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Abstract

Free-hand sketch-based image retrieval (SBIR) is a spe-
cific cross-view retrieval task, in which queries are abstract
and ambiguous sketches while the retrieval database is
formed with natural images. Work in this area mainly
focuses on extracting representative and shared features for
sketches and natural images. However, these can neither
cope well with the geometric distortion between sketches
and images nor be feasible for large-scale SBIR due to
the heavy continuous-valued distance computation. In this
paper, we speed up SBIR by introducing a novel binary
coding method, named Deep Sketch Hashing (DSH), where
a semi-heterogeneous deep architecture is proposed and
incorporated into an end-to-end binary coding framework.
Specifically, three convolutional neural networks are uti-
lized to encode free-hand sketches, natural images and,
especially, the auxiliary sketch-tokens which are adopted as
bridges to mitigate the sketch-image geometric distortion.
The learned DSH codes can effectively capture the cross-
view similarities as well as the intrinsic semantic correla-
tions between different categories. To the best of our knowl-
edge, DSH is the first hashing work specifically designed for
category-level SBIR with an end-to-end deep architecture.
The proposed DSH is comprehensively evaluated on two
large-scale datasets of TU-Berlin Extension and Sketchy,
and the experiments consistently show DSH’s superior SBIR
accuracies over several state-of-the-art methods, while
achieving significantly reduced retrieval time and memory
footprint.

1. Introduction
Content-based image retrieval (CBIR) or text-based re-

trieval (TBR) has played a major role in practical computer
vision applications. In some scenarios, however, if example
queries are not available or it is difficult to describe them
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Figure 1. An illustration of the SBIR concept in this paper. Given
a free-hand query, we aim to retrieve relevant natural images in the
same category as the query from the gallery.

with keywords, what should we do? To address such
a problem, sketch-based image retrieval (SBIR) [13, 19,
46, 69, 42, 47, 3, 12, 27, 21, 57, 6, 7, 20, 62, 43, 49]
has been recently developed and is becoming popular in
information retrieval area (as shown in Fig. 1). Compared
to traditional retrieval approaches, using a sketch query can
more efficiently and precisely express the shape, pose and
fine-grained details of the search target, which is intuitive
to humans and far more convenient than describing it with
a “hundred” words in text.

However, SBIR is challenging since humans draw free-
hand sketches without any reference but only focus on the
salient object structures. As such, the shapes and scales in
sketches are usually distorted compared to natural images.
To deal with this problem, some studies have attempted
to bridge the domain gap between sketches and natural
images for SBIR. These methods can be roughly divided
into two groups: hand-crafted methods and cross-domain
deep learning-based methods.

Hand-crafted SBIR first generates approximate sketches
by extracting edge or contour maps from the natural im-
ages. After that, hand-crafted features (e.g., SIFT [39],
HOG [8], gradient field HOG [18, 19], histogram of edge
local orientations (HELO) [48, 46] and Learned KeyShapes
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(LKS) [47]) are extracted for both sketches and edgemaps
of natural images, which are then fed into “Bag-of-Words”
(BoW) methods to generate the representations for SBIR.
The major limitation of hand-crafted methods is that the
domain gap between sketches and natural images cannot
be well remedied, as it is difficult to match edge maps to
non-aligned sketches with large variations and ambiguity.

To further improve the above domain shift issue, con-
volutional neural networks (CNNs) [24] have been recently
used to learn domain-transformable features from sketches
and images with end-to-end frameworks [49, 43, 62]. Being
able to better handle the domain gap, deep methods typ-
ically achieve higher performance than hand-crafted ones
for both category-level [13, 19, 46, 69, 42, 47, 12] and fine-
grained [49, 62, 27] SBIR tasks.

Although achieving progress, current deep SBIR meth-
ods are still facing severe challenges. In particular, these
methods tend to perform well in the situation that each
of the gallery images contains only a single object with a
simple contour shape on a clean background (e.g., “Moon”,
“Eiffel-tower” and “Pyramid” in the shape-based Flickr15K
dataset [19]). In practice, however, objects in gallery
images may appear from various viewpoints with relatively
complex backgrounds (e.g., a rhinoceros in bushes). In such
a case, current methods fail to handle the significant geo-
metric distortions between free-hand sketches and natural
images, and result in unsatisfactory performance.

Moreover, less study has been devoted to the searching
efficiency of SBIR. Most SBIR techniques are based on
applying nearest neighbor (NN) searches with computa-
tional complexity O(Nd) on continuous-valued features
(hand-crafted or deeply learned). Such methods become
inappropriate for large-scale SBIR tasks in certain realistic
scenarios (e.g., on wearable or mobile devices). Therefore,
being able to conduct a fast SBIR on a substantial number of
images with limited computational and memory resources is
crucial for practical applications.

