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Abstract

In this paper we introduce a large-scale hand pose
dataset, collected using a novel capture method. Existing
datasets are either generated synthetically or captured us-
ing depth sensors: synthetic datasets exhibit a certain level
of appearance difference from real depth images, and real
datasets are limited in quantity and coverage, mainly due
to the difficulty to annotate them. We propose a track-
ing system with six 6D magnetic sensors and inverse kine-
matics to automatically obtain 21-joints hand pose annota-
tions of depth maps captured with minimal restriction on
the range of motion. The capture protocol aims to fully
cover the natural hand pose space. As shown in embed-
ding plots, the new dataset exhibits a significantly wider and
denser range of hand poses compared to existing bench-
marks. Current state-of-the-art methods are evaluated on
the dataset, and we demonstrate significant improvements
in cross-benchmark performance. We also show significant
improvements in egocentric hand pose estimation with a
CNN trained on the new dataset.

1. Introduction
There has been significant progress in the area of hand

pose estimation in the recent past and a number of sys-
tems have been proposed [5, 8, 11, 14, 15, 18, 24, 30, 7,
1, 4, 33, 6]. However, as noted in [12], existing benchmarks
[18, 26, 28, 31, 34] are restricted in terms of number of an-
notated images, annotation accuracy, articulation coverage,
and variation in hand shape and viewpoint.

The current state of the art for hand pose estimation em-
ploys deep neural networks to estimate hand pose from in-
put data [31, 13, 14, 40, 2, 38]. It has been shown that these
methods scale well with the size of the training dataset. The
availability of a large-scale, accurately annotated dataset
is therefore a key factor for advancing the field. Man-
ual annotation has been the bottleneck for creating large-
scale benchmarks [18, 25]. This method is not only labor-
intensive, but can also result in inaccurate position labels.
∗indicates equal contribution

Semi-automatic capture methods have been devised where
3D joint locations are inferred from manually annotated
2D joint locations [12]. Alternatives, which are still time-
consuming, combine tracking a hand model and manual re-
finement, if necessary iterating these steps [26, 28, 31]. Ad-
ditional sensors can aid automatic capture significantly, but
care must be taken not to restrict the range of motion, and to
minimise the depth appearance difference from bare hands,
for example when using a data-glove [36]. More recently,
less intrusive magnetic sensors have been employed for fin-
ger tip annotation in the HandNet dataset [34] .

In this paper, we introduce our million-scale Big-
Hand2.2M dataset that makes a significant advancement in
terms of completeness of hand data variation and annota-
tion quality, see Figure 1 and Table 1. We detail the capture
set-up and methodology that enables efficient hand pose an-
notation with high accuracy. This enables us to capture the
range of hand motions that can be adopted without external
forces. Our dataset contains 2.2 million depth maps with
accurately annotated joint locations. The data is captured
by attaching six magnetic sensors on the hand, five on each
finger nail and one on the back of the palm, where each
sensor provides accurate 6D measurements. Locations of
all joints are obtained by applying inverse kinematics on a
hand model with 31 degrees of freedom (dof) with kine-
matic constraints. The BigHand2.2M dataset also contains
290K frames of egocentric hand poses, which is 130 times
more than previous egocentric hand pose datasets (Table 2).
Training a Convolutional Neural Network (CNN) on the
data shows significantly improved results. The recent study
by Supancic et al. [27] on cross-benchmark testing showed
that approximately 40% of poses are estimated with an er-
ror larger than 50mm. This is due to a different capture set-
up, hand shape variation, and annotation schemes. Train-
ing a CNN using the BigHand2.2M dataset, we demonstrate
state-of-the-art performance on existing benchmarks, 15-
20mm average errors.
2. Existing benchmarks

Existing benchmarks for evaluation and comparison are
significantly limited in scale (from a few hundred to tens
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Figure 1: Example images from the BigHand2.2M dataset. The dataset covers the range of hand poses that can be assumed without
applying external forces to the hand. The accuracy of joint annotations is higher than in previous benchmark datasets.

