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Abstract

Most existing person re-identification algorithms either
extract robust visual features or learn discriminative met-
rics for person images. However, the underlying manifold
which those images reside on is rarely investigated. That
raises a problem that the learned metric is not smooth with
respect to the local geometry structure of the data manifold.

In this paper, we study person re-identification with
manifold-based affinity learning, which did not receive
enough attention from this area. An unconventional
manifold-preserving algorithm is proposed, which can 1)
make the best use of supervision from training data, whose
label information is given as pairwise constraints; 2) scale
up to large repositories with low on-line time complexity;
and 3) be plunged into most existing algorithms, serving
as a generic postprocessing procedure to further boost the
identification accuracies. Extensive experimental results
on five popular person re-identification benchmarks con-
sistently demonstrate the effectiveness of our method. Es-
pecially, on the largest CUHK03 and Market-1501, our
method outperforms the state-of-the-art alternatives by a
large margin with high efficiency, which is more appropri-
ate for practical applications.

1. Introduction
Person re-identification (ReID) is an active task driven

by the applications of visual surveillance, which aims to
identify person images from the gallery that share the same
identity as the given probe. Due to the large intra-class
variations in viewpoint, pose, illumination, blur and oc-
clusion, person re-identification is still a rather challenging
task, though extensively studied in recent years.

Current research interests can be coarsely divided into
two mainstreams: 1) those focus on designing robust visual
descriptors [54, 12, 36, 25, 63] to accurately model the ap-
pearance of person; 2) those seek for a discriminative met-
ric [64, 24, 53, 27, 17], under which instances of the same
identity should be closer while instances of different identi-
ties are far away.

Unlike those methods performed in the metric space,
we investigate person re-identification task from another
perspective, i.e., taking into account the manifold struc-
ture [41]. Since existing methods only analyze the pairwise
distances between instances, the underlying data manifold,
which those images reside on, is more or less neglected. It
results in that the learned relationships (similarities or dis-
similarities) between instances are not smooth with respect
to the local geometry of the manifold.

To overcome this issue, potential solutions can be semi-
supervised [67, 65] or unsupervised [66, 57, 11, 5] algo-
rithms about manifold learning. However, directly applying
such algorithms to person re-identification might be prob-
lematic for two reasons. First, semi-supervised algorithms
(e.g., label propagation [67]) can only predict the labels of
unlabeled data, but fail to depict the relationship between
the probe and gallery instances. Moreover, they require cat-
egory labels, while supervision in ReID is given as pair-
wise (equivalence) constraints [21]. Meanwhile, unsuper-
vised algorithms (e.g., manifold ranking [66], graph trans-
duction [6]) totally ignore the beneficial influence from the
labeled training data. Second, since most manifold learn-
ing algorithms operate on graph models, their algorithmic
complexity is usually high. Therefore, the heavy computa-
tional cost hinders their promotions in this field, especially
in recent years researchers begin to attach more importance
to the scalability issue [23, 62]. In summary, due to the
above factors, those conventional manifold learning algo-
rithms are inadequate to derive a more faithful similarity
for person re-identification.

In this paper, we tackle person re-identification task on
the data manifold by proposing a novel affinity learning
algorithm called Supervised Smoothed Manifold (SSM).
Compared with existing algorithms, the primary contribu-
tion of SSM is that the similarity value between two in-
stances is estimated in the context of other pairs of in-
stances, thus the learned similarity well reflects the geome-
try structure of the underlying manifold.

Moreover, SSM is customized specifically for person re-
identification, which further possesses three merits (as il-
lustrated in Fig. 1) as follows: i) supervision: instead of
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Figure 1. The pipeline of a person re-identification system. The blue, green and red color indicate training data, gallery and probe,
respectively. Previous works concentrate on feature extracting and metric learning, marked with dashed boxes. Our work can be the
postprocessing procedure about affinity learning, marked with a solid box. Sample images come from GRID dataset [32].

considering each instance individually, we propose to learn
the similarity with instance pairs. By doing so, SSM can
take advantage of the supervision in pairwise constraints,
which is easily accessible in this task; ii) efficiency: to over-
come the limitation of high time complexity of SSM, two
improvements are proposed to accelerate its on-line person
matching. Consequently, the affinity learning is performed
only with database instances off-line, and SSM can be ap-
plied to the scenario on large scale person re-identification;
and iii) generalization: different from most existing algo-
rithms performed in metric space, SSM focuses on affinity
learning between instances. Hence, SSM can be deemed
as a postprocessing procedure (or a generic tool) to further
boost the identification accuracies of those algorithms.

The rest of the paper is organized as follows. In
Sec. 2, we present the differences between SSM and rele-
vant works. The basic affinity learning framework of SSM
is introduced in Sec. 3, and significantly accelerated in
Sec. 4. Experiments are presented in Sec. 5. Conclusions
and future works are given in Sec. 6.