To address the above issues, in this paper, we introduce
a novel Deep Sketch Hashing (DSH) framework for the fast
free-hand SBIR, which incorporates the learning of binary
codes and deep hash functions into a unified framework.
Specifically, DSH speeds up SBIR by embedding sketches
and natural images into two sets of compact binary codes,
aiming at not only preserving their pairwise semantic sim-
ilarities, but also leveraging the intrinsic category correla-
tions. Unlike previous methods with Siamese [43, 57] or
triplet CNNs [49, 62] only utilizing images and sketches,
we propose a novel semi-heterogeneous deep architecture
including three CNNs, where a unique middle-level net-
work fed with “sketch-tokens” is developed to effectively
diminish the aforementioned geometric distortion between
free-hand sketches and natural images. The contributions of
this work mainly include:

• To the best of our knowledge, DSH is the first hashing
work specifically designed for category-level SBIR,
where both binary codes and deep hash functions are
learned in a joint end-to-end framework. DSH aims
to generate binary codes which can successfully cap-
ture the cross-view relationship (between images and
sketches) as well as the intrinsic semantic correlations
between different categories. To this end, an efficient
alternating optimization scheme is applied to produce
the high-quality hash codes.

• A novel semi-heterogeneous deep architecture is de-
veloped in DSH as the hash function, where natural
images, free-hand sketches and the auxiliary sketch-
tokens are fed into three CNNs (as shown in Fig. 3).
Particularly, natural images and their corresponding
sketch-tokens are fed into a heterogeneous late-fusion
net, while the CNNs for sketches and sketch-tokens
share the same weights during training. As such, the
architecture in DSH can better remedy the domain gap
between images and sketches compared to previous
SBIR deep nets.

• The experiments consistently illustrate superior per-
formance of DSH compared to the state-of-the-art
methods, while achieving significant reduction on both
retrieval time and memory load.

Related Work Hashing techniques [16, 33, 58, 38, 34,
17, 70, 35, 14, 66, 36, 44, 37, 51, 25, 32] have recently been
successfully applied to encode high-dimensional features
into compact similarity-preserving binary codes, which
enables extremely fast similarity search by the use of
Hamming distances. Inspired by this, some recent SBIR
works [1, 15, 40, 52, 54, 56] have incorporated existing
hashing methods for efficient retrieval. For instance, LSH
[16] and ITQ [17] are adopted to sketch-based image [1]
and 3D model [15] retrieval tasks, respectively. In fact,
among various hashing methods, cross-modality hashing
[30, 64, 68, 26, 31, 2, 53, 71, 67, 10, 23, 5, 4], which
learns binary codes by preserving the correlations between
heterogeneous representations from different modalities,
are more related to SBIR problems. However, all of the
above hashing techniques are not specifically designed for
SBIR and neglect the intrinsic relationship between free-
hand sketches and natural images, resulting in unsatisfac-
tory performance.

In the next section, we will introduce the detailed archi-
tecture of our deep hash nets in DSH, then elaborate on our
hashing objective function.

2. Deep Sketch Hashing
To help better understand this section, we first introduce

some notation. Let O1 = {Ii,Zi}n1
i=1, where Ii is a natural

image and Zi is its corresponding sketch-token computed
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Figure 2. Illustration of our DSH inputs: free-hand sketches,
natural images and corresponding sketch-tokens. Sketch-tokens
have similar stroke patterns and appearance to free-hand sketches.

from Ii; O2 = {Sj}n2
j=1 be the set of free-hand sketches

Sj ; and n1 and n2 indicate the numbers of the samples
in O1 and O2, respectively. Additionally, define the label
matrix YI = {yI

i }
n1
i=1 ∈ RC×n1 , where yIci = 1 if {Ii,Zi}

belongs to class c and 0 otherwise; YS = {yS
j }

n2
j=1 ∈

RC×n2 for sketches is defined in the same way. We aim
to learn two sets of m-bit binary codes BI = {bI

i }
n1
i=1 ∈

{−1, 1}m×n1 and BS = {bS
j }

n2
j=1 ∈ {−1, 1}m×n2 for O1

and O2, respectively.

2.1. Semi-heterogeneous Deep Architecture
As previously stated, SBIR is a very challenging task due

to large geometric distortion between sketches and images.
Inspired by [29, 47], in this work, we propose to adopt an
auxiliary image representation as a bridge to mitigate the
geometric distortion between sketch and natural images. In
particular, a set of edge structures are detected from natural
images, called “sketch-tokens”, using supervised middle-
level information in the form of hand-drawn sketches. In
practice, given an image we will get an initial sketch-token,
where each pixel is assigned a score for the likeliness of it
being a contour point. We then use 60% of the maximum
score (same as [47]) to threshold each pixel and obtain the
final sketch-tokens as shown in Fig. 2.

Sketch-tokens have two advantages: (1) they reflect only
essential edges of natural images without detailed texture
information; (2) unlike ordinary edgemaps (e.g., Canny),
they have very similar stroke patterns and appearance to
free-hand sketches. Next, we will show how to design the
DSH architecture with the help of sketch-tokens.