Dataset Annotation No. frames No. joints No. subjects View point Depth map resolution

Dexter 1 [25] manual 2,137 5 1 3rd 320×240
MSRA14 [18] manual 2,400 21 6 3rd 320×240
ICVL [28] track + refine 17,604 16 10 3rd 320×240
NYU [31] track + refine 81,009 36 2 3rd 640×480
MSRA15 [26] track + refine 76,375 21 9 3rd 320×240
UCI-EGO [20] semi-automatic 400 26 2 ego 320×240
Graz16 [12] semi-automatic 2,166 21 6 ego 320×240
ASTAR [36] automatic 870 20 30 3rd 320×240
HandNet [34] automatic 212,928 6 10 3rd 320×240
MSRC [24] synthetic 102,000 22 1 3rd 512×424
BigHand2.2M automatic 2.2M 21 10 full 640×480

Table 1: Benchmark comparison. Existing datasets are limited in the number of frames, due to their annotation methods, either manual
or semi-automatic. Our automatic annotation method allows collecting fully annotated depth images at frame rate. Our dataset is collected
with the latest Intel RealSense SR300 camera [3], which captures depth images at 640× 480-pixel resolution.

of thousands), annotation accuracy, articulation, view point,
and hand shape [18, 24, 26, 28, 31, 34, 12]. The bottle-
neck for building a large-scale benchmark using captured
data is the lack of a rapid and accurate annotation method.
Creating datasets by manual annotation [18, 25] is labor-
intensive and can result in inaccurate labels. These bench-
marks are small in size, e.g. MSRA14[18] and Dexter 1
[25] have only 2,400 and 2,137 frames, respectively, mak-
ing them unsuitable for large-scale training. Alternative an-
notation methods, which are still labor-intensive and time-
consuming, track a hand model and manually refine the re-
sults, if necessary they iterating these two steps [26, 28, 31].
The ICVL dataset [28] is one of the first benchmarks and it

was annotated using 3D skeletal tracking [9] followed by
manual refinement. However, its scale is small and limi-
tations of the annotation accuracy have been noted in the
literature [26, 12]. The NYU dataset [31] is larger with a
wider range of view points. Its annotations were obtained
by model-based hand tracking on depth images from three
cameras. Particle Swarm Optimization was used to obtain
the final annotation. This method often drifts to incorrect
poses, where manual correction is needed to re-initialize the
tracking process. The MSRA15 dataset [26] is currently the
most complex in the area [12]. It is annotated in an iter-
ative way, where an optimization method [18] and manual
re-adjustment alternate until convergence. The annotation



also contains errors, such as occasionally missing finger and
thumb annotations. This benchmark has a large view point
coverage, but it has only small variation in articulation, cap-
turing 17 base articulations and varying each of them within
a 500-frame sequence.

Two small datasets were captured using semi-automatic
annotation methods [12, 20]. The UCI-EGO dataset [20]
was annotated by iteratively searching for the closest ex-
ample in a synthetic set and subsequent manual refinement.
The Graz16 dataset [12] was annotated by iteratively an-
notating visible joints in a number of key frames and au-
tomatically inferring the complete sequence using an opti-
mization method, where the appearance as well as tempo-
ral, and distance constraints are exploited. However, it re-
mains challenging to annotate rapidly moving hands. It also
requires manual correction when optimization fails. This
semi-automatic method resulted in a 2,166-frame annotated
egocentric dataset, which is also insufficient for large-scale
training.

Additional sensors can aid automatic capture signifi-
cantly [17, 32, 34, 36], but care must be taken not to re-
strict the range of motion. The ASTAR dataset [36] used
a ShapeHand data-glove[23], but wearing the glove influ-
ences the captured hand images, and to some extent hinders
free hand articulation. In the works of [17, 32], full human
body pose esimtation was treated as a state estimation prob-
lem given magnetic sensor and depth data. More recently,
less intrusive magnetic sensors have been used for finger
tip annotation in the HandNet dataset [34], which exploits a
similar annotation setting as our benchmark with trakSTAR
magnetic sensors [10]. However, this dataset only provides
fingertip locations, not the full hand annotations.

