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Abstract

We present a new insight into the systematic generation of

minimal solvers in computer vision, which leads to smaller

and faster solvers. Many minimal problem formulations are

coupled sets of linear and polynomial equations where im-

age measurements enter the linear equations only. We show

that it is useful to solve such systems by first eliminating all

the unknowns that do not appear in the linear equations and

then extending solutions to the rest of unknowns. This can

be generalized to fully non-linear systems by linearization

via lifting. We demonstrate that this approach leads to more

efficient solvers in three problems of partially calibrated rel-

ative camera pose computation with unknown focal length

and/or radial distortion. Our approach also generates new

interesting constraints on the fundamental matrices of par-

tially calibrated cameras, which were not known before.

1. Introduction

Computing multi-view geometry is one of the most basic

and important tasks in computer vision [1]. These include

minimal problem solvers [2, 3] in, e.g., structure from mo-

tion [4], visual navigation [5], large scale 3D reconstruc-

tion [6] and image based localization [7]. Fast, and efficient,

minimal solvers are instrumental in RANSAC [8] based ro-

bust estimation algorithms [9].

In this paper we present a new insight into the systematic

generation of minimal solvers [3], which leads to smaller

and faster solvers. We explain our approach in the context

of elimination theory [10] and we offer an interpretation of

the theory that is useful for practice in computer vision.

Our main technical contribution is a new strategy for

solving minimal problems. For many computer vision ap-

plications, that strategy allows to do more computation in

an off-line stage and less computation in an on-line stage.

We exploit that many minimal problems in computer vi-

x
-6 -4 -2 0 2 4 6

y

-6

-4

-2

0

2

4

6
Eq (17)
Eq (18)

Figure 1. An illustration of the two equations (17) and (18), which

define the f+E+f problem, cut by six linear equations for six image

point correspondences.

sion lead to coupled sets of linear and polynomial equations

where image measurements enter the linear equations only.

We show how to solve such systems efficiently by first elim-

inating all unknowns which do not appear in the linear equa-

tions, and then extending solutions to the other unknowns.

Moreover, our approach can be generalized to fully non-

linear systems by linearization via monomial lifting [11].

We demonstrate that this approach leads to more efficient

on-line solvers in three problems of partially calibrated rel-

ative camera pose computation with unknown focal length

and/or radial distortion. Interestingly, our approach also

generates new constraints on the fundamental matrices of

partially calibrated cameras, which were not known before.

1.1. Related work

Historically, minimal problems [12, 13, 14, 15] addressed

problems in geometry of one and two perspective cameras.

Later, a more systematic approach to solving minimal prob-

lems in computer vision appeared, e.g., in [2, 16, 17, 18, 19,

20]. It developed a number of ad-hoc, as well as, systematic
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tools for solving polynomial systems appearing in computer

vision. These were later used and improved by many re-

searchers, e.g., [21, 22, 3, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Lately, the algebraic geometry foundations for computer vi-

sion came into focus in algebraic vision [32, 33, 34, 35, 36].

One of the key elements in computer vision applications

has been to design procedures for solving special polyno-

mial systems that move the computation from the on-line

stage of solving equations to an earlier off-line stage [37].

Interestingly, elimination theory [10] has not been fully

exploited in such computer vision applications, although it

has been used in many works [2, 20, 38, 3, 39] implicitly.

1.2. The main idea

Our main idea is to use elimination theory to do more com-

putation in the off-line stage and less in the on-line stage.

Natural formulations of vision models often involve

more unknowns than those that appear in the linear con-

straints depending on image measurements. For instance,

the constraint det F = 0 in fundamental matrix computa-

tion does not involve any image measurements. We argue

that it is advantageous to pre-process such models by com-

puting its projection into the space of relevant unknowns.

This is done by elimination. Solving the linear equations

on the resulting projected variety is then fast. Subsequently,

the values for the other unknowns can be determined using

the Extension Theorem [10] from computer algebra.

2. Solving polynomial systems by elimination

A classical (textbook) strategy for solving systems of poly-

nomial equations is to use elimination theory [40, 10, 41].

The strategy consists of two main steps.

1. First, the equations are “simplified” by eliminating

some unknowns to get a set of equations from which

the remaining unknowns can be computed. This pro-

vides a set of partial solutions.

2. Next, the partial solutions are extended to full solutions

by substituting the partial solutions back into the origi-

nal equations and solving for the remaining unknowns.

We next explain different elimination strategies.

2.1. Elimination strategies

2.1.1 Standard textbook elimination strategy

Standard (textbook) elimination is based on the Elimina-

tion Theorem [10], which we review in Theorem 5.1 of the

Appendix. It states that, for an ideal I ⊂ C[x1, . . . , xn],
we can read off LEX Gröbner bases for all elimination ide-

als Il = I ∩ C[x1, . . . , xn] from a LEX Gröbner basis G
for I . Here the sequence of elimination ideals ends with

In = I ∩ C[xn]. This is generated by one equation in the

single unknownxn, which is then easy to solve numerically.

For a polynomial system with a finite number of solu-

tions in Cn, it is always possible [10, p. 254–255] to ex-

tend partial solutions from xl+1, . . . , xn to xl, . . . , xn. For

this, we choose a single polynomial g with the lowest degree

among all the univariate polynomials in xl after substituting

the partial solution into the polynomials in xl+1, . . . , xn.

2.1.2 Standard computer vision elimination strategy

In the existing minimal solvers, several different strategies

for eliminating unknowns from the input equations were ap-

plied. These strategies were usually dependent on the spe-

cific problem and were derived manually. Here we describe

one strategy that was used in the vast majority of existing

minimal solvers [2, 20, 38, 3, 42, 39].

Consider a system of m polynomial equations

{f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0}

in n unknowns X = {x1, . . . , xn}. We assume that the set

F = {f1, . . . , fm} generates a zero dimensional ideal I ⊂
C[X ], i.e. the system F has a finite number of solutions.

In this strategy the set F is partitioned into two subsets:

FL = {fi ∈ F | deg(fi) = 1} , (1)

FN = {fi ∈ F | deg(fi) > 1} . (2)

This means that FL contains the linear polynomials from F
and FN contains the polynomials of higher degrees.