We propose a novel semi-heterogeneous deep architec-
ture, where three CNNs are developed as hash functions
to encode free-hand sketches, natural images and auxiliary
sketch-tokens into binary codes. As shown in Fig. 3, the
DSH framework includes the following two parts:

1) Cross-weight Late-fusion Net: A heterogeneous
net with two parallel CNNs is developed, termed C1-

Table 1. The detailed configuration of the proposed DSH.
Net Layer Kernel Size Stride Pad Output

C1-Net
(Natural
Image)

input - - - 3×227×227
conv1 11×11 4 0 96×55×55

pooling1 3×3 2 0 96×27×27
conv2 5×5 1 2 256×27×27

pooling2 3×3 2 0 256×13×13
conv3 3×3 1 1 384×13×13
conv4 3×3 1 1 384×13×13
conv5 3×3 1 1 384×13×13

pooling3 3×3 2 1 256×7×7
fc a 7×7 1 0 4096×1×1
fc b 1×1 1 0 1024×1×1

hash C1 1×1 1 0 m ×1×1

C2-Net
(Free-hand

sketch/
Sketch-
tokens )

input - - - 1×200×200
conv1 14×14 3 0 64×63×63

pooling1 3×3 2 0 64×31×31
conv2 1 3×3 1 1 128×31×31
conv2 2 3×3 1 1 128×31×31
pooling2 3×3 2 0 128×15×15
conv3 1 3×3 1 1 256×15×15
conv3 2 3×3 1 1 256×15×15
pooling3 3×3 2 0 256×7×7

fc a 7×7 1 0 4096×1×1
fc b 1×1 1 0 1024×1×1

hash C2 1×1 1 0 m ×1×1

Net (Bottom) and C2-Net (Middle). Particularly, C1-Net
(bottom) is slightly modified from AlexNet [24] containing
5 convolutional (conv) layers and 2 fully connected (fc)
layers for natural image inputs, while C2-Net is configured
with 4 convolutional layers and 2 fully connected layers for
corresponding sketch-token inputs. The detailed parameters
are listed in Table 1. Inspired by the recent multimodal
deep framework [45], we connected the pooling3, fc a, fc b
of both C1-Net (Bottom) and C2-Net (Middle) with cross-
weights. In this way, we exploit high-level interactions
between two nets to maximize the mutual information
across both modalities, while the information from each
individual net is also preserved. Finally, similar to [30, 10],
we late-fuse the C1-Net (Bottom) and C2-Net (Middle) into
a unified binary coding layer hash C1 so that the learned
codes can fully benefit from both natural images and their
corresponding sketch-tokens.

2) Shared-weight Sketch Net: For free-hand sketch
inputs, we develop the C2-Net (Top) with configurations
shown in Table 1. Specifically, considering the similar
characteristics and implicit correlations existing between
sketch-tokens and free-hand sketches as mentioned above,
we design a Siamese architecture for C2-Net (Middle) and
C2-Net (Top) to share the same deep weights in conv and
fc layers during the optimization (see in Fig. 3). As such,
the hash codes of free-hand sketches learned via the shared-
weight net (from hash C2) will mitigate the geometric
difference between images and sketches during SBIR.

Deep Hash Functions: Denote by Θ1 the deep weights
in C1-Net (Bottom) and Θ2 the shared weights in C2-
Net (Middle) and C2-Net (Top). For natural images and
their sketch-tokens, we form the deep hash function BI =
sign(F1(O1; Θ1,Θ2)) from the cross-weight late-fusion
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Figure 3. The illustration of the main idea of the proposed DSH. Specifically, we integrate a convolutional neural network and discrete
binary code learning into a unified end-to-end framework which can be effectively optimized in an alternating manner.

net of C1-Net (Bottom) and C2-Net (Middle). Similarly, the
shared-weight sketch net (i.e., C2-Net (Top)) is regarded as
the hash function BS = sign(F2(O2; Θ2)) for free-hand
sketches. In this way, hash codes learned from the above
deep hash functions can lead to more reasonable SBIR,
especially when a significant sketch-image distortion exists.
Next, we will introduce the DSH objective of joint learning
of binary codes and hash functions.

2.2. Objective Formulation of DSH
1) Cross-view Pairwise Loss: We first define the cross-

view similarity matrix of O1 and O2 as W ∈ Rn1×n2 ,
where the element of Wij denotes the cross-view similarity
between {Ii,Zi} and Sj . The inner product of learned
BI and BS should sufficiently approximate the similarity
matrix W. Thus, we consider the following problem:

min
BI ,BS

J1 := ||W �m−BI>BS ||2, (1)

s.t.BI ∈ {−1,+1}m×n1 , BS ∈ {−1,+1}m×n2 ,

where || · || is the Frobenius norm and� is the element-wise
product. The cross-view similarity matrix W can be defined
by semantic label information as Wij = 1 if yI

i = yS
j and

−1 otherwise. By Eq.(1), the binary codes of natural images
and sketches from the same category will be pulled as close
as possible and pushed far away otherwise.

