
Multi-Scale Continuous CRFs as Sequential Deep Networks
for Monocular Depth Estimation

Dan Xu1, Elisa Ricci4,5, Wanli Ouyang2,3, Xiaogang Wang2, Nicu Sebe1
1University of Trento, 2The Chinese University of Hong Kong

3The University of Sydney, 4Fondazione Bruno Kessler, 5University of Perugia
{dan.xu, niculae.sebe}@unitn.it, eliricci@fbk.eu, {wlouyang, xgwang}@ee.cuhk.edu.hk

Abstract

This paper addresses the problem of depth estimation
from a single still image. Inspired by recent works on multi-
scale convolutional neural networks (CNN), we propose
a deep model which fuses complementary information de-
rived from multiple CNN side outputs. Different from previ-
ous methods, the integration is obtained by means of contin-
uous Conditional Random Fields (CRFs). In particular, we
propose two different variations, one based on a cascade of
multiple CRFs, the other on a unified graphical model. By
designing a novel CNN implementation of mean-field up-
dates for continuous CRFs, we show that both proposed
models can be regarded as sequential deep networks and
that training can be performed end-to-end. Through exten-
sive experimental evaluation we demonstrate the effective-
ness of the proposed approach and establish new state of
the art results on publicly available datasets.

1. Introduction

While estimating the depth of a scene from a single im-
age is a natural ability for humans, devising computational
models for accurately predicting depth information from
RGB data is a challenging task. Many attempts have been
made to address this problem in the past. In particular, re-
cent works have achieved remarkable performance thanks
to powerful deep learning models [8, 9, 20, 24]. Assuming
the availability of a large training set of RGB-depth pairs,
monocular depth prediction is casted as a pixel-level regres-
sion problem and Convolutional Neural Network (CNN) ar-
chitectures are typically employed.

In the last few years significant effort have been made
in the research community to improve the performance of
CNN models for pixel-level prediction tasks (e.g. seman-
tic segmentation, contour detection). Previous works have
shown that, for depth estimation as well as for other pixel-
level classification/regression problems, more accurate es-

��� ���

��� ���

Figure 1. (a) Original RGB image. (b) Ground truth. Depth
map obtained by considering a pre-trained CNN (e.g. VGG
Convolution-Deconvolution [23]) and fusing multi-layer represen-
tations (c) with the approach in [33] and (d) with the proposed
multi-scale CRF.

timates can be obtained by combining information from
multiple scales [8, 33, 6]. This can be achieved in differ-
ent ways, e.g. fusing feature maps corresponding to differ-
ent network layers or designing an architecture with multi-
ple inputs corresponding to images at different resolutions.
Other works have demonstrated that, by adding a Condi-
tional Random Field (CRF) in cascade to a convolutional
neural architecture, the performance can be greatly en-
hanced and the CRF can be fully integrated within the deep
model enabling end-to-end training with back-propagation
[36]. However, these works mainly focus on pixel-level
prediction problems in the discrete domain (e.g. semantic
segmentation). While complementary, so far these strate-
gies have been only considered in isolation and no previous
works have exploited multi-scale information within a CRF
inference framework.

In this paper we argue that, benefiting from the flexibility
and the representational power of graphical models, we can

4321

ar
X

iv
:1

70
4.

02
15

7v
1

 [
cs

.C
V

]
 7

 A
pr

 2
01

7

optimally fuse representations derived from multiple CNN
side output layers, improving performance over traditional
multi-scale strategies. By exploiting this idea, we introduce
a novel framework to estimate depth maps from single still
images. Opposite to previous work fusing multi-scale fea-
tures by averaging or concatenation, we propose to integrate
multi-layer side output information by devising a novel ap-
proach based on continuous CRFs. Specifically, we present
two different methods. The first approach is based on a sin-
gle multi-scale CRF model, while the other considers a cas-
cade of scale-specific CRFs. We also show that, by intro-
ducing a common CNN implementation for mean-fields up-
dates in continuous CRFs, both models are equivalent to se-
quential deep networks and an end-to-end approach can be
devised for training. Through extensive experimental evalu-
ation we demonstrate that the proposed CRF-based method
produces more accurate depth maps than traditional multi-
scale approaches for pixel-level prediction tasks [10, 33]
(Fig.1). Moreover, by performing experiments on the pub-
licly available NYU Depth V2 [30] and on the Make3D [29]
datasets, we show that our approach outperforms state of the
art methods for monocular depth estimation.

To summarize, the contributions of this paper are three-
fold. First, we propose a novel approach for predicting
depth maps from RGB inputs which exploits multi-scale es-
timations derived from CNN inner layers by fusing them
within a CRF framework. Second, as the task of pixel-
level depth prediction implies inferring a set of continu-
ous values, we show how mean field (MF) updates can be
implemented as sequential deep models, enabling end-to-
end training of the whole network. We believe that our
MF implementation will be useful not only to researchers
working on depth prediction, but also to those interested
in other problems involving continuous variables. There-
fore, our code is made publicly available1. Third, our ex-
periments demonstrate that the proposed multi-scale CRF
framework is superior to previous methods integrating in-
formation from intermediate network layers by combining
multiple losses [33] or by adopting feature concatenations
[10]. We also show that our approach outperforms state of
the art depth estimation methods on public benchmarks and
that the proposed CRF-based models can be employed in
combination with different pre-trained CNN architectures,
consistently enhancing their performance.