The linear equations FL can be rewritten as MXL = 0,

where XL is a vector of all unknowns that appear in these

equations. Then, the null space basis N of M, i.e. M N = 0, is

used to parametrize the unknowns XL with new unknowns

Y via XL = NY . The parameterization XL = NY is

then plugged in the non-linear equations FN . The system

FN (Y ∪(X \XL))=0 is solved using, e.g., a Gröbner basis

method and the automatic generator of efficient solvers [3].

The solutions Y are used to recover solutions XL=NY .

2.1.3 A clever computer vision elimination strategy

In computer vision, we often encounter polynomial systems

in which only the linear equations FL depend on image

measurements, while the nonlinear equations FN stay the

same, regardless of image measurements. For example, the

epipolar constraint [1] generates linear equations that de-

pend on the input measurements while the singularity of the

fundamental matrix [1] results in the non-linear equation

det(F) = 0, which does not depend on the measurements.

Here we present a new “clever” elimination strategy,

which usually allows us to do more computation in the off-

line stage and less computation in the on-line stage.

Throughout this section we assume that the nonlinear

equations FN do not depend on image measurements, i.e.



for all instances these equations are the same. Later, in Sec-

tion 3.3, we will show how to deal with problems when FN

contains equations that depend on image measurements.

Let us now describe our new elimination strategy. We

first divide the input equations F into the linear equations

FL in (1) and the non-linear equations FN in (2). Moreover,

we divide the n given unknowns X into two subsets:

XL = {xi ∈ X |xi appears in some f ∈ FL} (3)

XN = X \XL. (4)

The set XL contains the unknowns that appear in linear

equations. The set XN contains the unknowns that appear

in equations of higher degree only. We fix the following no-

tation: |FL| = mL, |FN | = mN , |XL| = nL, |XN | = nN ,

which means that m = mL +mN and n = nL + nN .

Now, the idea of our new elimination method is to elim-

inate all unknowns XN from non-linear equations FN . The

non-linear equations FN do not depend on image measure-

ments, and are the same for all instance of a given problem.

Therefore, we can perform this elimination off-line, in the

pre-processing step. This elimination may be computation-

ally demanding. However, since we do this only once in the

pre-processing step, it is not an issue during the solver run

time. Next, we further eliminate mL unknowns from XL

using mL linear equations from FL. This is done on-line

but it is fast since solving a small linear system is easy.

In more detail, our method performs the following steps.

Offline:

1. Let I = 〈FN 〉 and consider the elimination ideal

IXL
= I ∩ C[XL].

2. Compute the generators G of IXL
. These contain un-

knowns from XL only, i.e. the unknowns appearing in

the linear equations FL.

Online:

3. Rewrite the linear equations FL in the unknowns XL

as MXL = 0, where M is a coefficient matrix and the

vector XL contains all unknowns from XL.

4. Compute a null space basis N of M and re-parametrize

the unknowns XL = NY . If the rank of M is mL, i.e.

the equations in FL are linearly independent, Y would

contain k = nL − mL new unknowns. Note that if

all input equations in F were homogeneous, we could

set one of the unknowns in Y to 1 (assuming it is non-

zero) and then k = nL −mL − 1.

5. SubstituteXL = NY into the generatorsG of the elim-

ination ideal IXL
.

6. Solve the new system of polynomial equations

G(Y ) = 0 (e.g. using the Gröbner basis method and

the precomputed elimination template for G(Y ) = 0
obtained by using the automatic generator [3]).

7. Back-substitute to recover XL = NY .

8. Extend partial solutions for XL to solutions for X .

The main difference between our elimination strategy

and the elimination strategies used before in minimal

solvers (see Section 2.1.2) is that the previous strategies

substitute the parametrization XL = NY directly into the

input nonlinear equations FN . This results in mN poly-

nomial equations in nN + k unknowns Y ∪ XN . On the

other hand, the new method eliminates nN unknowns from

the non-linear equations and creates a system G(Y ) = 0
in k unknowns in the pre-processing step. We will show

on several important problems from computer vision that

solving the system G(Y ) = 0, instead of the system

FN (Y ∪XN ) = 0, is more efficient.

Before presenting our new strategy on more complicated

problems from computer vision, we illustrate the key ideas

of our strategy on a simpler, but still representative, exam-

ple. In Appendix 5.2 we will show that the problem of

estimating a 3D planar homography with unknown focal

length, i.e. the projection matrix with unknown focal length,

from planar points leads to a system of polynomial equa-

tions with the same structure as in this illustrative example.

2.2. Example

Let us consider the following system of nine homo-

geneous polynomial equations in ten unknowns X =
{h1, h2, h3, h4, h5, h6, h7, h8, h9, w}. There are seven lin-

ear homogeneous equations in h1, . . . , h9, namely

FL = {fj =

9
∑

i=1

cijhi = 0, j = 1, . . . , 7; cij ∈ Q}, (5)

and two 4th order equations in {h1, h2, h4, h5, h7, h8, w}

FN = {w2h1h2 + w2h4h5 + h7h8 = 0, (6)

w2h2
1 + w2h2

4 + h2
7 − w2h2

2 − w2h2
5 − h2

8 = 0}.

Using the notation from Section 2.1.3 we have

XL = {h1, . . . , h9} and XN = {w}. (7)

We proceed as follows:

1. Create the elimination ideal

Iw = I ∩ Q[h1, h2, h3, h4, h5, h6, h7, h8, h9].

2. Compute the generator of the principal ideal Iw . This

is a polynomial of degree four:

G = {h1h2h
2
7 + h4h5h

2
7 − h2

1h7h8 + h2
2h7h8

−h2
4h7h8 + h2

5h7h8 − h1h2h
2
8 − h4h5h

2
8} (8)

The polynomial in G can be computed in the off-line
pre-processing phase using the following code in the
computer algebra system Macaulay2 [43]:



R = QQ[w,h1,h2,h3,h4,h5,h6,h7,h8,h9];

G = eliminate({w}, ideal(wˆ2*h1*h2 +

wˆ2*h4*h5 + h7*h8, wˆ2*h1ˆ2 + wˆ2*h4ˆ2 +

h7ˆ2 - wˆ2*h2ˆ2 - wˆ2*h5ˆ2 - h8ˆ2));

3. Rewrite seven linear equations formFL (5) as M h = 0,

where h = [h1, h2, h3, h4, h5, h6, h7, h8, h9] and M =
[cij ] is 7×9 coefficient matrix.