2) Semantic Factorization Loss: Beyond the cross-
view similarity, we also consider preserving the intra-set
semantic relationships for both the image set O1 and the
sketch set O2. However, the given 0/1 label matrices YI

and YS can only provide binary measurements (i.e., the
samples belong to the same category or not), which causes
all different categories to have equivalent distance (e.g.,
“cheetah” will be as different from “tiger” as from “dol-
phin”). Thus, directly using such discrete label information

will implicitly make all categories independent and discards
the latent correlation of high-level semantics.

Inspired by the recent development of word embeddings
[41], in this paper, we overcome the above drawback by
utilizing the NLP word-vector toolbox1 to map the inde-
pendent labels into the high-level semantic space. As such,
the intrinsic semantic correlation among different labels can
be quantitatively measured and captured (e.g., the semantic
embedding of “cheetah” will be closer to “tiger” but further
from “dolphin”). As semantic embeddings intentionally
guide the learning of high-quality binary codes, we opti-
mize the following semantic factorization problem

min
BI ,BS

J2 := ||φ(YI)−DBI ||2 + ||φ(YS)−DBS ||2, (2)

s.t.BI ∈ {−1,+1}m×n1 , BS ∈ {−1,+1}m×n2 ,

where φ(·) is the word embedding model, φ(YI) ∈ Rd×n1

and φ(YS) ∈ Rd×n2 , d = 1000 is the dimension of word
embedding. D ∈ Rd×m is the shared basis of the semantic
factorization for both views. Note that the shared basis
we used helps to preserve the latent semantic correlations
which also benefits cross-view code learning in SBIR.

Final Objective Function: Unlike previous hashing
methods using continuous-relaxation during code learning,
we keep the binary constraints in the DSH optimization. By
recalling Eq.(1) and Eq.(2), we obtain our final objective
function:

min
BI ,BS ,DI ,DS ,Θ1,Θ2

J := ||W �m−BI>BS ||2 (3)

+ λ(||φ(YI)−DBI ||2 + ||φ(YS)−DBS ||2)

+ γ(||F1(O1; Θ1,Θ2)−BI ||2 + ||F2(O2; Θ2)−BS ||2),

s.t.BI ∈ {−1,+1}m×n1 , BS ∈ {−1,+1}m×n2 .

1https://code.google.com/archive/p/word2vec/. The model is trained
from the first billion characters from Wikipedia.
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Here, λ > 0 and γ > 0 are the balance parameters. The last
two regularization terms aim to minimize the quantization
loss between binary codes BI , BS and deep hash functions
F1(O1; Θ1,Θ2), F2(O2; Θ2). Similar regularization terms
are also used in [50, 36] for effective hash code learning.
Next, we will elaborate on how to optimize problem (3).

3. Optimization
It is clear that problem (3) is non-convex and non-

smooth, which is in general an NP-hard problem due to
the binary constraints. To address this, we propose an al-
ternating optimization based algorithm, which sequentially
updates D, BI, BS and deep hash functions F1/F2 in
an iterative fashion. In practice, we first pre-train C1-
Net (Bottom) and C2-Net (Top) as classification nets using
natural images and sketches with corresponding semantic
labels. After that, pre-trained models will be applied in
our semi-heterogeneous deep model as in Fig. 3 and then
optimized with the following alternating steps.

D Update Step. By fixing all variables except for D,
Eq.(3) shrinks to a classic quadratic regression problem

min
D
||φ(YI)−DBI ||2 + ||φ(YS)−DBS ||2, (4)

which can be solved analytically as

D = (φ(YI)BI>+φ(YS)BS>)(BIBI>+BSBS>)−1. (5)

BI Update Step. By fixing all other variables, we
optimize BI by the following equation

min
BI
||W �m−BI>BS ||2 + λ||φ(YI)−DBI ||2 (6)

+ γ||F1(O1; Θ1,Θ2)−BI ||2,

s.t.BI ∈ {−1,+1}m×n1 .

We further rewrite (6) as

min
BI
||BI>BS ||2 + λ||BI>D>||2 − 2 trace(BI>R), (7)

s.t.BI ∈ {−1,+1}m×n1 ,

where R = BS(W>�m) + λD>φ(YI) + γF1(O1; Θ1,Θ2)

and ||BI ||2 = mn1.
It is challenging to directly optimize BI with discrete

constraints. Inspired by the discrete cyclic coordinate
descent (DCC) [51], we learn each row of BI by fixing all
otherm−1 rows, i.e., each time we only optimize one single

bit of all n1 samples. We denote b̂I
k, b̂S

k , r̂k and d̂k

>
as the

kth rows of BI , BS , R and D> respectively, k = 1, . . . ,m.
For convenience, we also have

B̂I
¬k = [b̂I

1

>
, . . . , b̂I

k−1

>
, b̂I

k+1

>
, . . . , b̂I

m

>
]>,

B̂S
¬k = [b̂S

1

>
, . . . , b̂S

k−1

>
, b̂S

k+1

>
, . . . , b̂S

m

>
]>,

D̂¬k = [d̂1, . . . , d̂k−1, d̂k+1, . . . , d̂m].