2. Related work

Depth Estimation. Previous approaches for depth esti-
mation from single images can be categorized into three
main groups: (i) methods operating on hand crafted fea-
tures, (ii) methods based on graphical models and (iii) meth-
ods adopting deep networks.

1https://github.com/danxuhk/ContinuousCRF-CNN.git

Earlier works addressing the depth prediction task be-
long to the first category. Hoiem et al. [12] introduced photo
pop-up, a fully automatic method for creating a basic 3D
model from a single photograph. Karsch et al. [14] devel-
oped Depth Transfer, a non parametric approach where the
depth of an input image is reconstructed by transferring the
depth of multiple similar images and then applying some
warping and optimizing procedures. Ladicky [17] demon-
strated the benefit of combining semantic object labels with
depth features.

Other works exploited the flexibility of graphical mod-
els to reconstruct depth information. For instance, De-
lage et al. [7] proposed a dynamic Bayesian framework
for recovering 3D information from indoor scenes. A
discriminatively-trained multiscale Markov Random Field
(MRF) was introduced in [28], in order to optimally fuse
local and global features. Depth estimation was treated as
an inference problem in a discrete-continuous CRF in [21].
However, these works did not employ deep networks.

More recent approaches for depth estimation are based
on CNNs [8, 20, 32, 26, 18]. For instance, Eigen et al. [9]
proposed a multi-scale approach for depth prediction, con-
sidering two deep networks, one performing a coarse global
prediction based on the entire image, and the other refin-
ing predictions locally. This approach was extended in [8]
to handle multiple tasks (e.g. semantic segmentation, sur-
face normal estimation). Wang et al. [32] introduced a CNN
for joint depth estimation and semantic segmentation. The
obtained estimates were further refined with a Hierarchical
CRF. The most similar work to ours is [20], where the rep-
resentational power of deep CNN and continuous CRF is
jointly exploited for depth prediction. However, the method
proposed in [20] is based on superpixels and the informa-
tion associated to multiple scales is not exploited.
Multi-scale CNNs. The problem of combining informa-
tions from multiple scales for pixel-level prediction tasks
have received considerable interest lately. In [33] a deeply
supervised fully convolutional neural network was pro-
posed for edge detection. Skip-layer networks, where the
feature maps derived from different levels of a primary net-
work are jointly considered in an output layer, have also be-
come very popular [22, 3]. Other works considered multi-
stream architectures, where multiple parallel networks re-
ceiving inputs at different scale are fused [4]. Dilated con-
volutions (e.g. dilation or à trous) have been also employed
in different deep network models in order to aggregate
multi-scale contextual information [5]. We are not aware of
previous works exploiting multi-scale representations into a
continuous CRF framework.

3. Multi-Scale Models for Depth Estimation
In this section we introduce our approach for depth esti-

mation from single images. We first formalize the problem

Front-End Convolutional Neural Network

C-MF C-MF C-MF C-MFC-MF

d?

s1

C-MF C-MF C-MF C-MFC-MF
Multi-Scale Fusion with Continuous CRFs

Side Outputs

s2 s3 s4 s5

...

...

...

...

...

r

r

Figure 2. Overview of the proposed deep architecture. Our model is composed of two main components: a front-end CNN and a fusion
module. The fusion module uses continuous CRFs to integrate multiple side output maps of the front-end CNN. We consider two different
CRFs-based multi-scale models and implement them as sequential deep networks by stacking several elementary blocks, the C-MF blocks.

of depth prediction. Then, we describe two variations of
the proposed multi-scale model, one based on a cascade of
CRFs and the other on a single multi-scale CRFs. Finally,
we show how our whole deep network can be trained end-
to-end, introducing a novel CNN implementation for mean-
field iterations in continuous CRFs.

3.1. Problem Formulation and Overview

Following previous works we formulate the task of depth
prediction from monocular RGB input as the problem of
learning a non-linear mapping F : I → D from the im-
age space I to the output depth space D. More formally,
let Q = {(ri, d̄i)}Qi=1 be a training set of Q pairs, where
ri ∈ I denotes an input RGB image with N pixels and
d̄i ∈ D represents its corresponding real-valued depth map.

For learning F we consider a deep model made of two
main building blocks (Fig. 2). The first component is a
CNN architecture with a set of intermediate side outputs
S = {sl}Ll=1, sl ∈ RN , produced from L different layers
with a mapping function fs(r; Θ,θl)→ sl. For simplicity,
we denote with Θ the set of all network layer parameters
and with θl the parameters of the network branch produc-
ing the side output associated to the l-th layer (see Section
4.1 for details of our implementation). In the following we
denote this network as the front-end CNN.

The second component of our model is a fusion block.
As shown in previous works [22, 3, 33], features generated
from different CNN layers capture complementary informa-
tion. The main idea behind the proposed fusion block is to
use CRFs to effectively integrate the side output maps of our
front-end CNN for robust depth prediction. Our approach
develops from the intuition that these representations can
be combined within a sequential framework, i.e. perform-
ing depth estimation at a certain scale and then refining the

obtained estimates in the subsequent level. Specifically, we
introduce and compare two different multi-scale models,
both based on CRFs, and corresponding to two different
version of the fusion block. The first model is based on
a single multi-scale CRFs, which integrates information
available from different scales and simultaneously enforces
smoothness constraints between the estimated depth values
of neighboring pixels and neighboring scales. The second
model implements a cascade of scale-specific CRFs: at
each scale l a CRF is employed to recover the depth in-
formation from side output maps sl and the outputs of each
CRF model are used as additional observations for the sub-
sequent model. In Section 3.2 we describe the two models
in details, while in Section 3.3 we show how they can be im-
plemented as sequential deep networks by stacking several
elementary blocks. We call these blocks C-MF blocks, as
they implement Mean Field updates for Continuous CRFs
(Fig. 2).