2. Related Work
The manifold structure has been observed by several

works. Motivated by the fact that pedestrian data are dis-
tributed on a highly curved manifold, a sampling strategy
for training neural network called Moderate Positive Min-
ing (MPM) is proposed in [43]. However, considering the
data distribution is hard to define, MPM does aim at esti-
mating the geodesic distances along the manifold. From
this point of view, SSM explicitly learns the geodesic dis-
tances between instances, which can be directly used for
re-identification.

Manifold ranking [66] is introduced by [30] to person
re-identification. Through a random walk [2] on the affinity
graph, it propagates the probe label to the gallery iteratively
assuming that the probe is the only labeled data. Despite
the ignorance of labeled training data as analyzed above,
manifold ranking encounters severe obstacles when han-

dling larger databases, since the graph-based iteration has
to be run each time a new probe is observed. In this aspect,
SSM also learns the similarities via iterative propagation.
Nevertheless, it enables a highly-efficient on-line matching.

Post-ranking techniques have not drawn much attention
in this field. Most of them require human feedback in-the-
loop [3, 16], such as Post-rank OPtimisation (POP) [28],
Human Verification Incremental Learning (HVIL) [50].
Meanwhile, several works [4, 22] operate in an unsuper-
vised manner. For example, Discriminant Context Informa-
tion Analysis (DCIA) [13] focuses on the visual ambiguities
shared between the first ranks, where the true match is sup-
posed to be located. In comparison, SSM does not need hu-
man interaction or hold the “rank-1” assumption. Instead,
its essence is to learn a smooth similarity measure, super-
vised by the special kind of labels in pairwise constraints.

At the first glance, affinity learning in our work appears
the same as similarity learning (e.g., PolyMap [9]). Unlike
similarity learning on polynomial feature map [8] which
connects to Mahalanobis distance metric and bilinear sim-
ilarity, affinity learning in SSM does not rely on the defi-
nition of metric (non-metric can be also used). Therefore,
they are inherently different. Finally, it is acknowledged
that those metric learning methods (e.g., KISSME [21],
XQDA [25]) are also relevant, but take effects prior to SSM
in a person re-identification system as Fig. 1 shows.

3. Proposed Method
Given a probe p and a testing gallery X =

{x1, x2, . . . , xNg
}, we aim at learning a smooth similarity

Q ∈ RN×N with the help of the labeled training set Y =
{y1, y2, . . . , yNl

}, where N = Ng +Nl+ 1. The data man-
ifold is modeled as a weighted affinity graph G = {V,W}.
The vertex set V = {v1, v2, . . . , vN} is equivalent to the
union of the probe p and the database instances (gallery X
and labeled set Y ). W ∈ RN×N is the adjacency matrix of
G, with Wij measuring the similarity between vertex vi and
vj . To facilitate a random walk [2] on the graph G, a tran-



sition matrix P ∈ RN×N is usually needed. The transition
probability from vertex vi to vj can be calculated as

P (i→ j) = Pij =
Wij∑N

j′=1Wij′
. (1)

Thus, P is a row stochastic matrix.

3.1. Supervised Similarity Propagation

The label set L ∈ RN×N used in person re-identification
is given in pairwise constraints, i.e., if vi and vj belong to
the same identity, Lij = 1, otherwise Lij = 0. Meanwhile,
in the ideal case, the learned similarity Qij should be larger
if vi and vj belong to the same identity, and Qij should be
close to 0 otherwise. Therefore, we can conclude that both
L and Q provide a probabilistic interpretation to the like-
lihood of the tuple (vi, vj) being a true matching pair. The
difference is that Lij is a discrete binary variable, indicating
exactly matching or not, while Qij is a continuous variable,
specifying a matching degree. Such an observation moti-
vates us that affinity learning can be done by propagating
the pairwise constraint label L with tuples as primitive data.
In other words, similarities are spread from the most con-
fident tuples generated from the labeled set Y to the unex-
plored tuples generated from the testing gallery X .

