
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semantic Regularisation for Recurrent Image Annotation

Citation for published version:
Liu, F, Xiang, T, Hospedales, T, Yang, W & Sun, C 2017, Semantic Regularisation for Recurrent Image
Annotation. in Computer Vision and Pattern Recognition (CVPR 2017). Institute of Electrical and Electronics
Engineers (IEEE), Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Honolulu 2017., Honolulu, United States, 21/07/17. https://doi.org/10.1109/CVPR.2017.443

Digital Object Identifier (DOI):
10.1109/CVPR.2017.443

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Vision and Pattern Recognition (CVPR 2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1109/CVPR.2017.443
https://doi.org/10.1109/CVPR.2017.443
https://www.research.ed.ac.uk/en/publications/e3a3c496-a63e-46c8-9df3-0b7618303e85


Semantic Regularisation for Recurrent Image Annotation

Feng Liu1,2 Tao Xiang2 Timothy M. Hospedales3 Wankou Yang1 Changyin Sun1

1Southeast University, China
2Queen Mary, University of London, UK 3University of Edinburgh, UK

{liufeng,wkyang,cysun}@seu.edu.cn, {feng.liu,t.xiang}@qmul.ac.uk, t.hospedales@ed.ac.uk

Abstract

The “CNN-RNN” design pattern is increasingly widely
applied in a variety of image annotation tasks including
multi-label classification and captioning. Existing models
use the weakly semantic CNN hidden layer or its transform
as the image embedding that provides the interface between
the CNN and RNN. This leaves the RNN overstretched with
two jobs: predicting the visual concepts and modelling their
correlations for generating structured annotation output.
Importantly this makes the end-to-end training of the CNN
and RNN slow and ineffective due to the difficulty of back
propagating gradients through the RNN to train the CNN.
We propose a simple modification to the design pattern that
makes learning more effective and efficient. Specifically, we
propose to use a semantically regularised embedding layer
as the interface between the CNN and RNN. Regularising
the interface can partially or completely decouple the learn-
ing problems, allowing each to be more effectively trained
and jointly training much more efficient. Extensive experi-
ments show that state-of-the art performance is achieved on
multi-label classification as well as image captioning.

1. Introduction
The classic task of image recognition is beginning to ap-

proach a solved problem with the latest Inception-ResNet
[26] achieving a top 5 error rate of 3.08% on the ILSVRC15
[24] dataset, surpassing humans. Interest is therefore grow-
ing in generating richer descriptions of image properties
rather than simple categorisations, including multi-label
classification/tagging [13, 15, 14, 31] and image captioning
[30, 9, 16, 33, 35, 32].

In multi-label classification the aim is to describe rather
than merely recognise an image by annotating all visual
concepts that appear in the image. The label space is thus
richer than in the single-label recognition case – labels can
refer to scene properties, objects, attributes, actions, aes-
thetics etc. Such labels have richer relationships, e.g., a po-
liceman is a person; car and sky co-exist more often than car
and sea. Image captioning has a related aim, with the dif-

ference of producing a complete natural language sentence
description conditioned on the image content, rather than a
simple unordered set of labels. For both problems an ef-
fective model needs to fulfil two closely-related tasks well:
predicting a set of visual concept labels and modelling inter-
label correlations. For label-correlation modelling, struc-
tured learning strategies are typically employed, which in
the case of multi-label classification helps to better distin-
guish visually ambiguous concepts as well as suppress false
predictions (e.g., modelling the car-sky-sea correlation can
rectify false prediction of sea in place of sky when a car is
present). For image captioning, structured learning is even
more critical to generate an ordered list of words that en-
code a valid as well as relevant sentence.

Recently, the convolutional neural network – recurrent
neural network (CNN-RNN) encoder-decoder design pat-
tern has become popular to address the structured label pre-
diction task in both multi-label classification [14, 31] and
image captioning [29, 30, 33, 35]. A CNN is used to en-
code the image into a fixed length vector, which is then
fed into an RNN that either decodes it into a list of tags
(multi-label) or sequence of words composing a sentence
(captioning). With this encoder-decoder architecture, the
CNN and RNN can be trained end-to-end, inputting an im-
age and outputting an ordered list of labels. Existing work
differs slightly in how the CNN and RNN models are inter-
faced (see Figs. 1(a)-(c)). However, they share a key charac-
teristic: the image embedding that provides the CNN-RNN
interface is the final feature layer of the CNN [14, 22, 31]
(e.g. the FC7 layer of Alexnet [18] or the final pooling layer
of GoogLeNet [27]) or its linear transform [29, 30].

