerically observe a margin be-

tween support vectors. In [26], bounds on the margin are

obtained with hypothesis of low dimensional structures, and
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Figure 8. Cumulative distributions of distances: between a sup-

port vector and its nearest neighbors, e.g. Bn(t) (dashed line), and

a point that is not a support vector and its nearest neighbor, e.g.

An(t) (continuous line). Different colors correspond to different

depths. The axis of the magnitude of the distance is in log scale.

At a given depth, one sees there is a significantive difference be-

tween the cumulative distribution, which indicates the existence of

a margin. Best viewed in color.

this might be restrictive according to the analysis above. A

margin at depth n is defined as:

γn = inf
y(x̄

(1)
n ) 6=y(x̄n)

‖x̄(1)
n − x̄n‖ ≥ 0

Since our data are in finite number this quantity is always

different from 0, but we need to measure if it is significant.

We thus compare the distributions of distances of nearest

neighbors belonging to the same class An = {‖x̄
(1)
n −

x̄n‖, x̄n 6∈ Γn} and the distributions of the distances be-

tween support vectors Bn = {‖x̄
(1)
n − x̄n‖, x̄n ∈ Γn}. The

features have been normalized by a standardization. Figure

8 represents the cumulative distributions of An and Bn for

different depths n. We recall that a cumulative distribution

of a finite set A ⊂ R is defined as: A(t) = |{x≤t,x∈A}|
|A| .

One observes that in a neighborhood of 0, An(t) is roughly

the translation of Bn(t) by 0.5. It indicates there is a signifi-

cant difference, showing γn is actually meaningful. Conse-

quently there exists a margin between the spatially averaged

samples of different classes, which means by Equation (1)

that this margin exists between the samples themselves and

their orbits by the action of translations.

4.2. Complexity of the classification boundary

Estimating a local intrisic dimension is difficult when

few samples per neighborhood are available, but the classes

of the neighbors of the samples of X̄train are known. In

this subsection, we build a measure of the complexity of
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the classification boundary based on neighbors. This per-

mits evaluating both separation and contraction properties.

It can be viewed as a weak estimation of the intrisic dimen-

sion [2], even if the manifold hypothesis might not hold. We

compute an estimate of the efficiency of a k-NN to correctly

find the label of a local support vector. To this end, we de-

fine by recurrence at depth n and for a given k ∈ N, which

is a number of neighbors, Γk
n via Γ1

n = Γn and:

Γk+1
n =

{

x̄n ∈ Γk
n, |{y(x̄

(l)
n ) 6= y(x̄n), l ≤ k + 1}| >

k

2

}

In other words, Γk
n is the set of points at depth n that are not

well-classified by l-NNs using majority vote, for l ≤ k. By

construction,Γk+1
n ⊂ Γk

n which implies that |Γk+1
n | ≤ |Γk

n|.
Since the number of samples is finite, this sequence con-

verges to the number of samples of the training set that

can not be identified by their nearest neighbors. The de-

cay and the amplitude of |Γk
n| is an indicator of the regu-

larity of the classification boundary. Recall that for a deep

network, the 1-NN classifier has better generalization prop-

erties with deeper features. A small value of |Γk
n| indicates

that a few samples are necessary to build the classification

boundary (contraction), and at a given depth n, if |Γk
n| de-

creases quickly to its constant value, it means a few neigh-

bors are required to build the decision boundary (separa-

tion). Figure 9 indicates that the classification boundary is

uniformly more regular with depth, in term of number of

local support vectors and number of neighbors required to

estimate the correct class. This measure has the advantage

of being simple to compute, yet this analysis must be refined

in a future work.

5. Conclusion

In this work, we simplified a standard deep network that

still reaches good accuracies on CIFAR10 and CIFAR100.

We studied the influence of different hyperparameters such

as the non-linearity and the number of feature maps. We

demonstrate that the performance of a nearest neighbors

classifier applied at different depth increases and that this

classifier is almost as discriminative as a Gaussian SVM.

Finally, we defined local support vectors that allow us to

build a measure of the contraction and separation proper-

ties of the built representation. They could permit to poten-

tially improving the classification accuracy, by refining the

boundary classification of a CNN in their neighborhood.

We have built a class of deep networks that uses only

pointwise non-linearities and convolutions and that should

help for future analysis. In a context where the use of

deep networks is increasing impressively, understanding the

nature of the intrisic regularity they exploit is mandatory.

Solving this problem will help finding theoretical guaran-

tees on deep networks for applications and must be the topic

of future research.
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