4. Use a null space basis {n1, n2} of M to reparametrize

the unknowns from XL with two unknowns as

h = y1 n1 + y2 n2. (9)

Since the input equations are homogeneous, we set

y2 = 1 (assuming y2 6= 0).

5. Substitute the new parametrization (9) into the genera-

tor (8).

6. Solve the resulting equation in one unknown y1.

7. Use the solutions for y1 to recover solutions for XL

using (9).

8. Extend the solutions for XL to solutions for X by sub-

stituting solutions to FN .

In this case, our elimination strategy generates one equation

of degree four in one unknown.

On the other hand, the elimination strategy described in

Section 2.1.2 generates two equations in two unknowns.

More precisely, the strategy from Section 2.1.2 would sub-

stitute parametrization (9) directly into two equations from

FN (6). This results in two equations in two unknowns y1
and w. Solving this system of two equations in two un-

knowns in the on-line phase takes more time than solving a

single quadratic equation.

3. Applications

3.1. f+E+f relative pose problem

The first problem that we solve using our elimination strat-

egy is that of estimating relative pose and the common un-

known focal length of two cameras from six image point

correspondences. This problem is also known as the 6pt fo-

cal length problem, or the f+E+f problem. The f+E+f prob-

lem is a classical and popular problem in computer vision

with many applications, e.g., in structure-from-motion [4].

The minimal f+E+f problem has 15 solutions and it was

first solved by Stewènius et al. [20] using the Gröbner basis

method. The solver of Stewènius consists of three G-J elim-

inations of three matrices of size 12×33, 16×33 and 18×33

and the eigenvalue computation for a 15×15 matrix.

More recently, two Gröbner basis solvers for the f+E+f

problem ware proposed in [21] and [3]. The solver

from [21] performs SVD decomposition of a 34×50 ma-

trix and it uses special techniques for improving the numer-

ical stability of Gröbner basis solvers. The Gröbner basis

solver generated by the automatic generator [3] performs

G-J elimination of a 31×46 matrix and is, to the best of

our knowledge, the fastest and the most numerically stable

solver for the f+E+f problem.

All the state-of-the-art (SOTA) solvers exploit that the

3×3 fundamental matrix F = [fij ]
3

i,j=1
∈ R3×3 satisfies

E = K
⊤
F K = K F K (10)

where K = diag(f, f, 1) is the diagonal 3 × 3 calibration

matrix with the unknown focal length f and E is the 3 × 3
essential matrix [1]. The essential matrix has rank 2 and

satisfies the Demazure equations [44]

2E E⊤E− trace(E E⊤)E = 0. (11)

(also known as the trace constraint).

In all SOTA solvers [20, 21, 3], the linear equations from

the epipolar constraints

x⊤
i Fx

′
i = 0 (12)

for six image point correspondencesxi,x
′
i, i = 1, . . . , 6, in

two views are first rewritten in a matrix form

M f = 0, (13)

where M is a 6×9 coefficient matrix and f is a vector of 9 el-

ements of the fundamental matrix F. For six (generic) image

correspondences in two views, the coefficient matrix M has

a three-dimensional null space. Therefore, the fundamental

matrix can be parametrized by two unknowns as

F = x F1 + y F2 + F3, (14)

where F1, F2, F3 are matrices created from the three-

dimensional null space of M and x and y are new unknowns.

We use the parametrization (14), the rank constraint for

the fundamental matrix

det(F) = 0, (15)

and the trace constraint (11) for the essential matrix, to-

gether with (10) in the following form:

2 F Q F⊤Q F− trace(F Q F⊤Q) F = 0, (16)

This results in ten third- and fifth-order polynomial equa-

tions in three unknowns x, y and w = 1/f2. In (16) we

set Q = KK = diag(f2, f2, 1). We note that the trace con-

straint (16) can be simplified by multiplying it with 1/w2.

The ten equations (15) and (16) in three unknowns x, y
andw were used as the input equations in all SOTA Gröbner

basis solvers to the f+E+f problem [20, 21, 3].

Note, that all SOTA solvers followed the elimination

method described in Section 2.1.2 and they differ only in

the method used for solving the final non-linear system FN .

Next, we present a new solver for the f+E+f problem

created using our elimination strategy in Section 2.1.3. This

strategy not only generates a more efficient solver, but it

also reveals new interesting constraints on the fundamental

matrices of cameras with unknown focal length.



Elimination ideal formulation

For the f+E+f problem we start with the ideal I ∈
C [f11, f12, f13, f21, f22, f23, f31, f32, f33, f ] generated by

ten equations from the rank constraint (15) and the trace

constraint (11) with the essential matrix (10).

Since the epipolar constraint (12) gives us linear equa-

tions in XL = {f11, f12, f13, f21, f22, f23, f31, f32, f33},

we have XN = {f}. Hence the strategy presented in Sec-

tion 2.1.3 will first eliminate the unknown focal length f .
To compute the generators of the elimination ideal If =

I ∩ C [f11, f12, f13, f21, f22, f23, f31, f32, f33], i.e. the el-
ements that do not contain the focal length f , we use the
following Macaulay2 [43] code:

R = QQ[f,f11,f12,f13,f21,f22,f23,f31,f32,f33];

F = matrix {{f11,f12,f13},{f21,f22,f23},

{f31,f32,f33}};

K = matrix {{f,0,0},{0,f,0},{0,0,1}};

E = K*F*K;

I = minors(1,2*E*transpose(E)*E

-trace(E*transpose(E))*E)+ideal(det(E));

G = eliminate({f},saturate(I,ideal(f)))

dim G, degree G, mingens G

The output tells us that the variety of G has dimension

6 and degree 15, and that G is the complete intersection of

two hypersurfaces in P8, cut out by the cubic

det(F) (17)

and the quintic

f11f
3

13f31 + f2

13f21f23f31 + f11f13f
2

23f31 + f21f
3

23f31
−f11f13f

3

31 − f21f23f
3

31 + f12f
3

13f32 + f2

13f22f23f32+
f12f13f

2

23f32 + f22f
3

23f32 − f12f13f
2

31f32 − f2

12f
2

13f33
−f11f13f31f

2

32 − f21f23f31f
2

32 − f12f13f
3

32−f22f23f
3

32

−f2

11f
2

13f33−f22f23f
2

31f32 − 2f11f13f21f23f33−
2f12f13f22f23f33 − f2

21f
2

23f33 − f2

22f
2

23f33+
f2

11f
2

31f33 + f2

21f
2

31f33 + 2f11f12f31f32f33+
2f21f22f31f32f33 + f2

12f
2

32f33 + f2

22f
2

32f33.