Synthetic data has been exploited for generating train-
ing data [19, 21, 37], as well as evaluation [24]. Even
though one can generate unlimited synthetic data, there cur-
rently remains a gap between synthetic and real data. Apart
from differences in hand characteristics and the lack of sen-
sor noise, synthetically generated images sometime produce
kinematically implausible and unnatural hand poses, see
Figure 10. The MSRC benchmark dataset [24] is a syn-
thetic benchmark, where data is uniformly distributed in the
3D view point space. However, the data is limited in the ar-
ticulation space, where poses are generated by random sam-
pling from six articulations.

3. Full hand pose annotation
In this section we present our method to do accurate full

hand pose annotations using the trakSTAR tracking system
with 6D magnetic sensors.

3.1. Annotation by inverse kinematics

Our hand model has 21 joints and can move with 31 de-
grees of freedom (dof), as shown in Figure 2. We capture

MCP
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(c) (d)

Figure 2: Hand model definition. (a) Our hand model has 21
joints and moves with 31 degrees of freedom (dof). (b) Model
fitted to hand shape. (c) and (d) show how hand shape is measured.

x

y

z

6D sensor

V1

V2

l 1
l 2

r
S2

S1

T

D2

P2 M2

T1 D1

P1

M1

W

S6

D P

P ′

M

T2

Figure 3: Hand pose inference using six 6D magnetic sensors.
Global hand pose can be inferred from the location and orientation
of sensor S6 on the back of the palm. Each sensor on the nail is
used to infer the TIP and DIP joints of the corresponding finger.
Each PIP joint can be calculated using bone lengths and physical
constraints.

31 dimensions, including 6 dimensions for global pose and
25 joint angles. Each finger’s pose is represented by five
angles, including the twist angle, flexion angle, abduction
angle for the MCP joint and flexion angles for the DIP and
PIP joints. For each subject, we manually measure the bone
lengths, see Figure 2 (c) and (d).

Given the six magnetic sensors, each with 6D dof (lo-
cation and orientation), along with a hand model, we use
inverse kinematics to infer the full hand pose defined by the
locations of 21 joints, as shown in Figure 2. The physical
constraints per subject are (1) the wrist and 5 MCP joints



Depth camera
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Figure 4: Annotation settings. The equipment used in our an-
notation system are: Two hardware synchronized electromagnetic
tracking units, six 6D magnetic sensors, one mid-range transmit-
ter, and an Intel RealSense SR300 camera.

are fixed relative to each other, (2) bone lengths are con-
stant, and (3) MCP, PIP, DIP, and TIP joints for each finger
lie on the same plane.

Similar to [22] five magnetic sensors (from thumb to lit-
tle finger, the sensors are S1, S2, S3, S4, S5) are attached
on the five fingers’ tips. The sixth sensor (S6) is attached
to the back of the palm, see Figure 3. Given the location
and orientation of S6, as well as the hand model shape, the
wrist (W) and five MCP joints (M1, M2, M3, M4, M5) are
inferred. For each finger, given the sensor’s location and
orientation, the TIP and DIP are calculated in the follow-
ing way (as shown in Figure 3, take the index finger as an
example): the sensor’s orientation is used to find the three
orthogonal axes, V1 is along the finger, V2 is pointing for-
ward from the finger tip. The TIP (T) and DIP (D) joint
locations are calculated as:

T = L(S) + l1V1 + rV2, (1)

D = L(S)− l2V1 + rV2, (2)

where L(S) denotes the sensor location, r is half the finger
thickness, and l1+l2 = b, where b is the bone length con-
necting the DIP and TIP joints. The final joint to infer is the
PIP, shown at location P in Figure 3, is calculated using the
following conditions: (1) T, M, D are given, (2) ‖P −D‖
and ‖P −M‖ are fixed, (3) T, D, P, M are on the same
plane, and (4) T and P should be on different sides of the
line connecting M and D. These constraints are sufficient to
uniquely determine P.