Let (vk, vi) and (vl, vj) be two tuples, the propagation
step in the t-th iteration is defined as

Q
(t+1)
ki = α

N∑
l,j

P(ki→ lj)Q
(t)
lj + (1− α)Lki, (2)

where P(ki → lj) is the transition probability from tuple
(vk, vi) to tuple (vl, vj), and 0 < α < 1. Eq. (2) reveals that
at each iteration, the tuple (vk, vi) absorbs a fraction of label
information from the rest tuples with probability α, then
retains its initial label Lki with probability 1−α. Assuming
the independence within tuples, we hold the product rule to
calculate P(ki→ lj), as

P(ki→ lj) = P (k → l)P (i→ j) = PklPij . (3)

Afterwards, Eq. (2) can be rewritten in matrix form

~Q(t+1) = αP ~Q(t) + (1− α)~L. (4)

To prove this, we need two identical coordinate transfor-
mations, that is µ ≡ N(i − 1) + k and ν ≡ N(j − 1) + l.
Then Q can be vectorized to ~Q = vec(Q) ∈ RN2×1, with
the element correspondence ~Qµ = Qki. Let P ∈ RN2×N2

be the Kronecker product of P with itself, i.e., P = P ⊗P .
Then, the correspondence between P and P is given as
Pµν = PijPkl. Eventually, Eq. (2) can be expressed as

~Q(t+1)
µ = α

N2∑
ν=1

Pµν ~Q(t)
ν + (1− α)~Lµ. (5)

The proof is complete.

3.2. Convergence Proof

By running the iteration for t times, Eq. (4) can be ex-
panded as

~Q(t+1) = (αP)t ~Q(1) + (1− α)

t−1∑
i=0

(αP)i~L. (6)

P is also a row stochastic matrix, since∑
ν

Pµν =
∑
l,j

PijPkl =
∑
j

Pij
∑
l

Pkl = 1. (7)

Therefore, according to Perron-Frobenius Theorem, we can
obtain that spectral radius of P is bounded by 1, the maxi-
mum value of its row sums. Considering that 0 < α < 1,
we have

lim
t→∞

(αP)t = 0, lim
t→∞

t−1∑
i=0

(αP)i = (I − αP)−1, (8)

where I is an identity matrix in appropriate size. Conse-
quently, Eq. (6) converges to

lim
t→∞

~Q(t+1) = (1− α)(I − αP)−1~L. (9)

Then Q can be obtained by reshaping ~Q to matrix form as
Q = vec−1( ~Q).

3.3. Basic Pipeline

Intuitively, person re-identification using the above affin-
ity learning algorithm can be accomplished in three steps.
First, each time a probe instance p is observed, the affin-
ity graph G is constructed. Second, a new similarity Q is
learned by either running Eq. (4) until convergence or di-
rectly using the closed-form solution in Eq. (9). At last,
since Q can be divided into

Q =

Qpp QpX QpY
QXp QXX QXY
QY p QY X QY Y

 , (10)

we can obtain the matching probabilities between the probe
p and the gallery X , that is QpX ∈ R1×Ng . Note that W
and P also have such a division.

We draw readers’ attention that when the probe p is used
for testing, the other probe instances are invisible to users.
Therefore, one cannot simultaneously include all the probe
instances to constitute G for a global probe search.

However, this pipeline is computationally too demand-
ing in practice. First, affinity learning itself is computa-
tionally expensive. It requires time complexity O(TN4)
and space complexity O(N4) to run the iteration in Eq. (4),
where T is the iteration number. Alternatively, using the
closed-form solution in Eq. (9) requires time complexity



O(N6) and space complexity O(N4), since we need to in-
vert and store a huge matrix of size N2 ×N2.

Second, adapting new probe instances is computation-
ally expensive. As our method is algorithmically graph-
based, we need to discard the old probe and do the affin-
ity learning at each time a new probe is observed. Assume
we have Np probe instances in total, we at least need time
complexity O(TNpN

4) to finish the whole probe search.
Note that constructing the affinity graph is computationally
cheap due to the fact that the similarities between database
instances can be pre-computed off-line for once and reused
consistently.

4. Re-identification on-the-fly

In this section, we propose two modifications to decrease
the high complexity of the basic pipeline in Sec. 3, such that
person re-identification can be done on-the-fly.

4.1. Iteration Transform

Our first improvement focuses on affinity learning itself.
We observe the following useful identity

P ~Q = (P ⊗ P )vec(Q) = vec(PQPT). (11)

So, Eq. (4) can be transformed into

Q(t+1) = αPQ(t)PT + (1− α)L. (12)

As a result, the time and space complexity of affinity learn-
ing are reduced to O(TN3) and O(N2), respectively.

4.2. Probe Embedding

Our second improvement concentrates on improving the
efficiency in adapting new probe instances. First, we prove
that the closed-form solution in Eq. (9) can be derived from

min
Q

Φ(Q) +
1− α
α

Ω(Q), (13)

where

Φ(Q) =
1

2

N∑
i,j,k,l

PijPkl(Qki −Qlj)2,

Ω(Q) =

N∑
k,i=1

(Qki − Lki)2.

(14)

Using the two identical coordinate transformations, Eq. (13)
can be vectorized, where

Φ( ~Q) =
1

2

N2∑
µ,ν

Pµν( ~Qµ− ~Qν)2, Ω( ~Q) = ‖ ~Q−~L‖22, (15)

where Φ( ~Q) measures the smoothness of ~Q with respect to
the local manifold structure, and Ω( ~Q) measures the fitness
of ~Q to the given label ~L.