(18)

The vanishing of (17) and (18), together with the equation

for extracting the unknown focal length from the fundamen-

tal matrix [45] (see also Section 5.3.2) completely describe

the f+E+f problem. Therefore we can formulate the follow-

ing result.

Result 3.1 The zero set of (17) and (18) equals the space of

all fundamental matrices F, i.e. the singular 3×3 matrices,

that can be decomposed into F = K−1E K−1, where K =
diag(f, f, 1) for some non-zero f ∈ C and E is an essential

matrix. By intersecting this variety with six hyperplanes

given by the epipolar constraints (12) for six image point

correspondences, we obtain up to 15 real solutions for the

fundamental matrix (see Figure 1).

In our new efficient on-line solver for the f+E+f prob-

lem, we first use the linear equations from the epipo-

lar constraint (12) for six image point correspondences to
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Figure 2. Numerical stability: Log
10

of the relative error of

the focal length for the (a) f+E+f problem; EI-fEf solver (blue),

Kukelova08 [3] (red). (b) E+f problem; EI-Ef solver (blue), Buj-

nak09 [39] (red).

parametrize the fundamental matrix F with two new un-

knowns x and y (14). After substituting this parametriza-

tion into the two generators (17) and (18) of If , we get two

equations (of degree 3 and 5) in two unknowns x and y. By

solving these two equations we get up to 15 real solutions

for the fundamental matrix F.

These two equations in two unknowns can be solved ei-

ther using a Sylvester resultant [10] or using the Gröbner

basis method, which was used in all SOTA solvers for the

f+E+f problem. The Gröbner basis solver for these two

equations, generated using the automatic generator [3], per-

forms G-J elimination of a 21×36 matrix. This matrix con-

tains almost 3× less nonzero elements than the matrix from

the smallest 31×46 SOTA solver [3] that was also generated

using the automatic generator, however for the original for-

mulation with ten equations in three unknowns. The spar-

sity patterns of both these solvers are shown in Section 5.5.

Experiments

Since the new solver for the f+E+f problem is algebraically

equivalent to the SOTA solvers, we have evaluated the new

f+E+f solver on synthetic noise free data only.

We studied the behavior of the new f+E+f solver (EI-

fEf) based on the new elimination strategy presented in Sec-

tion 2.1.3 on noise-free data to check its numerical stability.

We compared it to the results of the SOTA Gröbner basis

solver Kukelova08 [3]. In this experiment, we generated

10000 synthetic scenes with 3D points distributed at ran-

dom in a [−10, 10]
3

cube. Each 3D point was projected

by two cameras with random but feasible orientation and

position and with random focal length fgt ∈ [0.5, 5]. Fig-

ure 2(a) shows log10 of the relative error of the focal length

f obtained by selecting the real root closest to the ground

truth value fgt. In the case of the new EI-fEf solver, the

focal length f was extracted from the computed F using the

formula presented in Section 5.3.2. However, any method

for extracting the focal length from F, e.g. the SVD-based

method [45], can be used here.

The new EI-fFf solver (blue) is slightly less stable than

Kukelova08 (red). However, both solvers provide very sta-



ble results without larger errors and in the presence of noise

and in real applications their performance is in fact equiva-

lent. Moreover, the new solver is smaller and more efficient.

3.2. E+f 6pt relative pose problem

The second problem that we solve using the new elimina-

tion strategy is the problem of estimating relative pose of

one calibrated and one up to focal length calibrated camera

from six image point correspondences, i.e. the E+f problem.

The minimal E+f problem was first solved by Bujnak et

al. [39] using Gröbner bases and the polynomial eigenvalue

method. Their solver performs G-J eliminations on a 21×30

matrix and the eigenvalue computation for a 9×9 matrix.

For the E+f problem the first camera is calibrated up to

an unknown focal length and the second camera is fully cal-

ibrated. Therefore, the relationship between the essential

and the fundamental matrix has the form

E = F K, (19)

where K = diag(f, f, 1) is a diagonal calibration matrix of

the first camera, containing the unknown focal length f . By

substituting this relationship into the trace constraint for the

essential matrix (11), and setting Q = K K, we obtain

2 F Q F⊤F− trace(F Q F⊤)F = 0. (20)

The SOTA solver [39] uses the elimination strategy from

Section 2.1.2 and starts by rewriting the epipolar con-

straint (12) as M f = 0. Then, the fundamental matrix is

parametrized by two unknowns x and y as in the f+E+f case

(Eq. (14)). With this formulation, the rank constraint (15)

and the trace constraint (20) result in ten third and fourth

order polynomial equations in three unknowns x, y and

w = 1/f2. These ten equations are solved in [39] by using

the automatic generator of Gröbner basis solvers [3].

Next we present a new solution to the E+f problem that

uses the new elimination strategy from Section 2.1.3.

Elimination ideal formulation

We start with the ideal I ∈ C [f11, f12, f13, f21, f22, f23,
f31, f32, f33, f ] generated by ten equations from the rank

constraint (15) and the trace constraint (11), with the

essential matrix (19). As for the f+E+f problem, the

epipolar constraint (12) gives linear equations in X1 =
{f11, f12, f13, f21, f22, f23, f13, f23, f33}. Therefore we

again will eliminate only the unknown focal length f .

To compute the generators of the elimination ideal

If = I ∩ C [f11, f12, f13, f21, f22, f23, f31, f32, f33], i.e.

the generators that do not contain f , we can use a similar

Macaulay2 code as for the f+E+f problem, just by replac-

ing line E = K*F*K with line E = F*K.

For the E+f problem, the variety of G has dimension 6
and degree 9 in P8 and is defined by one cubic and three

quartics (see Appendix 5.4).

In the online solver, the epipolar constraint (12) for six

image point correspondences is used to parametrize the fun-

damental matrix F with two new unknowns x and y (14).

This parametrization, applied to the four generators of the

elimination ideal If , gives four equations of degree three

and four in two unknowns. We solve these four equations

in two unknowns using the Gröbner basis method [3]. The

Gröbner basis solver, generated using the automatic gener-

ator [3], performs G-J elimination of a 6×15 matrix. This

matrix is much smaller than the elimination template matrix

from the SOTA solver [39], which has the size 21×30.