3.2. Synchronization and calibration

To build and annotate our dataset, we use a trakSTAR
tracking system [10] combined with the latest generation
Intel RealSense SR300 depth sensor [3], see Figure 4. The
trakSTAR system consists of two hardware synchronized
electromagnetic tracking units, each of which can track up

Benchmarks Rogez [20] Oberweger [12] BigHand2.2M Egocentric

No. Frames 400 2166 290K

Table 2: Egocentric Benchmark size comparison. The egocentric
subset of BigHand2.2M dataset is 130 time larger than the next
largest available dataset.

to four 6D magnetic sensors. The 6D sensor (“Model 180”)
is 2mm wide and is attached to a flexible 1.2mm wide and
3.3m long cable. When the cable is attached to the hand
using tight elastic loops the depth images and hand move-
ments are minimally affected. We use the mid-range trans-
mitter with a maximum tracking distance of 660mm, which
is suitable for hand tracking. The tracking system captures
the locations and orientations of the six sensors at 720fps
and is stable and without drift in continuous operation. The
depth camera captures images with a resolution of 640×480
and runs at a maximum speed of 60fps. The measurements
are synchronized by finding the nearest neighboring time
stamps. The time gap between the depth image and the
magnetic sensors in this way is 0.7 millisecond at most.

The trakStar system and the depth sensor have their
own coordinate systems, and we use a solution to the
perspective-N-point problem to calibrate the coordinates as
in [34]. Given a set of 3D magnetic sensor locations and
the corresponding 2D locations in the depth map as well
as intrinsic camera parameters, the ASPnP algorithm [39]
estimates the transformation between these two coordinate
systems.

4. BigHand2.2M benchmark
We collected the BigHand2.2M dataset containing 2.2

million depth images of single hands with annotated joints
(see Section 3). Ten subjects (7 male, 3 female) were cap-
tured for two hours each.

4.1. Hand view-point space

In order to cover diverse view points, we vary the sensor
height, the subject’s position and arm orientation. The view
point space (a hemisphere for the 3rd person view point) is
divided into 16 regions (4 regions uniformly along each of
two 3D rotation axes), and subjects are instructed to carry
out random view point changes within each region. In ad-
dition, our dataset collects random changes in the egocen-
tric view point. As the t-SNE visualization in Figure 5(left)
shows, our benchmark data covers a significantly larger re-
gion of the global view-point space than the ICVL and NYU
dataset.

4.2. Hand articulation space

Similar to [35], we define 32 extremal poses as hand
poses where each finger assumes a maximally bent or ex-



Figure 5: 2D t-SNE embedding of the hand pose space. BigHand2.2M is represented by blue, ICVL by red, and NYU by green dots.
The figures show (left) global view point space coverage, (middle) articulation space (25D), and (right) combined of global orientation and
articulation coverage. Compared with existing datasets, the BigHand2.2M contains a more complete range of variation.

tended position. For maximum coverage of the articulation
space, we enumerate all

(
32
2

)
= 496 possible pairs of these

extremal poses, and capture the natural motion when transi-
tioning between the two poses of each pair.

In total the BigHand2.2M dataset consists of three parts:
(1) Schemed poses: to cover all the articulations that a hu-
man hand can freely adopt, this contains has 1.534 million
frames, captured as described above. (2) Random poses:
375K frames are captured with participants being encour-
aged to fully explore the pose space. (3) Egocentric poses:
290K frames of egocentric poses are captured with subjects
carrying out the 32 extremal poses combined with random
movements.

As Figure 5 (middle, right) shows, our benchmark spans
a wider and denser area in the articulation and the combined
of articulation and view-point space, compared to the ICVL
and NYU.