3.2. Fusing side outputs with continuous CRFs

We now describe the proposed CRF-based models for
fusing multi-scale representations.

Multi-scale CRFs. Given an LN -dimensional vector ŝ
obtained by concatenating the side output score maps
{s1, . . . , sL} and an LN -dimensional vector d of real-
valued output variables, we define a CRF modeling the con-
ditional distribution:

P (d|ŝ) =
1

Z(ŝ)
exp{−E(d, ŝ)} (1)

where Z(ŝ) =
∫
d

exp−E(d, ŝ)dd is the partition function.
The energy function is defined as:

E(d, ŝ) =

N∑
i=1

L∑
l=1

φ(dli, ŝ) +
∑
i,j

∑
l,k

ψ(dli, d
k
j) (2)

and dli indicates the hidden variable associated to scale l and
pixel i. The first term is the sum of quadratic unary terms
defined as:

φ(dli, ŝ) =
(
dli − sli

)2
(3)

where sli is the regressed depth value at pixel i and scale
l obtained with fs(r; Θ,θl). The second term is the sum
of pairwise potentials describing the relationship between
pairs of hidden variables dli and dkj and is defined as follows:

ψ(dli, d
k
i) =

M∑
m=1

βmwm(i, j, l, k, r)(dli − dkj)2 (4)

where wm(i, j, l, k, r) is a weight which specifies the rela-
tionship between the estimated depth of the pixels i and j at
scale l and k, respectively.

To perform inference we rely on mean-field approxima-
tion, i.e. Q(d|ŝ) =

∏N
i=1

∏L
l=1Qi,l(d

l
i|ŝ). Following [25],

by considering Ji,l = logQi,l(d
l
i|ŝ) and rearranging its ex-

pression into an exponential form, the following mean-field
updates can be derived:

γi,l = 2
(
1 + 2

M∑
m=1

βm
∑
k

∑
j,i

wm(i, j, l, k, r)
)

(5)

µi,l =
2

γi,l

(
sli + 2

M∑
m=1

βm
∑
k

∑
j,i

wm(i, j, l, k, r)µj,k
)
(6)

To define the weights wm(i, j, l, k, r) we introduce the fol-
lowing assumptions. First, we assume that the estimated
depth at scale l only depends on the depth estimated at pre-
vious scale. Second, for relating pixels at the same and at
previous scale, we set weights depending on m Gaussian

kernels Kij
m = exp

(
− ‖h

m
i −hm

j ‖22
2θ2m

)
. Here, hmi and hmj

indicate some features derived from the input image r for
pixels i and j. θm are user defined parameters. Following
previous works [15], we use pixel position and color val-
ues as features, leading to two Gaussian kernels (i.e. an
appearance and a smoothness kernel) for modeling depen-
dencies of pixels at scale l and other two for relating pixels
at neighboring scales. Under these assumptions, the mean-
field updates (5) and (6) can be rewritten as:

γi,l = 2
(
1 + 2

2∑
m=1

βm
∑
j 6=i

Kij
m + 2

4∑
m=3

βm
∑
j,i

Kij
m

)
(7)

µi,l =
2

γi,l

(
sli + 2

2∑
m=1

βm
∑
j 6=i

Kij
mµj,l,

+2

4∑
m=3

βm
∑
j,i

Kij
mµj,l−1

) (8)

Given a new test image, the optimal d̃ can be computed
maximizing the log conditional probability [25], i.e. d̃ =
arg maxd log(Q(d|S)), where d̃ = [µ1,1, ..., µN,L] is

a vector of the LN mean values associated to Q(d|ŝ).
We take the estimated variables at the finer scale L
(i.e. µN,1, ..., µN,L) as our predicted depth map d?.

Cascade CRFs. The cascade model is based on a set of
L CRF models, each one associated to a specific scale l,
which are progressively stacked such that the estimated
depth at previous scale can be used to define the features
of the CRF model in the following level. Each CRF is
used to compute the output vector dl and it is constructed
considering the side output representations sl and the esti-
mated depth at the previous step d̃l−1 as observed variables,
i.e. ol = [sl, d̃l−1]. The associated energy function is de-
fined as:

E(dl,ol) =

N∑
i=1

φ(dli,o
l) +

∑
i 6=j

ψ(dli, d
l
j). (9)

The unary and pairwise terms can be defined analogously
to the unified model. In particular the unary term, reflect-
ing the similarity between the observation oil and the hidden
depth value dli, is:

φ(yli,o
l) =

(
dli − oli

)2
(10)

where oli is obtained combining the regressed depth from
side outputs sl and the map dl−1 estimated by CRF at pre-
vious scale. In our implementation we simply consider
oli = sli + d̃l−1

i , but other strategies can be also considered.
The pairwise potentials, used to force neighboring pixels
with similar appearance to have close depth values, are:

ψ(dli, d
l
j) =

M∑
m=1

βmK
ij
m(dli − dlj)2 (11)

where we consider M = 2 Gaussian kernels, one for ap-
pearance features, the other accounting for pixel positions.
Similarly to the multi-scale model, under mean-field ap-
proximation, the following updates can be derived:

γi,l = 2
(
1 + 2

M∑
m=1

βm
∑
j 6=i

Kij
m

)
(12)

µi,l =
2

γi,l

(
oli + 2

M∑
m=1

βm
∑
j 6=i

Kij
mµj,l

)
(13)

At test time, we use the estimated variables corresponding
to the CRF model of the finer scale L as our predicted depth
map d?.