Experiments

We studied the behavior of the new E+f elimination ideal

based solver (EI-Ef) on noise-free data and compared it to

the results of the SOTA Gröbner basis solver Bujnak09 [39].

We generated 10000 synthetic scenes with 3D points dis-

tributed at random in a [−10, 10]
3

cube. Each 3D point was

projected by two cameras with random but feasible orien-

tation and position. The focal length of the first camera

was randomly drawn from the interval fgt ∈ [0.5, 5] and

the focal length of the second camera was set to 1, i.e. the

second camera was considered as calibrated. Figure 2(b)

shows log10 of the relative error of the focal length f ob-

tained by selecting the real root closest to the ground truth

value fgt. For the new EI-Ef solver, the focal length f was

extracted from the computed F using the formula presented

in Appendix 5.3.1.

The new EI-Ef solver (blue) is not only smaller but also

slightly more stable than Bujnak09 [39] (red). Both solvers

provide very stable results without larger errors.

3.3. E+f+k 7pt relative pose problem

The last problem that we will formulate and solve using the

new elimination strategy presented in Section 2.1.3 is the

problem of estimating the epipolar geometry of one cali-

brated camera and one camera with unknown focal length

and unknown radial distortion, i.e. uncalibrated camera with

radial distortion. We denote this problem by E+f+k.

A popular model for radial distortion is the one-

parameter division model [46]. This is an undistortion mo-

del that can handle even quite pronounced radial distortions:

xui
(λ) =

[

xdi
, ydi

, 1 + λ(x2
di

+ y2di
)
]⊤

. (21)

In this model xdi
= [xdi

, ydi
, 1]

⊤
are the homogeneous

coordinates of the measured (and radially distorted) image

points and λ ∈ R is the distortion parameter. This model

was used in the first 7pt minimal solution to the E+f+k prob-

lem presented in [47].

For the E+f+k problem, the epipolar constraint reads as

x⊤
ui
Fx′

ui
(λ) = 0, i = 1, . . . , 7, (22)



where xui
,x′

ui
(λ) ∈ R3 are the homogeneous coordinates

of corresponding ideally projected image points, i.e., points

not corrupted by radial distortion [1]. Note that for the right

camera we do not know the camera calibration parameters

and we measure distorted image points. Therefore, to use

these distorted image points in the epipolar constraint, we

first need to undistort them using the model (21).

The epipolar constraint (22) together with the trace (20)

and the rank constraint (15) form a quite complicated sys-

tem of polynomial equations. Note that all equations in this

system are non-linar and therefore the method from Sec-

tion 2.1.2 cannot be directly applied.

In the SOTA solver [47], this system is first simplified by

manually eliminating some unknowns. First, the authors set

f33 = 1, which implies that their solver does not work for

motions where f33 = 0. Next, they use the epipolar con-

straint (22) for six image point correspondences to elim-

inate six unknowns f11, f12, f21, f22, f31, f32, which ap-

pear linearly in the epipolar constraint, from the equations.

Then, the remaining equation from the epipolar constraint

for the seventh image point correspondence, together with

the trace (20) and the rank constraint (15), form a system of

11 (one quadratic, four 5th and six 6th degree) equations in

four unknowns f13, f23, λ, w = 1/f2. Then, the equations

are again manually simplified. They generate the elimina-

tion template by multiplying 11 input equations by a set of

monomials such that the maximum degree of the monomi-

als in the resulting equations is 8. The resulting elimina-

tion template has size 200×231. The authors of this solver

observed that by using automatic strategies from [3] or by

further reducing the size of the elimination template, the nu-

merical stability of their solver deteriorates. To improve the

numerical stability of the final Gröbner basis solver, the au-

thors further choose 40 monomials instead of necessary 19

for basis selection.

It can be seen that the E+f+k problem requires a very

careful manual manipulation of the input equations to get a

numerically stable solver. However, still, the final solver is

quite large and not really useful in real applications.

Here we will show that using the new elimination strat-

egy presented in Section 2.1.3 we can solve this problem ef-

ficiently without the need for any special manipulation and

treatment of input equations. Moreover, the final solver ob-

tained using this new method is much more efficient and

numerically stable than the SOTA solver [47].

Elimination ideal formulation

Unfortunately, for the E+f+k problem the epipolar con-

straint (22) does not give us linear equations. Therefore, we

can’t directly apply the method presented in Section 2.1.3.

However, in this case we can easily linearize the equations

from the epipolar constraint (22).

The epipolar constraint (22) contains monomials

(f11, f12, f13, f21, f22, f23, f31, f32, f33, f13λ, f23λ, f33λ).

To linearize the equations (22) we set

y13 = f13λ, (23)

y23 = f23λ, (24)

y33 = f33λ. (25)

Now the equations from (22) can be seen as lin-

ear homogeneous equations in the 12 unknowns

f11, f12, f13, f21, f22, f23, f31, f32, f33, y13, y23, y33.

Another view on this linearization is that the distorted

image points are lifted to 4D space and the fundamental ma-

trix F is enriched by one column to

F̂ =
(

F|f3λ
)

=





f11 f12 f13 y13
f21 f22 f23 y23
f31 f32 f33 y33



 , (26)

where f3 is the 3rd column of F. The 3×4 fundamental ma-

trix F̂ (26) was introduced in [48] and is known as the one-

sided radial distortion matrix. With this matrix, the epipolar

constraint (22) can be written as

x⊤
ui
Fx′

ui
(λ) = x⊤

ui
F̂
[

x′
di
, y′di

, 1, x′ 2
di

+ y′ 2di

]⊤
= 0. (27)

For the E+f+k problem, our method starts with the

ideal I ∈ C [f11, f12, f13, f21, f22, f23, f31, f32, f33, y13,
y23, y33, λ, f ] generated by 13 equations, i.e. three equa-

tions from the constraints (23)-(25), the rank constraint (15)

and the nine equations from the trace constraint (11), with

the essential matrix of the form (19). These 13 equations

form the set FN from (1) in our elimination strategy.

In this case, the “lifted” epipolar constraint (27) gives us

linear equations in 12 elements of the 3× 4 radial distortion

fundamental matrix F̂ (26), i.e. linear equations in XL =
{f11, f12, f13, f21, f22, f23, f31, f32, f33, y13, y23, y33}.