4.3. Hand shape space

We select ten participants with different hand shapes (7
male, 3 female, age range: 25-35 years). Existing bench-
marks also use different participants, but are limited in an-
notated hand shapes due to annotation methods. Figure 6 vi-
sualizes shapes in different datasets using the first two prin-
cipal components of the hand shape parameters. The ICVL
dataset [28] includes ten participants with similar hand size,
and all are annotated with a single hand shape model. The
NYU [31] training data uses one hand shape, while its test
data uses two hand shapes, one of which is from the train-
ing set. The MSRA15 dataset includes nine participants, but
in the annotated ground truth data, only three hand shapes
are used. The MSRC [24] synthetic benchmark includes a
single shape.

In the experiments, we use the dataset of 10 subjects for
training, and testify how well the learnt model generalises to

different shapes in existing benchmarks (cross-benchmark)
and an unseen new shape (“new person” in Figure 6). See
section 5 for more explanations.
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Figure 6: Hand shape variation. Hand variation is visualized
by applying PCA to the shape parameters. The BigHand2.2M
dataset contains 10 hand shapes and an additional shape for test-
ing. The ICVL dataset contains one hand shape due to its anno-
tation method. The NYU dataset includes two hand shapes, the
MSRC dataset includes one synthetic hand shape.

5. Analysis of the state of the art

In this section we use the Holi CNN architecture [38] as
the current state of the art. The detailed structure is shown in
the supplementary material. The input for the CNN model
is the cropped hand area using the ground truth joint loca-
tions. This region is normalized to 96× 96 pixels and is fed
into the CNN, together with two copies downsampled to 48
× 48 and 24 × 24. The cost function is the mean squared
distance between the location estimates and the ground truth
locations. The CNN is implemented using Theano and is
trained on a desktop with an Nvidia GeForce GTX TITAN
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Figure 7: Cross-benchmark performance. CNN models are trained on the ICVL, NYU, MSRC, and the new BigHand2.2M dataset,
respectively, and evaluated on (left) ICVL and (right) NYU test data. A CNN trained on BigHand2.2M achieves state-of-the-art perfor-
mance on ICVL and NYU, while the CNNs trained on ICVL, NYU, and MSRC do not generalize well to other benchmarks. The networks
CNN MSRC, CNN ICVL, CNN NYU, and CNN BigHand are trained on the training set of MSRC, ICVL, NYU, and BigHand2.2M,
respectively.

PPPPPPPPtrain
test

ICVL NYU MSRC BigHand2.2M

ICVL 12.3 35.1 65.8 46.3
NYU 20.1 21.4 64.1 49.6
MSRC 25.3 30.8 21.3 49.7
BigHand2.2M 14.9 20.6 43.7 17.1

Table 3: Cross-benchmark comparison. Mean errors of CNNs
trained on ICVL, NYU, MSRC and BigHand2.2M when cross-
tested. The model trained on BigHand2.2M performs well on
ICVL and NYU, less so on the synthetic MSRC data. Training on
ICVL, NYU, or MSRC does not generalize well to other datasets.

Black and a 32-core Intel processor. The model is trained
using Adam, with β1 = 0.9, β2 = 0.999 and α = 0.0003.
We stop the training process when the cost of the valida-
tion set reaches the minimum, where each training epoch
takes approximately 40 minutes. When training the CNN
model on BigHand2.2M, ICVL, NYU and MSRC, we keep
the CNN structure and β1, β2, α of Adam unchanged.

All frames of 10 subjects are uniformly split into a train-
ing set and a validation set with a 9-to-1 ratio, which is sim-
ilar to ICVL, NYU, and HandNet [34]. In addition to the
10 subjects, a challenging test sequence of 37K frames of
a new subject is recorded and automatically annotated, as
shown “new person” in Figure 6. For a quantitative com-
parison, we measure the ratio of joints within a certain error
bound ε [38, 29, 24].
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Figure 8: Data size effect on cross benchmark evaluation.
When the CNN model is trained on 1

16
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, and all of the

benchmark data, the test results on ICVL, NYU, MSRC, and Big-
Hand2.2M keep improving.