3.3. Multi-scale models as sequential deep networks

In this section, we describe how the two proposed CRFs-
based models can be implemented as sequential deep net-
works, enabling end-to-end training of our whole network
model (front-end CNN and fusion module). We first show
how the mean-field iterations derived for the multi-scale and
the cascade models can be implemented by defining a com-
mon structure, the C-MF block, consisting into a stack of

CNN layers. Then, we present the resulting sequential net-
work structures and detail the training phase.

C-MF: a common CNN implementation for two mod-
els. By analyzing the two proposed CRF models, we can
observe that the mean-field updates derived for the cascade
and for the multi-scale models share common terms. As
stated above, the main difference between the two is the way
the estimated depth at previous scale is handled at the cur-
rent scale. In the multi-scale CRFs, the relationship among
neighboring scales is modeled in the hidden variable space,
while in the cascade CRFs the depth estimated at previous
scale acts as an observed variable.

Starting from this observation, in this section we show
how the computation of Eq. (8) and (13) can be imple-
mented with a common structure. Figure 3 describes in
details these computations. In the following, for the sake
of clarity, we introduce matrices. Let Sl ∈ RW×H be the
matrix obtained rearranging the N = WH pixels corre-
sponding to the side outputs vector sl and µtl ∈ RW×H the
matrix of the estimated output variables associated to scale
l and mean field iteration t. To implement the multi-scale
model at each iteration t, µt−1

l and µtl−1 are convolved
by two Gaussian kernels. Following [15], we use a spatial
and a bilateral kernel. As Gaussian convolutions represent
the computational bottleneck in the mean-field iterations,
we adopt the permutohedral lattice implementation [1] to
approximate filter response calculation reducing computa-
tional cost from quadratic to linear [25]. The weighing of
the parameters βm is performed as a convolution with a
1×1 filter. Then, the outputs are combined and are added to
the side output maps Sl. Finally, a normalization step fol-
lows, corresponding to the calculation of (7). The normal-
ization matrix γ ∈ RW×H is also computed by considering
Gaussian kernels convolutions and weighting with param-
eters βm. It is worth noting that the normalization step in
our mean-field updates for continuous CRFs is substantially
different from that of discrete CRFs [36] based on a softmax
function.

In the cascade CRF model, differently from the multi-
scale CRF, µtl−1 acts as an observed variable. To design
a common C-MF block among the two models, we intro-
duce two gate functions G1 and G2 (Fig. 3) controlling the
computing flow and allowing to easily switch between the
two approaches. Both gate functions accept a user-defined
boolean parameter (here 1 corresponds to the multi-scale
CRF and 0 to the cascade model). Specifically, if G1 is
equal to 1, the gate function G1 passes µtl−1 to the Gaussian
filtering block, otherwise to the addition block with unary
term. Similarly, G2 controls the computation of the normal-
ization terms and switches between the computation of (7)
and (12). Importantly, for each step in the C-MF block we
implement the calculation of error differentials for the back-
propogation as in [36]. For optimizing the CRF parameters,

Bilateral Filtering Weighting

Spatial Filtering Weighting

Bilateral Filtering

Spatial Filtering

Bilateral Filtering Weighting

Spatial Filtering Weighting

Adding ConstantAdding Unary Term Normalizing

Weighting

Weighting

Weighting

Weighting

�3 �4

�2�1

G2

G1

�2�1

2�3�3

2�1(�1 J)

2�4�4

�

� = J � �

2�2µ̄
t�1
l,2

µ̄t�1
l,1 = K1 ⌦ µt�1

l µt�1
l 2�1µ̄

t�1
l,1

µ̄t�1
l,2 = K2 ⌦ µt�1

l µt�1
l

µ̄t
l�1,1 = K3 ⌦ µt

l�1

2�4µ̄
t
l�1,2

2�3µ̄
t
l�1,1

µ̃t
l

µt
l�1

µt
l = µ̃t

l ↵ � µt
l

µt�1
l

µ̄t
l�1,2 = K4 ⌦ µt

l�1

µ̃t
l = Sl � µ̃t

l

�3 �4

Sl

2�2(�2 J)

�1 = K1 ⌦ J

�2 = K2 ⌦ J

Bilateral Filtering

Spatial Filtering

�3 = K3 ⌦ J

�4 = K4 ⌦ J

Figure 3. The proposed C-MF block. J represents a W ×H ma-
trix with all elements equal to one. The symbols ⊕, 	, � and ⊗
indicate element-wise addition, subtraction, division and Gaussian
convolution, respectively.

similar to [36], the bandwidth values θm are fixed and we
implement the differential computation for the weights of
Gaussian kernels βm. In this way βm are learned automati-
cally with back-propagation.