Using such layers as the input to the RNN has a number
of adverse effects on learning an end-to-end recurrent im-
age annotation model. First, since the CNN output feature
is not explicitly semantically meaningful, both the label pre-
diction and label correlation/grammar modelling tasks now
need to be shouldered by the RNN model alone. This exac-
erbates the already challenging task of RNN training, since
the number of visual concepts/words is often vast (there are
more than 12,000 words in the MS COCO training cap-
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Figure 1. CNN-RNN architectures for image annotation (multi-label classification and captioning). In all models, LSTM is used as the
RNN model. (a) CNN encodes an image (I) to a feature representation (F). The image embedding Ie and word representation go through
the same word embedding layer before being fed into the LSTM [29]. (b) The image CNN output features F set the LSTM hidden states
[14]. (c) The image CNN output feature layer is integrated with the LSTM output via late fusion [22, 31]. (d) The proposed semantically
regularised model. The CNN model is regularised by the ground truth semantic concepts s, which serve as strong deep supervision to
guide the learning of the CNN layers. The CNN prediction layer ŝ is used as image embedding which is used to set the LSTM initial states.
Best viewed in colour.

tions) and their correlation is rich. Second, a connected
CNN-RNN model is effectively rather deep considering the
RNN unrolling; existing CNN-RNN models apply supervi-
sion only at the final RNN output and propagate the supervi-
sion back to the earlier (CNN) layers. This leads to training
difficulties in the form of “vanishing” gradients [19]. In ad-
dition, joint training of CNN and RNN has to be carried out
very carefully to prevent noisy gradients back propagated
from the RNN from corrupting the CNN model. As a re-
sult, model convergence is often extremely slow [30].

In this paper we propose to change the image embed-
ding layer and introduce semantic regularisation to a CNN-
RNN model in order to produce significantly more accu-
rate results and make model training more stable and faster.
Specifically, we perform multi-task learning where the aux-
iliary task (besides tagging/sentence generation) is to reg-
ularise the image embedding/interface layer to encode se-
mantically meaningful visual concepts which are directly
related to the label prediction task (Fig. 1(d)). This can
be understood from several perspectives: (i) As splitting
up the system into a model for generating unary potentials
(the CNN) by predicting the label individually, and mod-
elling their relations (RNN) for structured prediction. With
the unary CNN taking the responsibility of concept predic-
tion, the relational RNN model is better able to focus on
learning concept correlations/sentence generation. In the
multi-label classification case, where the label space of the
semantic regularisation and the RNN output space are the
same, this can be seen as analogous to CRF decoding of
a joint distribution [36]. (ii) As a deeply supervised net-

work [19], providing auxiliary supervision to the middle of
what is effectively a very deep network. Such deep super-
vision improves accuracy and convergence speed [19, 27].
In our case specifically, it largely eliminates the problem of
noisy RNN gradients back-propagating to corrupt the CNN
encoder [30]. It thus allows for better and more efficient
fine-tuning of the CNN module, as well as fast convergence
in end-to-end training of the full CNN-RNN model. (iii)
As pursuing an encoder-decoder model with prior bias of
preferring semantically meaningful codes [34].

The contributions of this paper are as follows: (1) We
propose a novel CNN-RNN image annotation model which
differs from the existing models in the selection of the im-
age embedding layer and in the introduction of deeply-
supervised semantic regularisation to the embedding layer.
(2) Our proposed semantic regularisation enables reliable
fine-tuning of the CNN image encoder as well as the fast
convergence of end-to-end CNN-RNN training. (3) We
demonstrate through extensive experiments that on both
multi-label classification and image captioning, we achieve
the state-of-the-art performance.