The derivative of Φ( ~Q) with respect to ~Q is

∂Φ( ~Q)

∂ ~Q
=
(
(I − P) + (I − P)T

)
~Q. (16)

According to [7], Eq. (16) can be approximated by 2(I −
P) ~Q. So, one can easily induce the derivative of Eq. (13)
with respect to ~Q

2(I − P) ~Q+
2(1− α)

α
( ~Q− ~L). (17)

By setting Eq. (17) to zero and applying vec−1 operator, we
can get the closed-form solution of Eq. (13)

Q = vec−1
(

(1− α)(I − αP)−1~L
)
, (18)

which is equivalent to Eq. (9). The proof is complete.
Compared with the large database (testing gallery and la-

beled data), there is only one probe p at each testing time.
Therefore, we hold two assumptions that 1) the database
itself constitutes an underlying manifold; 2) when p is em-
bedded into the manifold smoothly, it will not alter its ge-
ometry structure. With these prerequisites, we can first per-
form affinity learning off-line with only database instances,
then do the probe embedding on-line.

Of course, the embedding of the probe should also follow
the smoothness criterion Φ(Q). After the pairwise similar-
ities between database instances are smoothed, the partial
derivative of Φ(Q) with respect to Qpi is

∂Φ(Q)

∂Qpi
=

Ng+Nl∑
j,l=1

PijPpl(Qpi −Qlj). (19)

Setting it to zero, the similarity between the probe p and a
certain database instance vi can be calculated

Qpi =

Ng+Nl∑
j,l=1

PplQljPij . (20)

By varying vi ∈ X , Eq. (20) can be rewritten in matrix form

QpX =
[
PpX PpY

] [QXX QXY
QY X QY Y

] [
PT
XX

PT
XY

]
. (21)

4.3. Complexity Analysis

The final pipeline of the proposed SSM is rather simple,
summarized in Alg. 1. As can be seen, affinity learning is
done only with database instances. The computational cost
still seems a bit heavy, since there are (Ng + Nl) vertices



Algorithm 1: Supervised Smoothed Manifold.
Input: The probe p, the testing gallery X , the labeled

data Y , the training label L.
Output: The matching probability QpX .
begin

Off-line:
begin

Construct the affinity graph with X and Y ;
Affinity learning with label L using Eq. (12).
return QXX , QXY , QY X , QY Y

On-line:
begin

for each probe p do
Do pedestrian matching using Eq. (21);
return QpX .

Methods Time Complexity Space Complexity

Standard O(TNpN
4) O(N4)

Accelerated O (Np(Ng +Nl)Ng) O
(
(Ng +Nl)

2
)

Table 1. The complexity comparison between the standard solution
and the accelerated solution of SSM. Recall that Np is the number
of probe, Ng is the number of gallery, Nl is the number of labeled
data, and T is the number of iterations. N = Ng +Nl + 1.

in the graph. However, those operations can be done off-
line, and reused with different probe instances. The learned
similarities can all be maintained dynamically as long as
new database instances are added or distance matrices are
changed.

In Table 1, we present the on-line complexity compari-
son between the standard solution in Sec. 3 and the acceler-
ated solution in Sec. 4. Eq. (21) reveals that on-line index-
ing for Np probe instances involves the multiplication of
three matrices. Whereas the multiplication of the right two
can be also computed off-line, the on-line time complexity
is only O (Np(Ng +Nl)Ng). Furthermore, the space com-
plexity is dominated by the storage of the learned similarity,
requiring O

(
(Ng +Nl)

2
)
.

5. Experiments
The proposed Supervised Smoothed Manifold (SSM) is

evaluated on five popular benchmarks, including GRID [32,
31], VIPeR [14], PRID450S [40], CUHK03 [23] and
Market-1501 [62]. In the implementations of SSM, we do
not carefully tune parameters, but fix α = 0.1 and the num-
ber of iterations T = 30 throughout our experiments. The
affinity graph is constructed by applying self-tuning [55]
Gaussian kernel to pairwise distances following [30].

5.1. QMUL GRID

QMUL underGround Re-IDentification (GRID) [32, 31]
is a challenging dataset, which has gradually become pop-

ular. The variations in the pose, colors and illuminations of
pedestrians, as well as the poor image quality, make it very
difficult to yield high matching accuracies.

GRID dataset consists of 250 identities, with each iden-
tity having two images seen from different camera views.
Besides, 775 additional images that do not belong to the 250
identities are used to enlarge the gallery. Sample images can
be found in Fig. 1. A fixed training/testing split with 10 tri-
als is provided. For each trial, 125 image pairs are used
for training. The remaining 125 image pairs and the 775
background images are used for testing. To evaluate the
performances, we employ Cumulated Matching Character-
istics (CMC) curves and the cumulated matching accuracy
at selected ranks.