Therefore, for the E+f+k problem, we use the new elimina-

tion strategy to eliminate two unknowns, the focal length f
and the radial distortion parameter λ, i.e. XN = {f, λ}.

To compute the generators of the elimination ideal
If,λ = I ∩ C [f11, f12, f13, f21, f22, f23, f31, f32, f33,
y13, y23, y33], i.e. the generators that do not contain f and
λ, we can use a similar Macaulay2 code as for the E+f
problem. We only need to replace the first line with

R = QQ[f,k,f11,f12,f13,f21,f22,f23,f31,f32,

f33,y13,y23,y33];

and add one additional line at the end

Gu = eliminate({k}, G +

ideal(y13-f13*k,f23-f23*k,f33-f33*k,))

codim Gu, degree Gu, mingens Gu

For the E+f+k problem the variety of Gu has dimension 7
and degree 19 in P11. In addition to the three quadrics of

the form fi3 yj3 − fj3 yi3, the ideal generators for Gu are
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Figure 3. Numerical stability E+f+k problem : (a) Log
10

of the

relative error of the focal length (b) Log
10

of the relative error of

the radial distortion; EI-Efk solver (blue), Kuang14 [47](red).

two cubics and nine quartics, i.e. altogether 14 polynomi-

als. Although this system of 14 polynomial equations looks

quite complex it is much easier to solve than the original

system with λ and f that was used in the SOTA [47].

The “lifted” epipolar constraint (27) for seven general

image point correspondences can be rewritten as Mf̂ = 0,

where M is 7×12 coefficient matrix and f̂ is a 12×1 vec-

tor containing the elements of the one-sided distortion fun-

damental matrix F̂. This means that the one-sided distor-

tion fundamental matrix F̂ can be parametrized by four new

unknowns x1, x2, x3 and x4, using the 5-dimensional null

space of M, as

F̂ = x1F̂1 + x2F̂2 + x3F̂3 + x4F̂4 + F̂5. (28)

Substituting (28) into the 14 generators of the elimina-

tion ideal If,λ gives 14 equations in four unknowns. We

solve these equations using the Gröbner basis method [3].

The Gröbner basis solver, generated using the automatic

generator [3], performs G-J elimination of a 51×70 ma-

trix. This matrix is much smaller than the elimination tem-

plate matrix from the SOTA solver [47], which has the size

200×231. Moreover, the new solver doesn’t require an ap-

plication of the methods for improving numerical stability

of the Gröbner basis solver that were used in [47].

After solving 14 equations in four unknowns

x1, x2, x3, x4, we reconstruct solutions for F using (28),

solutions for λ using (23), and solutions for f using the

formula presented in Appendix 5.3.1.

Experiments

We first studied the numerical stability of the new E+f+k

solver (EI-Efk) on noise-free data and compared it to the

results of the SOTA Gröbner basis solver Kuang14 [47].

In this experiment, we generated 10000 synthetic scenes in

the same way as in the E+f experiment and image points in

the first camera were corrupted by radial distortion follow-

ing the one-parameter division model. The radial distor-

tion parameter λgt was drawn at random from the interval

[−0.7, 0]. Figure 3(a) shows log10 of the relative error of

the focal length f obtained by selecting the real root closest

to the ground truth value fgt. Figure 3(b) shows log10 of the
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the new EI-Efk solver

(blue) with the SOTA

Kuang14 [47] solver (red).

Boxplots of estimated λ’s

for different noise levels

and λgt = −0.3

relative error of the radial distortion λ obtained by selecting

the real root closest to the ground truth value λgt. In this

case the new EI-Efk solver (blue) is not only significantly

smaller but also significantly more stable than the SOTA

Gröbner basis solver Kuang14 [47] (red). What is really

important for real applications is that the new EI-Efk solver

provides very stable results without larger errors, while for

the SOTA solver Kuang14 [47] we observe many failures.

Next, Figure 4 shows the results of experiments with

noise simulation for the E+f+k problem. We show the es-

timated radial distortion parameters for the ground truth ra-

dial distortion λgt = −0.3 and 200 runs for each noise

level. We compared our new E+f+k solver with the SOTA

Kuang solver [47]. Figure 4 shows resuts by MATLAB

boxplot. In the presence of noise, our new EI-Efk solver

(blue) gives similar or even better estimates than the SOTA

solver Kuang14 [47] for which we observed more failures

(crosses).

3.4. Computational complexity

Here, we show a comparison of the computational effi-

ciency of the new elimination-based solvers (EI-fEf, EI-Ef,

EI-Efk) and the SOTA solvers [3, 39, 47]. Since we do not

have comparable implementations of the SOTA solvers, we

compare the sizes of the G-J eliminations (QR decomposi-

tions) performed by these solver. G-J elimination is one of

the most time consuming steps for all solvers. The com-

parison of sizes is reported in the Tab. 1. The last row of

this table displays the ratio of the number of non-zero ele-

ments of the template matrices of SOTA solvers (nzS) and

the number of non-zero elements of the template matrices

of our new elimination-based solvers (nzEI).

f+E+f E+f E+f+k

SOTA 31×46 [3] 21×30 [39] 200×231 [47]

EI (new) 21×36 6×15 51×70

nzS/nzEI 3 5.2 2.8

Table 1. New EI solvers are much smaller than SOTA solvers.

Lines SOTA vs EI (new) show that clever solvers eliminate much

smaller matrices. They also manipulate much fewer numbers. See

ratios of non-zero numbers nzS/nzEI in the SOTA (nzS) vs new

(nzEI ) solvers.



4. Conclusion

We have presented a new insight into minimal solver con-

struction based on elimination theory. By eliminating sep-

arately linear and non-linear equations and combining that

later, we were able to generate much smaller solvers than

before, see Tab. 1. We also generated an interesting new

constraint, Eq. (18), on partially calibrated camera pairs.

Our method was first motivated by the idea of exploiting lin-

ear equations (1) of our systems but we also demonstrated

that it can produce efficient solvers (Sec. 3.3) by linearizing

fully non-linear situations.

5. Appendix

This appendix includes (1) additional details on the Elim-

ination Theorem (in Sec. 5.1), (2) derivation of the con-

straints on the projection for planar scenes by cameras with

unknown focal length (in Sec. 5.2), (3) details of focal

length extraction (in Sec. 5.3), (4) detailed presentation of

the generators of E+f problem (in Sec. 5.4), and (5) results

on the solvers’ sparsity (in Sec. 5.5).