(8)

Algorithm 1 Deep Sketch Hashing (DSH)
Input: Set of pairs of natural images and corresponding sketch-

tokens O1 = {Ii Zi}n1
i=1; Free-hand sketch set O2 =

{SJ}n2
J=1; The label information {yI

i }n1
i=1 and {yS

j }n2
j=1;

Total epochs T of deep optimization.
Output: Deep hash functions F1(O1; Θ1,Θ2) and F2(O2; Θ2).

1: Randomly initialize {bI
i }n1

i=1 ∈ {−1,+1}m×n1 and
{bS

j }n2
j=1 ∈ {−1,+1}m×n2 for the entire training set;

construct cross-view similarity matrix W ∈ Rn1×n2 .
2: For t = 1, . . . , T epoch do
3: Update D according to Eq.(5);
4: Update BI and BS according to Eq.(10);
5: Update the deep parameters {Θ1,Θ2} by tth epoch data;
6: End

Update  

     D 
Update  

   𝑩𝑩𝑰𝑰 
Update  

        𝑩𝑩𝑺𝑺 
Update  

    𝜽𝜽𝟏𝟏 
   𝜽𝜽𝟐𝟐 

Epoch  

     Mini-batch  
            BP 

Update  

     D 
Update  

   𝑩𝑩𝑰𝑰 
Update  

        𝑩𝑩𝑺𝑺 
Update  

    𝜽𝜽𝟏𝟏 
   𝜽𝜽𝟐𝟐 

Update  

     D 
Update  

   𝑩𝑩𝑰𝑰 
Update  

        𝑩𝑩𝑺𝑺 
Update  

    𝜽𝜽𝟏𝟏 
   𝜽𝜽𝟐𝟐 

… 

Epoch  𝟐𝟐𝒕𝒕𝒕𝒕 Epoch  

     Mini-batch  
            BP 

     Mini-batch  
            BP 

    Training 
   sequence 𝟏𝟏𝒕𝒕𝒕𝒕 𝑻𝑻𝒕𝒕𝒕𝒕 

Figure 4. The illustration of DSH alternating optimization scheme.

It is not difficult to show Eq.(7) can be rewritten w.r.t. b̂I
k

as

min
b̂I
k

b̂I
k(B̂I

¬k
>
B̂S
¬kb̂

S
k

>
+ λB̂I

¬k
>
D̂¬k

>
d̂k − r̂>k ), (9)

s.t. b̂I ∈ {−1,+1}1×n1 .

Thus, the closed-form solution for the kth row of BI can be
obtained by

b̂I
k = sign(r̂k − b̂S

k B̂
S
¬k
>
B̂I
¬k − λd̂k

>
D̂¬kB̂

I
¬k). (10)

In this way, the binary codes BI can be optimized bit by bit
and finally reach a stationary point.

BS Update Step. By fixing all other variables, we
learn hash code BS with a similar formulation to Eq.(10).

Θ1 and Θ2 Update Step. Once BI and BS are obtained,
we update parameters Θ1 and Θ2 of C1-Net and C2-Net
according to the following Euclidean loss:

min
Θ1,Θ2

L := ||F1(O1; Θ1,Θ2)−BI ||2 + ||F2(O2; Θ2)−BS ||2.
(11)

By first computing the partial gradients ∂L
∂F1(Θ1,Θ2) and

∂L
∂F2(Θ2) , we can obtian ∂L

∂(Θ1,Θ2) by the chain rule. We then
use the standard mini-batch back-propagation (BP) scheme
to simultaneously update Θ1 and Θ2 for our entire deep
architecture. In practice, the above procedure can be easily
achieved by deep learning toolboxes (e.g., Caffe [22]).

As shown in Fig. 4, we iteratively update D → BI →
BS → {Θ1,Θ2} in each epoch. As such, DSH can be

5



Table 2. Comparison with previous SBIR methods (MAP, Precision@200, Retrieval time (s)/query and Memory load (MB)) on both
datasets. Apart from DSH producing binary codes, the continuous-value feature representations are utilized by all other methods.

Methods Dimension TU-Berlin Extension Sketchy

MAP Precision
@200

Retrieval time
per query (s)

Memory load(MB)
(204,489 gallery images) MAP Precision

@200
Retrieval time
per query (s)

Memory load(MB)
(73,002 gallery images)

HOG [8] 1296 0.091 0.120 1.43 2.02× 103 0.115 0.159 0.53 7.22× 102

GF-HOG [18] 3500 0.119 0.148 4.13 5.46× 103 0.157 0.177 1.41 1.95× 103

SHELO [46] 1296 0.123 0.155 1.44 2.02× 103 0.161 0.182 0.50 7.22× 102

LKS [47] 1350 0.157 0.204 1.51 2.11× 103 0.190 0.230 0.56 7.52× 102

Siamese CNN [43] 64 0.322 0.447 7.70×10−2 99.8 0.481 0.612 2.76×10−2 35.4
SaN [63] 512 0.154 0.225 0.53 7.98× 102 0.208 0.292 0.21 2.85× 102