To obtain the image representations, we utilize two
representative descriptors, i.e., Local Maximal Occurrence
(LOMO) [25] and Gaussian Of Gaussian (GOG) [36].
In addition, ELF6 feature [29], provided along with the
dataset, is also tested to ensure the fair comparison.

Comparison with Baselines. In Table 2, we present the
performances before and after SSM is used. Besides the
three individual visual features, two types of fused features
are also used. Fusion means the concatenation of LOMO
and GOG, while Fusion? means the concatenation of all
the three features, both with equal weights. The pairwise
distances between instances are computed in metric space.
In our experiments, besides the natural choice of Euclidean
metric, we also evaluate Cross-view Quadratic Discriminant
Analysis (XQDA) [25] which is taken as a representative of
metric learning techniques.

As can be drawn, SSM leads to considerable perfor-
mance gains against the baselines. For example, with ELF6
in Euclidean metric, the improvement of identification rate
brought by SSM is 2.32 at rank-1, 3.84 at rank-10 and 6.08
at rank-10. Meanwhile, by integrating XQDA, SSM can
still boost the performances further. For example, the rank-1
accuracy of LOMO with XQDA is originally 16.56, then in-
creased to 18.96 after the proposed SSM is used. Those ex-
perimental results suggest that most existing visual features
or metric learning algorithms in person re-identification are
compatible with SSM. In other words, after visual features
are given, person re-identification systems can be improved
with two steps, i.e., applying metric learning first, and ap-
plying SSM next.

As a related work to ours, manifold ranking [30] reports
an identification rate of 30.96 at rank-20 using ELF6 and
Euclidean metric, which is significantly lower than 34.08
achieved by SSM. It clearly demonstrates that it is beneficial
to exploit the supervision information in affinity learning
step. To avoid the performance uncertainty (though rather
tiny) led by different implementation details, we compare
SSM with manifold ranking using exactly the same affin-
ity graph. The results are given in Fig. 2. As we can see,



Feature Metric Affinity r=1 r=10 r=20

ELF6 Euclidean × 4.64 19.60 28.00
ELF6 Euclidean

√
6.96 23.44 34.08

ELF6 XQDA × 10.48 38.64 52.56
ELF6 XQDA

√
11.04 40.72 51.76

LOMO Euclidean × 15.20 30.80 36.40
LOMO Euclidean

√
16.00 33.68 41.60

LOMO XQDA × 16.56 41.84 52.40
LOMO XQDA

√
18.96 44.16 55.92

GOG Euclidean × 13.28 33.76 44.40
GOG Euclidean

√
14.40 36.80 44.48

GOG XQDA × 24.80 58.40 68.88
GOG XQDA

√
26.16 59.20 70.40

Fusion Euclidean × 14.72 35.44 45.84
Fusion Euclidean

√
17.76 37.60 44.48

Fusion XQDA × 27.04 59.36 70.00
Fusion XQDA

√
27.20 61.12 70.56

Fusion? Euclidean × 14.80 35.60 46.24
Fusion? Euclidean

√
15.92 35.60 46.40

Fusion? XQDA × 27.20 61.12 71.20
Fusion? XQDA

√
27.60 62.56 71.60

Table 2. The comparison with baselines on GRID dataset.
√

indi-
cates SSM is used and × indicates not used.
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Figure 2. The comparison between the proposed SSM and Mani-
fold Ranking with the same affinity graph.

the rank-1 accuracy of both manifold ranking and SSM is
6.96. However, SSM outperforms manifold ranking by a
large margin at higher ranks. The difference of accuracy is
nearly 10 at rank-100.

One of the most important properties of SSM is its high
time efficiency in on-line pedestrian matching. Here, we
omit the overhead in constructing the affinity graph, which
can be done off-line. Under the same computing plat-
form, manifold ranking takes 14.40 seconds in total to ful-
fill searching 125 probe instances, while SSM only needs
9.52ms. One can easily find that SSM is 3 orders of mag-
nitude faster than manifold ranking. The reason behind is
that the iteration of manifold ranking is conducted each time
a new probe is observed. In comparison, SSM proposes
to do affinity learning only off-line, and embed the probe
smoothly into the manifold. As a result, although SSM has
to do affinity learning on a much larger graph (to leverage
the supervision from training data), the on-line cost can be
controlled so that SSM has the potential ability of handling
large-scale person re-identification. We will further discuss

this aspect below.
From Table 2, failure cases of SSM can be also observed.