5.1. Details on the elimination theorem

Here we provide additional details for

Theorem 5.1 (Elimination theorem [10]) Let

I ⊆ C[x1, . . . , xn] be an ideal and let G be a Gröbner

basis of I with respect to the lexicographic monomial order

where x1 > x2 > · · · > xn. Then, for every 0 ≤ l ≤ n, the

set Gl = G ∩ C[xl+1, . . . , xn] is a Gröbner basis of the

l-th elimination ideal Il = I ∩C[x1, . . . , xl] .

See [10] for a full account of the theory.

The ring C[x1, . . . , xn] stands for all polynomials in n
unknowns x1, . . . , xn with complex coefficients. In com-

puter vision applications, however, coefficients of polyno-

mial systems are always real (in fact, rational) numbers and

our systems consist of a finite number s of polynomial equa-

tions fi(x1, . . . , xn) = 0, i = 1, . . . , s.

The ideal I = {
∑s

i=1
hifi |hi, . . . hs ∈ C[x1, . . . , xn]}

generated by s polynomials (generators) fi is the set of all

polynomial linear combinations of the polynomials fi. Here

the multipliers hi are polynomials. All elements in the ideal

I evaluate to zero (are satisfied) at the solutions to the equa-

tions fi(x1, . . . , xn) = 0.

The Gröbner basis G = {g1, . . . , gm} of an ideal I is

a particularly convenient set of the generators of I , which

can be used to find solutions to the original system fi in an

easy way. For instance, for linear (polynomial) equations, a

Gröbner basis of the ideal generated by the linear polyno-

mials is obtained by Gaussian elimination. After Gaussian

elimination, equations appear in a triangular form allowing

one to solve for one unknown after another. This pattern

carries on in a similar way to (some) Gröbner bases of gen-

eral polynomial systems and thus it makes Gröbner bases a

convenient tool for solving general polynomial systems.

Algorithmic construction of Gröbner bases relies on an

ordering of monomials to specify in which order to deal

with monomials of a polynomial. Lexicographic monomial

order (LEX) is a particularly convenient order, which can

be used to produce Gröbner bases that are in the triangular

form. LEX orders monomials as words in a dictionary. An

important parameter of a LEX order (i.e. ordering of words)

is the order of the unknowns (i.e. ordering of letters). For

instance, monomial xy2z = xyyz > xyzz = xyz2 when

x > y > z (i.e. xyyz is before xyzz in a standard dictio-

nary). However, when x < y < z, then xy2z = xyyz <
xyzz = xyz2. We see that there are n! possible LEX orders

when dealing with n unknowns.

The set Gl = G ∩ C[xl+1, . . . , xn] contains all

the polynomials in Gröbner basis G that contain only

unknowns xl+1, . . . , xn. For instance, if G is a

Gröbner basis in the triangular form, then Gl =
{gm(xn), gm−1(xn−1, xn), . . . , gm−l(x1, . . . , xl+1)} con-

tains polynomials in one, two, . . . , l unknowns.

The polynomials Gl generate the elimination ideal Il =
I ∩ C[xl+1, . . . , n], containing all polynomials from I that

use the unknowns xl+1, . . . , xn only. Hence, for each of n!
orderings, we get n elimination ideals Il.

5.2. 3D planar homograpy with unknown focal
length

We assume that a planar object (say, simply a plane) is ob-

served by an unknown camera with the projection matrix [1]

P = K[R | t], (29)

where K = diag(f, f, 1) is the calibration matrix with the

unknown focal length f , R = [rij ]
3
ij=1 ∈ SO(3) is the

unknown rotation, and t = [t1, t2, t3]
⊤ ∈ R3 the unknown

translation.

Without loss of generality, we assume that the plane is

defined by z = 0, i.e. all 3D points with homogeneous

coordinates Xi = [xi, yi, zi, 1]
⊤ have the 3rd coordinate

zi = 0. Then, the image points ui = [ui, vi, 1]
⊤ and the

corresponding 3D points Xi = [xi, yi, 0, 1]
⊤

are related by

αi ui = H X̂i, (30)

where αi are unknown scalars, X̂i = [xi, yi, 1], and H =
[hij ]

3
ij=1 ∈ R3×3 is a homography matrix that has the form

H =
[

p1 p2 p4

]

=





f r11 f r12 t1
f r21 f r22 t2
r31 r32 t3



 (31)

where pj is the jth column of the projection matrix P (29).



Next, from the projection equation (30), we eliminate the
scalar values αi. This can be done by multiplying (30) by
the skew symmetric matrix [u]× [1] to get





0 −1 vi
1 0 −ui

−vi ui 0









h11 h12 h13

h21 h22 h23

h31 h32 h33









xi

yi
1



 = 0 (32)

The matrix equation (32) contains three polynomial equa-

tions, two of which are linearly independent. This means

that we need at least 3.5 2D ↔ 3D point correspondences

to estimate the unknown homography H, because H has 7

degrees of freedom: three parameters for the rotation, three

parameters for the translation and also the focal length.

For the 3.5 point correspondences, matrix equation (32)

results in seven linearly independent linear homogeneous

equations in nine elements of the homography matrix H.

Moreover, we have here two additional polynomial con-

straints on elements of H. For the first two columns of the

rotation matrix R, there holds

r11r12 + r21r22 + r31r32 = 0 (33)

r211 + r221 + r231 − r212 − r222 − r232 = 0 (34)

This means that the elements of the first two columns of the

homography matrix H = [hij ]
3
ij=1 (31) satisfy

w2 h11 h12 + w2 h21h22 + h31h32 = 0 (35)

w2 h2
11 + w2 h2

21 + h2
31 − w2 h2

12 − w2 h2
22 − h2

32 = 0 (36)

where w = 1/f .

Hence, estimating 3D planar homography with unknown

focal length results in seven linear homogeneous equa-

tions and two non-linear homogeneous equations in X =
{h11, h12, h13, h21, h22, h23, h31, h32, h33, w}. This sys-

tem of nine homogeneous equations has the same form as

that presented in Section 2.2. Therefore this system can be

efficiently solved using the new elimination strategy pre-

sented in Section 2.1.3. This strategy results in solving one

fourth-degree equation in one unknown (see Section 2.2).