From mean-field updates to sequential deep networks.
Figure 4 illustrates the implementation of the proposed two
CRF-based models using the C-MF block described above.
In the figure, each blue box is associated to a mean-field
iteration. The cascade model (Fig. 4-left) consists of L
single-scale CRFs. At the l-th scale, tl mean-field iterations
are performed and then the estimated outputs are passed to
the CRF model of the subsequent scale after a Rectified Lin-
ear Unit (ReLU) operation. To implement a single CRF, we
stack tl C-MF blocks and make them share the parameters,
while we learn different parameters for different CRFs. For
the multi-scale model, one full mean-field updates involves
L scales simultaneously, obtained by combining L C-MF
blocks. We further stack T iterations for learning and infer-
ence. The parameters corresponding to different scales and
different mean-field iterations are shared. In this way, by
using the common C-MF layer, we implement the two pro-
posed CRFs models as deep sequential networks enabling
end-to-end training with the front-end network.

Training the whole network. We train the network us-
ing a two phase scheme. In the first phase (pretraining),
the parameters Θ and {θl}Ll=1 of the front-end network are
learned by minimizing the sum ofL distinct side losses as in
[33], corresponding to L side outputs. We use a square loss
over Q training samples: LP =

∑L
l=1

∑Q
i=1 ‖sl,i − d̄i‖22.

In the second phase (fine tuning), we initialize the front-end
network with the learned parameters in the first phase, and
jointly fine-tune with the proposed multi-scale CRF models
to compute the optimal value of the parameters Θ, {θl}Ll=1

···

µ2
1

···

···

…
µt2

2

µ1
l

µ2
l

CNN at scale 2

CNN at scale 1 CNN at scale l

CCRF_1

CCRF_2

CCRF_lReLU

ReLU ReLU

Output

µ1
1

µ0
1

µ1
2

µ2
2

µt1
1

µ0
l µ0

l

µtl

l

S1

S2µ0
2µ0

2

Sl

d?

�1
1 , �1

2

�1
1 , �1

2

�1
1 , �1

2

�2
1 , �2

2

�2
1 , �2

2

�2
1 , �2

2

�2
1 , �2

2

�l
1, �

l
2

�l
1, �

l
2

�l
1, �

l
2

CNN at scale 1

···

CNN at scale 2

···

CNN at scale l

···

Output

µ2
1

µT
2 µT

l

µ2
2

µ1
2

µ2
l

µ1
l

…

…

…

…

µ0
1 µ0

l

µ1
1

µT
1

µ0
2 SlS2S1

d?

�1, �2

�1, �2

�1, �2

�3, �4 �3, �4

�3, �4

�3, �4

�3, �4

�3, �4

�1, �2

�1, �2

�1, �2

�1, �2

�1, �2

�1, �2

Figure 4. The proposed cascade (left) and multi-scale (right) models as a sequential deep networks. The blue and yellow boxes indicate
the estimated variables and observations, respectively. The parameters βm are used for mean-field updates. As in the cascade model
parameters are not shared among different CRFs, we use the notation βl

1, β
l
2 to denote parameters associated to the l-th scale.

and β, with β = {βm}Mm=1. The entire network is learned
with Stochastic Gradient Descent (SGD) by minimizing a
square loss LF =

∑Q
i=1 ‖F (ri; Θ,θl,β)− dli‖22.

4. Experiments

To demonstrate the effectiveness of the proposed multi-
scale CRF models for monocular depth prediction, we per-
formed experiments on two publicly available datasets: the
NYU Depth V2 [30] and the Make3D [27] datasets. In the
following we describe the details of our evaluation.

4.1. Experimental Setup

Datasets. The NYU Depth V2 dataset [30] contains
120K unique pairs of RGB and depth images captured with
a Microsoft Kinect. The datasets consists of 249 scenes for
training and 215 scenes for testing. The images have a res-
olution of 640 × 480. To speed up the training phase, fol-
lowing previous works [20, 37] we consider only a small
subset of images. This subset has 1449 aligned RGB-depth
pairs: 795 pairs are used for training, 654 for testing. Fol-
lowing [9], we perform data augmentation for the training
samples. The RGB and depth images are scaled with a ratio
ρ ∈ {1, 1.2, 1.5} and the depths are divided by ρ. Addi-
tionally, we horizontally flip all the samples and bilinearly
down-sample them to 320 × 240 pixels. The data augmen-
tation phase produces 4770 training pairs in total.

The Make3D dataset [27] contains 534 RGB-depth
pairs, split into 400 pairs for training and 134 for testing.
We resize all the images to a resolution of 460 × 345 as
done in [21] to preserve the aspect ratio of the original im-
ages. We adopted the same data augmentation scheme used
for NYU Depth V2 dataset but, for ρ = {1.2, 1.5} we gen-
erate two samples each, obtaining 4K training samples.