As it suggests, the rank-20 accuracy of ELF6 under XQDA
metric is originally 52.56, then is decreased slightly by
SSM to 51.76. The reason behind such abnormal phenom-
ena is that the principle of SSM is to obtain a global sim-
ilarity measure between each two instances, which varies
smoothly with respect to the local geometry of the underly-
ing manifold. The learned similarity cannot guarantee that
the identification rate at specifical ranks will be improved.
But in general cases, the overall performances will be re-
fined.

Comparison with State-of-the-art. In Table 3, we give a
thorough comparison with other state-of-the-art methods.
The performances of the proposed SSM are reported by us-
ing Fusion feature (the concatenation of LOMO and GOG)
under XQDA metric, which is a default configuration used
in our later experiments.

Previous state-of-the-art performances are achieved by
Spatially Constrained Similarity function on Polynomial
feature map (SCSP) [8] and GOG [36]. Chen et al. [8] im-
pose spatially constraints to the similarity learning on poly-
nomial feature map [9], and report rank-1 accuracy 24.24
by fusing 6 visual cues. GOG [36] is a powerful descriptor
proposed recently, which captures the mean and the covari-
ance information of pixel features. With XQDA metric, it
reports the best performances on GRID dataset, i.e., rank-1
accuracy 24.80. Benefiting from Fusion feature and XQDA
metric, SSM easily sets a new state-of-the-art performance,
outperforming the previous by 2.40 in rank-1 accuracy.

We emphasize that SSM is not restricted by the used de-
scriptor and metric. Table 2 presents that SSM can achieve
higher performances with Fusion? feature.

5.2. VIPeR, PRID450S and CUHK03

VIPeR [14] is a widely-accepted benchmark for
person re-identification containing 632 identities, and
PRID450S [40] consists of 450 identities, both captured
by two disjoint cameras. The widely adopted experimen-
tal protocol on two datasets is that a random selection of
half persons is used for training and the rest for testing. The
procedure is repeated for 10 times, then the average perfor-
mances are reported.

CUHK03 [23] is among the largest public available
benchmarks nowadays. It includes 13, 164 images of 1, 360
persons, with each person having 4.8 images on average.
Besides manually cropped images, auto detected images
are also provided. Following the conventional experimental
setup [23, 25, 26, 36, 56], 1, 160 persons are used for train-
ing and 100 persons are used for testing. The experiments
are conducted in single-shot setting with 20 random splits.

In Table 4, we present the performances of SSM and the
baselines, where distances are calculated under XQDA met-



Methods r=1 r=10 r=20

ELF6+RankSVM [39] 10.24 33.28 43.68
ELF6+PRDC [64] 9.68 32.96 44.32
ELF6+RankSVM+MR [30] 12.24 36.32 46.56
ELF6+PRDC+MR [30] 10.88 35.84 46.40
ELF6 + XQDA [25] 10.48 38.64 52.56
LOMO + XQDA [25] 16.56 41.84 52.40
MLAPG [26] 16.64 41.20 52.96
NLML [18] 24.54 43.53 55.25
PolyMap [9] 16.30 46.00 57.60
SSDAL [46] 22.40 48.00 58.40
MtMCML [33] 14.08 45.84 59.84
LSSCDL [58] 22.40 51.28 61.20
KEPLER [35] 18.40 50.24 61.44
DR-KISS [47] 20.60 51.40 62.60
SCSP [8] 24.24 54.08 65.20
GOG+XQDA [36] 24.80 58.40 68.88
SSM (Ours) 27.20 61.12 70.56

Table 3. The comparison with state-of-the-art on GRID dataset.
The best and second best performances are marked in red and blue,
respectively.

ric. Consistent to previous experiments, SSM can easily
boost the performances of baselines by around 2.5 percent
on average. In particular, the performance improvements
are more dramatic on CUHK03. For example, the rank-1
accuracy of Fusion is increased by 4.76 on CUHK03 la-
beled dataset, and by 4.65 on CUHK03 detected dataset.
The preference of SSM on larger datasets stems from the
fact that the manifold structure can be better sampled given
more data points.

Comparison on VIPeR. Since enormous algorithms have
reported results on VIPeR dataset, it is less realistic to ex-
hibit all of them. Hence, we only include those published in
recent 3 years or have close relationships with our work.

The comparison is given in Table 5. As can be seen, SSM
yields the best rank-10 accuracy 91.49, which is the same as
SCSP [8]. Meanwhile, SSM also achieves the second best
performances at rank-1 and rank-20. To our best knowledge
now, the best rank-1 accuracy is achieved by Discriminant
Context Information Analysis (DCIA) [13]. The superiority
of DCIA at rank-1 lies in that it tries to remove the visual
ambiguities between the probe and its true match, which
is supposed to be located at the first rank. By contrast,
SSM does not hold such assumptions, which seem to be
a bit strict in realistic settings. Thus, one can also observe
that SSM outperforms DCIA by 3.99 at rank-10. Consider-
ing their inherent difference of principles, it can be antici-
pated that SSM and DCIA can benefit from each other, and
a proper ensemble of them can lead to better performances.