GN Triplet∗ [49] 1024 0.187 0.301 1.02 1.60× 103 0.529 0.716 0.41 5.70× 102

3D shape∗ [57] 64 0.054 0.072 7.53×10−2 99.8 MB 0.084 0.079 2.64 ×10−2 35.6
Siamese-AlexNet 4096 0.367 0.476 5.35 6.39× 103 0.518 0.690 1.68 2.28× 103

Triplet-AlexNet 4096 0.448 0.552 5.35 6.39× 103 0.573 0.761 1.68 s 2.28× 103

DSH
(Proposed)

32 (bits) 0.358 0.486 5.57×10−4 0.78 0.653 0.797 2.55×10−4 0.28
64 (bits) 0.521 0.655 7.03×10−4 1.56 0.711 0.858 2.82×10−4 0.56
128 (bits) 0.570 0.694 1.05×10−3 3.12 0.783 0.866 3.53×10−4 1.11

’*’ denotes we directly use the public models provided by the original papers without any fine-tuning on TU-Berlin Extension or Sketchy datasets.

finally optimized within T epochs in total, where T = 10 ∼
15. Notice that the overall objective is lower-bounded, thus
the convergence of (3) is always guaranteed by coordinate
descent used in our optimization. The overall DSH is
summarized in Algorithm 1.

Once the DSH model is trained, given a sketch query Sq ,
we can compute its binary code bSq = sign(F2(Sq; Θ2))
with C2-Net (Top). For the retrieval database, the unified
hash code of each image and sketch-token pair {I,Z} is
computed as bI = sign(F1(I,Z; Θ1,Θ2)) with C1-Net
(Bottom) and C2-Net (Middle).

4. Experiments
In this section, we conduct extensive evaluations of DSH

on the two largest SBIR datasets: TU-Berlin Extension and
Sketchy. Our method is implemented using Caffe2 with
dual K80 GPUs for training our deep models and MATLAB
2015b on an i7 4790K CPU for binary coding.

4.1. Datasets and Protocols
Datasets: TU-Berlin [11] Extension contains 250 ob-

ject categories with 80 free-hand sketches for each category.
We also use 204,489 extended natural images associated to
TU-Berlin provided by [65] as our natural image retrieval
gallery. Sketchy [49] is a newly released dataset origi-
nally for fine-grained SBIR, in which 75,471 hand-drawn
sketches of 12,500 objects (images) from 125 categories are
included. To better fit the task of large-scale SBIR in our
paper, we collect another 60,502 natural images (an average
of 484 images/category) ourselves from ImageNet [9] to
form a new retrieval gallery with 73,002 images in total.
Similar to previous hashing evaluations, we randomly select
10 and 50 sketches from each category as the query sets
for TU-Berlin and Sketchy respectively, and the remaining
sketches and gallery images3 are used for training.

2Our trained deep models can be downloaded from
https://github.com/ymcidence/DeepSketchHashing.

3All natural images are used as both training sets and retrieval galleries.

Compared Methods and Implementation Details: We
first compare the proposed DSH with several previous SBIR
methods, including hand-crafted HOG [8], GF-HOG [18],
SEHLO [46], LSK [47]; and deep learning based Siamese
CNN [43], Sketch-a-Net (SaN) [63], GN Triplet [49], 3D
shape [57]. For HOG, GF-HOG, SEHLO, Siamese CNN
and 3D shape, we need first to compute Canny edgemaps
from natural images and then extract the features. In detail,
we compute GF-HOG via a BoW scheme with a codebook
size 3500; for HOG, SEHLO and LSK, we exactly follow
the best settings used in [47]. Due to lack of stroke order in-
formation in the Sketchy dataset, we only use a single deep
channel SaN in our experiments as in [62]. We fine-tune
Siamese CNN and SaN on TU-Berlin and Sketchy datasets,
while the public models of GN Triplet and 3D shape are
only allowed for direct feature extraction without any re-
training. Additionally, we add Siamese-AlexNet (with
contrastive loss) and Triplet-AlexNet (with triplet ranking
loss) as the baselines, both of which are constructed and
trained by ourselves on two datasets. Particularly, the se-
mantic pairwise/triplet supervision for our Siamese/Triplet-
AlexNet are constructed the same as [43]/[61] respectively.