Front-end CNN Architectures. To study the influence
of the frond-end CNN, we consider several network ar-
chitectures including: (i) AlexNet [16], (ii) VGG16 [31],
(iii) an encoder-decoder network derived from VGG (VGG-
ED) [2], (iv) VGG Convolution-Deconvolution (VGG-

CD) [23], and (v) ResNet50 [11]. For AlexNet, VGG16
and ResNet50, we obtain the side outputs from differ-
ent convolutional blocks in which each convolutional layer
outputs feature maps with the same size using a similar
scheme as in [33]. The number of side-outputs is 5, 5 and
4 for AlexNet, VGG16 and ResNet50, respectively. As
VGG-ED and VGG-CD have been widely used for pixel-
level prediction tasks, we also consider them in our analy-
sis. Both VGG-ED and VGG-CD have a symmetric struc-
ture, and we use the corresponding part of VGG16 for
their encoder/convolutional block. Five side-outputs are
then extracted from the convolutional blocks of the de-
coder/deconvolutional part.

Evaluation Metrics. Following previous works [8, 9,
32], we adopt the following evaluation metrics to quan-
titatively assess the performance of our depth prediction
model. Specifically, we consider: (i) mean relative er-
ror (rel): 1

N

∑
i
|d̄i−d?i |
d?i

; (ii) root mean squared error

(rms):
√

1
N

∑
i(d̄i − d?i)2; (iii) mean log10 error (log10):

1
N

∑
i ‖ log10(d̄i) − log10(d?i)‖ and (iv) accuracy with

threshold t: percentage (%) of d?i subject to max(
d?i
d̄i
, d̄id?i

) =

δ < t (t ∈ [1.25, 1.252, 1.253]).

Implementation Details. We implement the proposed
deep model using the popular Caffe framework [13] on a
single Nvidia Tesla K80 GPU with 12 GB memory. As de-
scribed in Section 3.3, training consists of a pretraining and
a fine tuning phase. In the first phase, we train the front-
end CNN with parameters initialized with the correspond-
ing ImageNet pretrained models. For AlexNet, VGG16,
VGG-ED and VGG-CD, the batch size is set to 12 and for
ResNet50 to 8. The learning rate is initialized at 10−11 and
decreases by 10 times around every 50 epochs. 80 epochs
are performed for pretraining in total. The momentum and
the weight decay are set to 0.9 and 0.0005, respectively.
When the pretraining is finished, we connect all the side
outputs of the front-end CNN to our CRFs-based multi-
scale deep models for end-to-end training of the whole net-

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

HED [33] 0.185 0.077 0.723 0.678 0.918 0.980
Hypercolumn [10] 0.189 0.080 0.730 0.667 0.911 0.978
CRF 0.193 0.082 0.742 0.662 0.909 0.976
Ours (single-scale) 0.187 0.079 0.727 0.674 0.916 0.980
Ours - Cascade (3-s) 0.176 0.074 0.695 0.689 0.920 0.980
Ours - Cascade (5-s) 0.169 0.071 0.673 0.698 0.923 0.981
Ours - Multi-scale (3-s) 0.172 0.072 0.683 0.691 0.922 0.981
Ours - Multi-scale (5-s) 0.163 0.069 0.655 0.706 0.925 0.981

Table 1. NYU Depth V2 dataset. Comparison of different multi-
scale fusion schemes. 3-s, 5-s denote 3 and 5 scales respectively.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Outer→ Inner 0.175 0.072 0.688 0.689 0.919 0.979
Inner→ Outer 0.169 0.071 0.673 0.698 0.923 0.981

Table 2. NYU Depth V2 dataset. Comparison between the pro-
posed model and the associated pretrained network architectures.

work. In this phase, the batch size is reduced to 6 and a
fixed learning rate of 10−12 is used. The same parame-
ters of the pre-training phase are used for momentum and
weight decay. The bandwidth weights for the Gaussian ker-
nels are obtained through cross validation. The number of
mean-field iterations is set to 5 for efficient training for both
the cascade CRFs and multi-scale CRFs. We do not ob-
serve significant improvement using more than 5 iterations.
Training the whole network takes around 25 hours on the
Make3D dataset and ∼ 31 hours on the NYU v2 dataset.

4.2. Experimental Results

Analysis of different multi-scale fusion methods. In
the first series of experiments we consider the NYU Depth
V2 dataset. We evaluate the proposed CRF-based models
and compare them with other methods for fusing multi-
scale CNN representations. Specifically, we consider: (i)
the HED method in [33], where the sum of multiple side
output losses is jointly minimized with a fusion loss (we use
the square loss, rather than the cross-entropy, as our prob-
lem involves continuous variables), (ii) Hypercolumn [10],
where multiple score maps are concatenated and (iii) a CRF
applied on the prediction of the front-end network (last
layer) a posteriori (no end-to-end training). In these ex-
periments we consider VGG-CD as front-end CNN.