5.3. Extraction of the focal length

In this section we present formulas for extracting the focal

length from a given fundamental matrix F for two cases

1. E = F K

2. E = K F K

where K = diag(f, f, 1) is a diagonal calibration matrix.

Unlike most of the existing formulas and methods for ex-

tracting the focal length from the fundamental matrix F, the

presented formulas contain directly elements of the funda-

mental matrix. They don’t require an SVD decomposition

of the fundamental matrix or computation of the epipoles.

5.3.1 E+f problem

Here we will assume that the principal points [1] are at the

origin (which can be always achieved by shifting the known

principal points) and use the recent result [49, Lemma 5.1]

which we restate in our notation:

Lemma 5.2 Let F be a fundamental matrix of the form that
satisfies E = F K. Then there are exactly two pairs of
essential matrix and focal length (X = E, f) and (X =
diag(−1,−1, 1)E, −f). The positive f is recovered from
F = [fij ]1≤i,j≤3 by the following formula

f
2

=
f23f2

31 + f23f2
32 − 2f21f31f33 − 2f22f32f33 − f23f2

33

2f11f13f21 + 2f12f13f22 − f23(f2
11

− f2
12

+ f2
13

+ f2
21

+ f2
22

+ f2
23

5.3.2 f+E+f problem

To derive formulas for the extraction of f from F com-
puted from images with the same unknown focal length,
we follow methods developed in [49]. In this case, the re-
sult is the following formula for f2, namely: −f2

13f32f33 −

f2
23f32f33+f12f13f2

33+f22f23f2
33 quantity divided by f11f13f31f32+

f21f23f31f32 + f12f13f2
32 + f22f23f2

32 − f11f12f31f33 − f21f22f31f33 −

f2
12f32f33 − f2

22f32f33) , which can be obtained by the following
Macaulay2 code

R = QQ[f,f11,f12,f13,f21,f22,f23,f31,f32,f33]

F = matrix{{f11,f12,f13},{f21,f22,f23},

{f31,f32,f33}};

K = matrix{{f, 0, 0}, {0, f, 0}, {0, 0, 1}};

E = K*F*K;

G = ideal(det(E))+minors(1,2*E*transpose(E)*E

-trace(E*transpose(E))*E);

Gs = saturate(G,ideal(f));

gse = flatten entries mingens gb Gs;

cofs = g->coefficients(g,Variables=>{f});

cofsg = apply(gse,cofs);

cofsg_2

5.4. The elimination ideal for the E+f problem

We consider the E+f problem from Section 3.2, i.e. the

problem of estimating epipolar geometry of one calibrated

and one up to focal length calibrated camera. Here, in this

case

E = F K, (37)

where K = diag(f, f, 1) is a diagonal calibration matrix

for the first camera, containing the unknown focal length f .

Here, F is the 3×3 fundamental matrix and E is the 3×3

essential matrix [1]

For the E+f problem, we have the ideal I ⊂
C [f11, f12, f13, f21, f22, f23, f31, f32, f33, f ] generated by

ten equations, one cubic from the rank constraint

det(F) = 0, (38)



and nine polynomials from the trace constraint

2 F Q F⊤F− trace(F Q F⊤)F = 0, (39)

where Q = K K.
For this problem, the new elimination strat-

egy from Section 2.1.3 leads to computing the
generators of the elimination ideal If = I ∩
C [f11, f12, f13, f21, f22, f23, f31, f32, f33], i.e. the genera-
tors that do not contain f . To compute these generators we
can use the following Macaulay2 [43] code:

R = QQ[f,f11,f12,f13,f21,f22,f23,f31,f32,f33];

F = matrix {{f11,f12,f13},{f21,f22,f23},

{f31,f32,f33}};

K = matrix {{f,0,0},{0,f,0},{0,0,1}};

E = F*K;

I = minors(1,2*E*transpose(E)*E

-trace(E*transpose(E))*E)+ideal(det(E));

G = eliminate({f},saturate(I,ideal(f)))

dim G, degree G, mingens G

For the E+f problem, the variety G has dimension 6 and

degree 9 in P8 and is defined by one cubic and three quar-

tics. It can be verified that these four polynomials corre-

spond to the four maximal minors of the 3×4 matrix:




f11 f12 f13 f21f31 + f22f32 + f23f33
f21 f22 f23 −f11f31 − f12f32 − f13f33
f31 f32 f33 0



 . (40)

5.5. Sparsity patterns of solvers

Here, we show a comparison of the sparsity patterns of our

new elimination-based solvers (EI-fEf, EI-Ef, EI-Efk) and

of the SOTA solvers [3, 39, 47].

Figure 5 shows the sparsity patterns of the (a) state-of-

the-art (SOTA) 31×46 Kukelova08 [3] solver for the f+E+f

problem and (b) the new 21×36 EI-fEf solver for this prob-

lem. In this case the new EI-fEf solver is not only smaller

but also sparser. The ratio of the number of non-zero el-

ements of the 31×46 template matrix of the SOTA solver

Kukelova08 [3] (nzS) and the number of non-zero elements

of the 21×36 matrix of the EI-fEf solver (nzEI) is 3.

Figure 6 shows the sparsity patterns of the (a) SOTA

21×30 Bujnak09 [39] solver and (b) the new 6×15 EI-Ef

solver for the E+f problem. Here the ratio of the number

of non-zero elements of the template matrix of the SOTA

solver [39] and the number of non-zero elements of the tem-

plate matrix of our new EI-Ef solver is 5.2.

Finally, Figure 7 shows the sparsity patterns of the (a)

SOTA 200×231 Kuang14 [47] solver and (b) the new 51×
70 EI-Efk solver for the E+f+k problem. Here, the ratio

nzS/nzEI is approximately 2.8.
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mal solvers for relative pose with a single unknown ra-

dial distortion. In CVPR – IEEE Conference on Com-

puter Vision and Pattern Recognition, 2014. 6, 7, 8,

11

[48] J. H. Brito, C. Zach, K. Köser, M. J. Ferreira, and

M. Pollefeys. One-sided radial fundamental matrix

estimation. In BMVC – British Machine Vision Con-

ference, 2012. 7

[49] J. Kileel, Z. Kukelova, T. Pajdla, and B. Sturmfels.

Distortion varieties. http://arxiv.org/abs/1610.01860,

2016. 10