Comparison on PRID450S. On PRID450S dataset, SSM
provides the state-of-the-art performances on all the three
evaluation metrics, i.e., 72.98 at rank-1, 96.76 at rank-10,
and 99.11 at rank-20.

Comparison on CUHK03. The comparison on CUHK03
dataset is given in Table 7. As it shows, the rank-1 iden-
tification rate of SSM is 72.7 with automatically detected
bounding boxes, which is the first work reporting rank-1
accuracy larger than 70.

In [56], Zhang et al. overcome the small sample size
(SSS) problem by matching people in a discriminative null
space of the training data, which report the second best
performance 94.8 at rank-10 with automatically detected
bounding boxes. Nevertheless, the performance gap with
SSM becomes larger at lower ranks. For instance, SSM
makes a significant improvement of 18.0 in rank-1 accuracy
over Null [56] with detected bounding boxes.

GOG remains to be one of the most robust descriptors
on this dataset. Under XQDA metric, it achieves the second
best performances at most ranks. As analyzed above, SSM
can be deemed as a generic tool for those visual descrip-
tors and metric learning techniques. Thus, SSM can further
enhance their discriminative power.

5.3. Market-1501

Market-1501 [62] is the largest benchmark in person re-
identification up to present, which is comprised of 1501
identities. 750 identities (12, 936 images) are used for train-
ing and 751 identities (19, 732 images) are used for testing.
3, 368 images are taken as the probe. Both CMC scores and
mean average precision (mAP) are used for evaluation.

Thanks to plenty of training images provided, training
deep neural networks becomes feasible on this dataset and
preferred by most previous works [46, 49, 48]. Following
this trend, we introduce Residual Network (ResNet) [15],
for the first time, to person re-identification. More specifi-
cally, we fine-tune a 50-layer ResNet with classification loss
on training images, and extract activations of its last fully
connected layer. The L2 normalized activations are taken as
visual features and Euclidean metric is utilized to measure
the distances between images. The baseline performances
are mAP 61.12 with single query (SQ) and 70.82 with mul-
tiple query (MQ), respectively.

In Table 8, we present the experimental comparisons. As
can be seen, SSM improves the baseline by mAP 7.68 for
SQ and 5.30 for MQ. Moreover, SSM outperforms the pre-
vious state-of-the-art [48] by a very large margin, with the
improvement of mAP 29.25 for SQ and 27.73 for MQ.

5.4. Time Analysis

As an additional improvement over metric learning,
SSM introduces extra time cost without doubt as analyzed
in Sec. 4.3. In Table 9, we present the extra execution time
of SSM over XQDA metric. As SSM manages transferring
the graph-based affinity learning to off-line, the off-line cost
is increased especially on larger datasets (e.g., CUHK03
and Market-1501). In on-line stage, the extra indexing time



Methods
VIPeR PRID450S CUHK03 (labeled) CUHK03 (detected)

r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=5 r=10 r=1 r=5 r=10

LOMO 40.00 80.51 91.08 61.38 91.02 95.33 50.85 81.38 91.14 44.45 78.70 87.65
LOMO++SSM 42.22 83.54 92.82 62.84 92.62 96.49 52.50 84.53 92.49 49.05 81.25 90.30
GOG 49.72 88.67 94.53 68.00 94.36 97.64 68.47 90.69 95.84 64.10 88.40 94.30
GOG+SSM 50.73 89.97 95.63 68.49 95.73 98.53 71.82 92.54 96.64 68.20 90.30 94.10
Fusion 53.26 90.95 95.73 72.04 95.82 98.49 71.87 92.64 96.80 68.05 90.15 94.95
Fusion+SSM 53.73 91.49 96.08 72.98 96.76 99.11 76.63 94.59 97.95 72.70 92.40 96.05

Table 4. The comparison with baselines on VIPeR, PRID450S and CUHK03 dataset.

Methods Ref r=1 r=10 r=20

Local Fisher [38] CVPR2013 24.18 67.12 -
eSDC [60] CVPR2013 26.74 62.37 76.36
SalMatch [59] ICCV2013 30.16 - -
Mid-Filter [61] CVPR2014 29.11 65.95 79.87
SCNCD [54] ECCV2014 37.80 81.20 90.40

ImprovedDeep [1] CVPR2015 34.81 - -
PolyMap [9] CVPR2015 36.80 83.70 91.70
XQDA [25] CVPR2015 40.00 80.51 91.08
Semantic [44] CVPR2015 41.60 86.20 95.10
MetricEmsemb. [37] CVPR2015 45.90 88.90 95.80
QALF [63] ICCV2015 30.17 62.44 73.81
CSL [42] ICCV2015 34.80 82.30 91.80
MLAPG [26] ICCV2015 40.73 82.34 92.37
MTL-LORAE [45] ICCV2015 42.30 81.60 89.60
DCIA [13] ICCV2015 63.92 87.50 -