The results of our comparison are shown in Table 1. It
is evident that with our CRFs-based models more accurate
depth maps can be obtained, confirming our idea that in-
tegrating complementary information derived from CNN
side output maps within a graphical model framework is
more effective than traditional fusion schemes. The table
also compares the proposed cascade and multi-scale mod-
els. As expected, the multi-scale model produces more ac-
curate depth maps, at the price of an increased computa-
tional cost. Finally, we analyze the impact of adopting mul-
tiple scales and compare our complete models (5 scales)
with their version when only a single and three side output

Network
Architecture

Error (lower is better) Accuracy (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

AlexNet (P) 0.265 0.120 0.945 0.544 0.835 0.948
VGG16 (P) 0.228 0.104 0.836 0.596 0.863 0.954
VGG-ED (P) 0.208 0.089 0.788 0.645 0.906 0.978
VGG-CD (P) 0.203 0.087 0.774 0.652 0.909 0.979
ResNet50 (P) 0.168 0.072 0.701 0.741 0.932 0.981
AlexNet (CRF) 0.231 0.105 0.868 0.591 0.859 0.952
VGG16 (CRF) 0.193 0.092 0.792 0.636 0.896 0.972
VGG-ED (CRF) 0.173 0.073 0.685 0.693 0.921 0.981
VGG-CD (CRF) 0.169 0.071 0.673 0.698 0.923 0.981
ResNet50 (CRF) 0.143 0.065 0.613 0.789 0.946 0.984

Table 3. NYU Depth V2 dataset. Comparison between the pro-
posed model and the associated pretrained network architectures.

layers are used. It is evident that the performance improves
by increasing the number of scales.

As the proposed models are based on the idea of pro-
gressively refining the obtained prediction results from pre-
vious layers, we also analyze the influence of the stacking
order on the performance of the cascade model (Table 2).
We compare two different schemes: the first indicating that
the cascade model operates from the inner to the outer lay-
ers and the other representing the reverse order. Our results
confirm the validity of our original assumption: a coarse to
fine approach leads to more accurate depth maps.

Evaluation of different front-end deep architectures.
As discussed above, the proposed multi-scale fusion mod-
els are general and different deep neural architectures can
be employed in the front end network. In this section, we
evaluate the impact of this choice on the depth estimation
performance. The results of our analysis are shown in Ta-
ble 3, where we consider both the case of pretrained model
(i.e. only side losses are employed but not CRF models), in-
dicated with P, and the fine-tuned model with the cascade
CRFs (CRF). Similar results are obtained in the case of the
multi-scale CRF. As expected, in both cases deeper models
produced more accurate predictions and ResNet50 outper-
forms other models. Moreover, VGG-CD is slightly better
than VGG-ED, and both these models outperforms VGG16.
Importantly, for all considered networks there is a signifi-
cant increase in performance when applying the proposed
CRF-based models.

Figure 5 depicts some examples of predicted depth maps
on the NYU Depth V2 dataset. As shown in the figure,
the proposed approach is able to generate robust depth pre-
dictions. By comparing the reconstructed depth images
obtained with pretrained models (e.g. using VGG-CD and
ResNet50 as front-end networks) with those computed with
our models, it is clear that our multi-scale approach signifi-
cantly improves prediction accuracy.

Comparison with state of the art. We also compare
our approach with state of the art methods on both datasets.
For previous works we directly report results taken from the
original papers. Table 4 shows the results of the compari-
son on the NYU Depth V2 dataset. For our approach we

RGB Image AlexNet VGG16 VGG-CD-OursVGG-CD ResNet GroundtruthResNet-Ours

Figure 5. Examples of depth prediction results on the NYU v2 dataset. Different network architectures are compared.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Karsch et al. [29] 0.349 - 1.214 0.447 0.745 0.897
Ladicky et al. [14] 0.35 0.131 1.20 - - -
Liu et al. [21] 0.335 0.127 1.06 - - -
Ladicky et al. [17] - - - 0.542 0.829 0.941
Zhuo et al. [37] 0.305 0.122 1.04 0.525 0.838 0.962
Liu et al. [20] 0.230 0.095 0.824 0.614 0.883 0.975
Wang et al. [32] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen et al. [9] 0.215 - 0.907 0.611 0.887 0.971
Roi and Todorovic [26] 0.187 0.078 0.744 - - -
Eigen and Fergus [8] 0.158 - 0.641 0.769 0.950 0.988
Laina et al. [18] 0.129 0.056 0.583 0.801 0.950 0.986
Ours (ResNet50-4.7K) 0.143 0.065 0.613 0.789 0.946 0.984
Ours (ResNet50-95K) 0.121 0.052 0.586 0.811 0.954 0.987

Table 4. NYU Depth V2 dataset: comparison with state of the art.

Method
C1 Error C2 Error

rel log10 rms rel log10 rms
Karsch et al. [14] 0.355 0.127 9.20 0.361 0.148 15.10
Liu et al. [21] 0.335 0.137 9.49 0.338 0.134 12.60
Liu et al. [20] 0.314 0.119 8.60 0.307 0.125 12.89
Li et al. [19] 0.278 0.092 7.19 0.279 0.102 10.27
Laina et al. [18] (`2 loss) 0.223 0.089 4.89 - -
Laina et al. [18] (Huber loss) 0.176 0.072 4.46 - -
Ours (ResNet50-Cascade) 0.213 0.082 4.67 0.221 4.79 8.81
Ours (Resnet50-Multi-scale) 0.206 0.076 4.51 0.212 4.71 8.73
Ours (Resnet50-10K) 0.184 0.065 4.38 0.198 4.53 8.56

Table 5. Make3D dataset: comparison with state of the art.

consider the cascade model and use two different training
sets for pretraining: the small set of 4.7K pairs employed
in all our experiments and a larger set of 95K images as in
[18]. Note that for fine tuning we only use the small set.
As shown in the table, our approach outperforms all base-
line methods and it is the second best model when we use
only 4.7K images. This is remarkable considering that, for
instance, in [8] 120K image pairs are used for training.