Moreover, DSH is also compared with state-of-the-
art cross-modality hashing techniques: Collective Matrix
Factorization Hashing (CMFH) [10], Cross-Modal Semi-
Supervised Hashing (CMSSH) [2], Cross-View Hashing
(CVH) [26], Semantic Correlation Maximization (SCM-
Seq and SCM-Orth) [64], Semantics-Preserving Hashing
(SePH) [30] and Deep Cross-Modality Hashing (DCMH)
[23]. Note that since DCMH is a deep hashing method
originally for image-text retrieval, in our experiments, we
modify it into a Siamese net by replacing the text em-
bedding channel with an identical parallel image channel.
In addition, another four cross-view feature embedding
methods: CCA [55], PLSR [59], XQDA [28] and CVFL
[60] are used for comparison. Except for DCMH, each
image and sketch in both datasets are represented by 4096-d
AlexNet [24] fc7 and 512-d SaN fc7 deep features, respec-
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Table 3. Category-level SBIR using different cross-modality methods. For non-deep methods, 4096-d AlexNet fc7 image features and
512-d SaN fc7 sketch features are used. For deep methods, raw natural images and sketches are used.

Method
TU-Berlin Extension Sketchy

MAP Precision@200 MAP Precision@200
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

Cross-Modality
Hashing Methods

(binary codes)

CMFH [10] 0.149 0.202 0.180 0.168 0.282 0.241 0.320 0.490 0.190 0.489 0.657 0.286
CMSSH [2] 0.121 0.183 0.175 0.143 0.261 0.233 0.206 0.211 0.211 0.371 0.376 0.375

SCM-Seq [64] 0.211 0.276 0.332 0.298 0.372 0.454 0.306 0.417 0.671 0.442 0.529 0.758
SCM-Orth [64] 0.217 0.301 0.263 0.312 0.420 0.470 0.346 0.536 0.616 0.467 0.650 0.776

CVH [26] 0.214 0.294 0.318 0.305 0.411 0.449 0.325 0.525 0.624 0.459 0.641 0.773
SePH [30] 0.198 0.270 0.282 0.307 0.380 0.398 0.534 0.607 0.640 0.694 0.741 0.768

DCMH [23] 0.274 0.382 0.425 0.332 0.467 0.540 0.560 0.622 0.656 0.730 0.771 0.784
Proposed DSH 0.358 0.521 0.570 0.486 0.655 0.694 0.653 0.711 0.783 0.797 0.858 0.866

Cross-View Feature
Learning Methods

(continuous-value vectors)

CCA [55] 0.276 0.366 0.365 0.333 0.482 0.536 0.361 0.555 0.705 0.379 0.610 0.775
XQDA [28] 0.191 0.197 0.201 0.263 0.278 0.278 0.460 0.557 0.550 0.607 0.715 0.727
PLSR [59] 0.141 (4096-d) 0.215 (4096-d) 0.462 (4096-d) 0.623 (4096-d)
CVFL [60] 0.289 (4096-d) 0.407 (4096-d) 0.675 (4096-d) 0.803 (4096-d)

PLSR and CVFL are both based on reconstructing partial data to approximate full data, so the dimensions are fixed to 4096-d.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
TU-Berlin Extension dataset@64bits

Recall

P
re

ci
si

on

 

CMFH
CMSSH
CVH
SCM−Seq
SCM−Orth
SePH
DCMH
DSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Sketchy dataset@64bits

Recall

P
re

ci
si

on

 

 
CMFH
CMSSH
CVH
SCM−Seq
SCM−Orth
SePH
DCMH
DSH

32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
TU−Berlin Extension dataset

Code length

H
D

2

 

CMFH
CMSSH
CVH
SCM−Seq
SCM−Orth
SePH
DCMH
DSH

32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sketchy dataset

Code length

H
D

2

 

CMFH
CMSSH
CVH
SCM−Seq
SCM−Orth
SePH
DCMH
DSH

Figure 5. Precision-recall curves and HD2 precision on both TU-Berlin Extension and Sketchy datasets.

tively. Since these hashing and feature embedding methods
need pairwise data with corresponding labels as inputs, in
our experiments, we further construct these deep features
(extracted from TU-Berlin Extension/Sketchy datasets) into
100,000 sample pairs (with 800/400 pairs per category) to
train all of the above cross-modality methods.

For the proposed DSH, we train our deep model us-
ing SGD on Caffe with an initial learning rate α=0.001,
momentum=0.9 and batch size 64. We decrease α→ 0.3α
every epoch and terminate the optimization after 15 epochs.
For both datasets, our balance parameters are set to λ=0.01
and γ=10−5 via cross validation on training sets.

In the test phase, we report the mean average precision
(MAP) and precision at top-rank 200 (precision@200) to
evaluate the category-level SBIR. For all hashing methods,
we also evaluate the precision of Hamming distance with
radius 2 (HD2) and the precision-recall curves. Addition-
ally, we report the retrieval time per query (s) from image
galleries and memory loads (MB) for compared methods.