5.1. Cross-benchmark performance

Cross-benchmark evaluation is a challenging and less-
studied problem in many fields, like face recognition [16]
and hand pose estimation [27]. Due to the small num-
ber of training datasets, existing hand pose estimation sys-
tems perform poorly when tested on unseen hand poses.
As pointed out in [27], in existing datasets, “test poses re-
markably resemble the training poses”, and they proposed



Figure 9: Generalization of the CNN trained on BigHand2.2M.
The CNN generalizes to the ICVL dataset with a lower error than
the original annotated ground truth. (top) ICVL ground truth an-
notations, (bottom) our estimation results.

Figure 10: MSRC benchmark examples. Synthetic data lacks
real hand shape and sensor noise, and tends to have kinematically
implausible hand poses. The top row shows some depth images,
the bottom row shows the corresponding ground truth annotation.

“a simple nearest-neighbor base line that outperforms most
existing systems”.

Table 3 and Figure 7 show the estimation errors of the
CNNs trained on ICVL, NYU, MSRC and BigHand2.2M
when cross-tested. The performance when the CNN is
trained on theBigHand2.2M training set is still high when
evaluated on other datasets. On real test datasets (ICVL
and NYU), it achieves comparable or even better perfor-
mance than models trained on the corresponding training
set. This confirms that with high annotation accuracy and
with sufficient variation in shape, articulation and viewpoint
parameters, a CNN trained on a large-scale dataset is able
to generalize to new hand shapes and viewpoints, while the
nearest neighbor method showed poor cross-testing perfor-
mance [27].

The MSRC dataset is a synthetic dataset with accurate
annotations and evenly distributed viewpoints. When train-
ing the CNN on MSRC and testing on all real testing sets,
the performance is worse than the CNN trained on NYU,
and significantly worse than when trained on BigHand2.2M.
Performance is to that of a CNN trained on ICVL which
is only one-sixth in size compared to the MSRC train-
ing set. On the other hand, the model trained on Big-

Hand2.2M shows consistently high performance across all
real datasets, but poorer performance on the MSRC test set
due to the differences between real and synthetic data. Fig-
ure 10 shows examples from the MSRC dataset. Synthet-
ically generated images tend to produce kinematically im-
plausible hand poses, which are difficult to assume without
applying external force. There are also differences in hand
shape, e.g. the thumb appears large compared to the rest of
the hand.

Increasing the amount of training data improves the per-
formance on cross benchmark evaluation, see Figure 8. In
this experiment, we uniformly subsample fractions of 1

16 ,
1
8 , 1

4 , 1
2 , and 1 from the training and validation data, respec-

tively. When we train CNNs with the increasing portions
of BigHand2.2M and test them on ICVL, NYU, MSRC,
and BigHand2.2M’s test sequences, the performance is
fairly improved. These observations support that the larger
amount of training data enables CNNs to better generalize
to new unseen data. Also, note our dataset is dense such that
the random small fractions of the training data still delivers
the good accuracies.

5.2. State-of-the-art comparison

In this section we compare our CNN model trained
on BigHand2.2M with 8 state-of-the-art methods including
HSO [29], Sun et al. [26], Latent Regression Forest (LRF)
[28], Keskin et al. [5], Melax et al. [9], DeepPrior [13],
FeedLoop [14], and Hier [38].

When the CNN model trained on BigHand2.2M is used
for testing on NYU, it outperforms two recent methods,
DeepPrior [13] and FeedLoop [14], and achieves compa-
rable accuracy with Hier [38], even though the model has
never seen any data from NYU benchmark, demonstrated in
the right of Figure 7. Since the annotation scheme of NYU
is different from ours, we choose a common (still deviated
to a certain degree) subset of 11 joint locations for this com-
parison. We expect better results for consistent annotation
schemes.