DGD [51] CVPR2016 38.60 - -
LSSCDL [58] CVPR2016 42.66 84.27 91.93
TPC [10] CVPR2016 47.80 84.80 91.10
GOG [36] CVPR2016 49.72 88.67 94.53
Null [56] CVPR2016 51.17 90.51 95.92
SCSP [8] CVPR2016 53.54 91.49 96.65
S-CNN [48] ECCV2016 37.80 66.90 -
Shi et al. [43] ECCV2016 40.91 - -
`1-graph [20] ECCV2016 41.50 - -
S-LSTM [49] ECCV2016 42.40 79.40 -
SSDAL [46] ECCV2016 43.50 81.50 89.00
TMA [34] ECCV2016 48.19 87.65 93.54

SSM (Ours) 53.73 91.49 96.08
Table 5. The comparison with state-of-the-art on VIPeR dataset.

Methods Ref r=1 r=10 r=20

SCNCD [54] ECCV2014 41.60 79.40 87.80
Semantic [44] CVPR2015 44.90 77.50 86.70
CSL [42] ICCV2015 44.40 82.20 89.80
XQDA [25] CVPR2015 61.38 91.02 95.33
TMA [34] ECCV2016 52.89 85.78 93.33
LSSCDL [58] CVPR2016 60.49 88.58 93.60
GOG [36] CVPR2016 68.40 94.50 97.80
SSM (Ours) 72.98 96.76 99.11

Table 6. The comparison with state-of-the-art on PRID450S.

brought by SSM only occupies a small percentage on all the
datasets except CUHK03. On CUHK03 dataset, indexing
using XQDA metric only requires 0.09s, since CUHK03
has a small gallery. As SSM takes into account the larger

Methods
Labeled Detected

r=1 r=5 r=10 r=1 r=5 r=10

DeepReID [23] 20.7 51.7 68.3 19.9 49.0 64.3
XQDA [25] 52.2 - - 46.3 - -
ImprovedDeep [1] 54.7 88.3 93.3 45.0 75.7 83.0
LSSCDL [58] 57.0 - - 51.2 - -
MLAPG [26] 58.0 - - 51.2 - -
Shi et al. [43] 61.3 - - 52.0 - -
MetricEmsemb. [37] 62.1 89.1 94.3 - - -
Null [56] 62.5 90.0 94.8 54.7 84.7 94.8
S-LSTM [49] - - - 57.3 80.1 88.3
S-CNN [48] - - - 61.8 80.9 88.3
GOG [36] 67.3 91.0 96.0 65.5 88.4 93.7
DGD [51] 75.3 - - - - -

SSM (Ours) 76.6 94.6 98.0 72.7 92.4 96.1
Table 7. The comparison with state-of-the-art on CUHK03 dataset.

Methods
Single Query Multiple Query

Rank-1 mAP Rank-1 mAP

SSDAL [46] 39.40 19.60 49.00 25.80
WARCA [19] 45.16 - - -
SCSP [8] 51.90 26.35 - -
S-LSTM [49] - - 61.60 35.31
Null [56] 61.02 35.68 71.56 46.03
S-CNN [48] 65.88 39.55 76.04 48.45
SSM (Ours) 82.21 68.80 88.18 76.18

Table 8. The comparison with state-of-the-art on Market-1501.

Datasets
Off-line On-line

#M #A #M #A

GRID 0.90s +2.38s 0.17s +10.3ms
VIPeR 2.19s +2.22s 0.19s +10.2ms
PRID450S 1.21s +0.78s 0.12s +3.80ms
CUHK03 789.6s +1952s 0.09s +0.516s
Market1501 - +2769s 146.11s +21.68s

Table 9. #M denotes the initial time cost of metric learning using
XQDA. #A denotes the extra cost brought by the proposed SSM.

training data provided by CUHK03, the extra indexing cost
is 0.516s. Nevertheless, the overall indexing time is still
within 1 second.

6. Conclusion
In this paper, we do not design robust features or met-

rics that are superior to others in person re-identification.
Instead, we contribute a generic tool called Supervised



Smoothed Manifold (SSM), upon which most existing al-
gorithms can easily boost their performances further. SSM
is very easy to implement. It can also handle the special
kind of labeled data and has potential capacity in large
scale ReID. Comprehensive experiments on five bench-
marks demonstrate that SSM not only achieves the best per-
formances, but more importantly, incurs acceptable extra
on-line cost.

In the furture, we will investigate how to effectively fuse
multiple features [37] and apply the proposed SSM to other
datasets [52].
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