We also perform a comparison with state of the art on the
Make3D dataset (Table 5). Following [21], the error metrics
are computed in two different settings, i.e. considering (C1)
only the regions with ground-truth depth less than 70 and

(C2) the entire image. It is clear that the proposed approach
is significantly better than previous methods. In particu-
lar, comparing with Laina et al. [18], the best performing
method in the literature, it is evident that our approach, both
in case of the cascade and the multi-scale models, outper-
forms [18] by a significant margin when Laina et al. also
adopt a square loss. It is worth noting that in [18] a train-
ing set of 15K image pairs is considered, while we employ
much less training samples. By increasing our training data
(i.e. ∼ 10K in the pretraining phase), our multi-scale CRF
model also outperforms [18] with Huber loss (log10 and
rms metrics). Finally, it is very interesting to compare the
proposed method with the approach in Liu et al. [20], since
in [20] a CRF model is also employed within a deep net-
work trained end-to-end. Our method significantly outper-
forms [20] in terms of accuracy. Moreover, in [20] a time
of 1.1sec is reported for performing inference on a test im-
age but the time required by superpixels calculations is not
taken into account. Oppositely, with our method computing
the depth map for a single image takes about 1 sec in total.

5. Conclusions
We introduced a novel approach for predicting depth im-

ages from a single RGB input, which is also particularly
useful for other cross-modal tasks [34, 35]. The core of the
method is a novel framework based on continuous CRFs for
fusing multi-scale representations derived from CNN side
outputs. We demonstrated that this framework can be used
in combination with several common CNN architectures
and is suitable for end-to-end training. The extensive exper-
iments confirmed the validity of the proposed multi-scale
fusion approach. While this paper specifically addresses the
problem of depth prediction, we believe that other tasks in
computer vision involving pixel-level predictions of contin-
uous variables, can also benefit from our implementation of
mean-fields updates within the CNN framework.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. In Computer
Graphics Forum, volume 29, pages 753–762, 2010.

[2] V. Badrinarayanan, A. Handa, and R. Cipolla. Seg-
net: A deep convolutional encoder-decoder architecture
for robust semantic pixel-wise labelling. arXiv preprint
arXiv:1505.07293, 2015.

[3] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-
scale bifurcated deep network for top-down contour detec-
tion. In CVPR, 2015.

[4] P. Buyssens, A. Elmoataz, and O. Lézoray. Multiscale con-
volutional neural networks for vision–based classification of
cells. In ACCV, 2012.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. ICLR, 2015.

[6] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: Scale-aware semantic image segmentation.
CVPR, 2016.

[7] E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian net-
work model for autonomous 3d reconstruction from a single
indoor image. In CVPR, 2006.

[8] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In ICCV, 2015.

[9] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
NIPS, 2014.

[10] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In CVPR, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo
pop-up. ACM transactions on graphics (TOG), 24(3):577–
584, 2005.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[14] K. Karsch, C. Liu, and S. B. Kang. Depth transfer: Depth ex-
traction from video using non-parametric sampling. TPAMI,
36(11):2144–2158, 2014.

[15] V. Koltun. Efficient inference in fully connected crfs with
gaussian edge potentials. NIPS, 2011.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[17] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of
perspective. In CVPR, 2014.

[18] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. arXiv preprint arXiv:1606.00373, 2016.

[19] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth
and surface normal estimation from monocular images using
regression on deep features and hierarchical crfs. In CVPR,
2015.

[20] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields
for depth estimation from a single image. In CVPR, 2015.

[21] M. Liu, M. Salzmann, and X. He. Discrete-continuous depth
estimation from a single image. In CVPR, 2014.

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[23] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015.

[24] L. Porzi, S. R. Buló, A. Penate-Sanchez, E. Ricci, and
F. Moreno-Noguer. Learning depth-aware deep representa-
tions for robotic perception. IEEE Robotics and Automation
Letters, 2(2):468–475, 2017.

[25] K. Ristovski, V. Radosavljevic, S. Vucetic, and Z. Obradovic.
Continuous conditional random fields for efficient regression
in large fully connected graphs. In AAAI, 2013.

[26] A. Roy and S. Todorovic. Monocular depth estimation using
neural regression forest. In CVPR, 2016.

[27] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. In NIPS, 2005.

[28] A. Saxena, S. H. Chung, and A. Y. Ng. 3-d depth reconstruc-
tion from a single still image. IJCV, 76(1):53–69, 2008.

[29] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. TPAMI, 31(5):824–
840, 2009.

[30] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012.

[31] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[32] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille.
Towards unified depth and semantic prediction from a single
image. In CVPR, 2015.

[33] S. Xie and Z. Tu. Holistically-nested edge detection. In
ICCV, 2015.

[34] D. Xu, Y.-L. Chen, X. Wu, W. Feng, H. Qian, and Y. Xu. A
novel hand posture recognition system based on sparse rep-
resentation using color and depth images. In IROS, 2013.

[35] D. Xu, W. Ouyang, E. Ricci, X. Wang, and N. Sebe. Learn-
ing cross-modal deep representations for robust pedestrian
detection. In CVPR, 2017.

[36] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional ran-
dom fields as recurrent neural networks. In ICCV, 2015.

[37] W. Zhuo, M. Salzmann, X. He, and M. Liu. Indoor scene
structure analysis for single image depth estimation. In
CVPR, 2015.