4.2. Results and Discussions

DSH vs. SBIR Baselines: In Table 2, we demonstrate
the comparison of MAP and precision@200 over all SBIR
methods on two datasets. Generally, deep learning-based
methods can achieve much better performance than hand-
crafted methods and the results on Sketchy are higher than
those on TU-Berlin Extension since the data in Sketchy
is relatively simpler with fewer categories. Our 128-
bit DSH leads to superior results with 0.138/0.142 and

0.210/0.105 improvements (MAP/precision@200) over the
best-performing comparison methods on the two datasets,
respectively. This is because the semi-heterogeneous deep
architecture of DSH is specifically designed for category-
level SBIR by effectively introducing the auxiliary sketch-
tokens to mitigate the geometric distortion between free-
hand sketches and natural images. The other deep methods:
Siamese CNN, GN Triplet and 3D shape only incorporate
images and sketches as training data with a simple multi-
channel deep structure. Among the compared methods, we
notice 3D shape produces worse SBIR performance than
previous papers [57, 62] reported. In [62], the images from
the retrieval gallery all contain well-aligned objects with
perfect background removal, thus the edgemaps computed
from such images can well represent the objects and have
almost identical stroke patterns with free-hand sketches,
which guarantees a good SBIR performance. However, in
our tasks, all images in the retrieval gallery are realistic
with relatively complex backgrounds and there is still a big
dissimilarity between the computed edgemaps and sketches.
Therefore, 3D shape features extracted from our edgemaps
become ineffective. Similar problems also exist in SaN,
HOG and SHELO. In addition, the retrieval time and
memory load are listed in Table 2. Our DSH can achieve
significantly faster speed with much lower memory load
compared to conventional SBIR methods during retrieval.

DSH vs. Cross-modality Hashing: We also com-
pare our DSH with cross-modality hashing/feature learning
methods in Table 3. As mentioned before, we use the
learned deep features as the inputs for non-deep methods

7



Teddy

Cup

Bench

Flower

Elephant

Helicopter

Kettle

Rhinoceros
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DSH codes. Red boxes indicates false positives. (More examples can be seen in our supplementary documents.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 teddy 
trumpet
bee
bench
cup
dog
lion
horse 
shoe
helicopter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 teddy 
trumpet
bee
bench
cup
dog
lion
horse 
shoe
helicopter

(a) Image retrieval gallery (b) Test sketch queries

Figure 7. t-SNE visualization of 32-bit DSH codes of 10 represen-
tative categories in the Sketchy dataset. After DSH, natural images
(a) and test sketch queries (b) from the same categories are almost
scattered into the same clusters. Meanwhile, semantically similar
categories are distributed closely and otherwise far away.

to achieve a fair comparison with our DSH. In particular,
SCM-Orth and SePH always lead to high accuracies among
compared non-deep hashing methods on both datasets.
With its deep end-to-end structure, DCMH can achieve
better results than non-deep hashing methods, while CMFH
and CMSSH produce the weakest results due to un(semi-
)supervised learning mechanisms. For cross-view feature
learning schemes, CCA and CVFL achieve superior per-
formance on TU-Berlin Extension and Sketchy datasets,
respectively. Our DSH can consistently outperform all other
methods in Table 3. The superior performance of DSH is
also demonstrated in 64-bit precision-recall curves and HD2
curves along different code lengths (shown in Fig. 5) by
comparing the Area Under the Curve (AUC). Besides, we
illustrate t-SNE visualization in Fig. 7 where the analogous
DSH distributions of the test sketches and image gallery
intuitively reflect the effectiveness of DSH codes. Lastly,
some query examples with top-20 SBIR retrieval results are
shown in Fig. 6.

DSH Component Analysis: We have evaluated the
effectiveness of different components of DSH in Table 4.

Table 4. Effectiveness (MAP 128 bits) of different components.

Method TU-Berlin
Extension Sketchy

C2-Net (Top) + C1-Net (Bottom) only 0.497 0.682
C2-Net (Top) + C2-Net (Middle) only 0.379 0.507
Using Cross-view Pairwise Loss only 0.522 0.715

Using Semantic Factorization Loss only 0.485 0.667
Our proposed full DSH model 0.570 0.783

Specifically, we construct a heterogeneous deep net by
only using C2-Net (Top) and C1-Net (Bottom) channels
with the same binary coding scheme. It produces around
0.073 and 0.101 MAP decreases by only using images
and sketches on the respective datasets, which sufficiently
proves the importance of sketch-tokens in order to mitigate
the geometric distortion. We also observe that only using
either the cross-view pairwise loss term or the semantic
factorization loss term will result in worse performance than
applying the full model, since the cross-view similarities
and the intrinsic semantic correlations captured in DSH can
complement each other and simultaneously benefit the final
MAPs.

5. Conclusion

In this paper, we proposed a novel deep hashing
framework, named deep sketch hashing (DSH), for fast
sketch-based image retrieval (SBIR). Particularly, a semi-
heterogeneous deep architecture was designed to encode
free-hand sketches and natural images, together with the
auxiliary sketch-tokens which can effectively mitigate the
geometric distortion between the two modalities. To train
DSH, binary codes and deep hash functions were jointly
optimized in an alternating manner. Extensive experiments
validated the superiority of DSH over the state-of-the-art
methods in terms of retrieval accuracy and time/storage
complexity.
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