The ICVL test error curve of the CNN model trained on
BigHand2.2M is shown in Figure 7(left). We choose the
maximum allowed error [29] metric. Although it does not
appear as good as that trained on ICVL itself, HSO and Sun
et al., it outperforms the other methods. Note that the mean
estimation error for our CNN model is already as low as
14mm, which means that a small annotation discrepancy
between training and test data will have a large influence on
the result. As noted in [12], the annotation of ICVL is not
as accurate as that of NYU. Many frames of our estimation
results look plausible, but result in larger estimation errors
because of inaccurate annotations, see Figure 9 for qualita-
tive comparisons. Another reason is that the hand measure-
ment scheme is different from ours. In our dataset, each
subject’s hand shape is determined by manually measuring



0 10 20 30 40 50 60 70 80

error threshold   (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

pr
op

or
tio

n 
of

 jo
in

ts
 w

ith
 e

rr
or

 <
 

FORTH
Intel
CNN

0 10 20 30 40 50 60 70 80

error threshold   (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

pr
op

or
tio

n 
of

 jo
in

ts
 w

ith
 e

rr
or

 <
 

CNN

0 10 20 30 40 50 60 70 80

error threshold   (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

pr
op

or
tio

n 
of

 jo
in

ts
 w

ith
 e

rr
or

 <
 

CNN 10-fold
CNN 10-fold average

Figure 11: Hand pose estimation performance. (left) baseline performances on the new subject’s 37K frames of hand images. The
Holi CNN significantly outperforms the tracking-based methods FORTH [15] and Intel [3]. (middle) the CNN trained on 90% of the
BigHand2.2M data achieves high accuracy on the remaining 10% validation images. (right) 10-fold cross-validation result when using the
CNN for egocentric hand pose estimation. We achieved a similar-level accuracy to that of third-view hand pose estimation.

Figure 12: Qualitative results on the egocentric-view dataset.
A CNN trained on BigHand2.2M achieves state-of-the-art perfor-
mance in the egocentric-view pose estimation task.

joint distances. In ICVL, the same synthetic model is used
for all subjects and the MCP joints tend to slide towards the
fingers rather than remaining on the physical joints.

5.3. Baselines on BigHand2.2M

Three baselines are evaluated on our 37K-frame testing
sequence, the CNN trained on BigHand2.2M, the Particle
Swarm Optimization method (FORTH) [15] and the method
by Intel [3]. The latter two are generative tracking methods.
The CNN model outperforms the two generative methods,
see the left plot of Figure 11. As described in the above,
we chose a size ratio between training and validation sets
of 9:1. Figure 11(middle) shows the result on the validation
set, where 90% of the joints can be estimated within a 5mm
error bound.

5.4. Egocentric dataset

The lack of a large-scale annotated dataset has been a
limiting factor for egocentric hand pose estimation. Exist-
ing egocentric benchmarks [20, 12] are small, see Table 2.
Rogez et al. [20] provide 400 frames and Oberwerger et al.
[12] provide 2,166 annotated frames. The BigHand2.2M
egocentric subset contains 290K annotated frames of ten
subjects (29K frames each). This dataset enabled us to train
a CNN model resulting in performance competitive with
that of third view hand pose estimation. In the experiment
we train the CNN on nine subjects and test it on the remain-
ing one. This process is done with 10-fold cross validation.
We report mean and standard deviation of the ten folds, see
Figure 11 (right). Figure 12 shows qualitative results.

6. Discussion and conclusion

Hand pose estimation has attracted a lot of attention and
some high-quality systems have been demonstrated, but the
development in datasets still lagged behind the algorithm
advancement. To close this gap we captured a million-scale
benchmark dataset of real hand depth images. For auto-
matic annotation we proposed using a magnetic tracking
system with six magnetic 6D sensors and inverse kinemat-
ics. To build a thorough yet concise benchmark, we sys-
tematically designed a hand movement protocol to capture
the natural hand poses. The BigHand2.2M dataset includes
approximately 290K frames captured from an egocentric
view to facilitate the advancement in the area of egocen-
tric hand pose estimation. Current state-of-the-art methods
were evaluated using the new benchmark, and we demon-
strated significant improvements in cross-benchmark eval-
uations. It is our aim that the dataset will help to further
advance the research field, allowing the exploration of new
approaches.
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