2. Related work

Deep multi-label classification Many earlier studies
[15] treat the multi-label classification problem as multi-
ple single label classification problems and ignore the rich
correlations in the label space. In order to model label
correlation, a structured output model is required. Deng
et al. [6] propose a hierarchy and exclusion graph (HEX)
to model the structure of labels; however, they only fo-



cus on single label classification. Deep structured learning
is widely employed in object segmentation. For instance,
Zheng et al. [36] present an end-to-end structured model
that combines the CNN model with a CRF. It allows for
fast inference and learning of a deep model with Gaussian
edge potentials. This was extended by Chen et al. [2] to
a deep model which combines MRFs and CNN to model
output correlations, and is applied to multi-label classifica-
tion. Multi-label structure was also effectively modelled by
Conditional Graph Lasso [20], but for shallow models.

These CNN-CRF/MRF models work well for image seg-
mentation. However, for multi-label classification, the large
label space, seriously imbalanced label distribution, and the
need for variable length prediction challenge the application
of these models [31]. Recently, the CNN-RNN [14, 31] pat-
tern has been applied to multi-label classification to capture
label correlations, as well as address label imbalance and
variable length prediction. Since RNN requires sequential
input, before training the unordered label set is converted
to an ordered list, e.g., frequent first [31] or rare first [14].
Small classes can be promoted by using the rare first order.
For structured prediction, it is more computationally effi-
cient than CNN-CRF, as it only iterates until the required
number of labels are output. Furthermore, it is an end-to-
end predictive model as it outputs labels directly, rather than
prediction scores, thus eliminating tricky prediction score
thresholding heuristics. Our model is related to [14, 31]
in that it follows the CNN-RNN design pattern; however,
it uses a semantically regularised image embedding layer as
the interface layer rather than an unregularised CNN feature
layer.

Another line of work is to incorporate side information
in multi-label classification, since side information could
be complementary to the image data. The side information
could be user tags or groups from image metadata [13, 15].
Johnson et al. [15] uses a non-parametric approach to find
image neighbours according to the metadata, and then ag-
gregates visual information of the image and its neighbours
with a deep network to improve classification. In [13] tags,
groups, and labels are modelled by different concept layers,
which corresponds to different level of abstractions. Mes-
sages can be passed top-down and bottom-up by leverag-
ing a bidirectional structured network. Side information can
also be exploited in our model, but we show that even using
less side information, e.g., tags only, our model can outper-
form those in [13, 15] significantly.
Neural network based image captioning A number of
recent captioning studies take a bottom-up approach, where
words or phrases are first detected and then composed to
sentence with a language model. Fang et al. [9] propose a
caption model that first detects keywords using a multiple
instance learning, and then uses the keywords to generate
sentences. A similar model is proposed in [32] with the

main difference being that LSTM is used as the language
model. Compared with these model, our model is an end-
to-end CNN-RNN model which jointly learns the image en-
coding and language decoding modules.

CNN-RNN based image captioning models have become
popular. Vinyals et al. [29, 30] follow an encoder-decoder
scheme, and feed image features as the initial input to the
RNN decoder, so that sentences are generated according to
the image. A similar approach is employed in [16]. Our
work is related to [29], but we use semantic concepts to
regularise the representation of the CNN-RNN interface
layer, which leads to significantly improved performance
and much easier model training. Recently, visual attention
has been incorporated to improve captioning accuracy. Xu
et al. [33] propose a model capable of sequentially attend-
ing to discriminative regions to improve the caption gener-
ation. You et al. [35] propose to combine visual attributes
and image features. An attention mechanism is introduced
to reweight attribute predictions and merged with both the
input and output of the RNN. Image features are fed at the
first step as an external guide. Such attention models could
easily be integrated into our model to further improve per-
formance.
Semantic regularisation in deep encoder-decoders
The idea of introducing semantic regularisation to an
encoder-decoder model has been exploited in the context
of image synthesis. Yan et al. [34] extend the variational
autoencoder [17] by introducing attribute induced seman-
tic regularisation to the middle embedding layer. A similar
model based on generative adversarial networks is also pro-
posed [23]. Despite the similar strategy to ours, the objec-
tive is very different: we use the encoder-decoder architec-
ture to align the text and image modalities and middle-layer
supervision is employed to achieve more effective and effi-
cient training of both the encoder and decoder.

3. Methodology
We first give an overview of existing CNN-RNN mod-

els before introducing our semantically regularised CNN-
RNN. Its application to multi-label classification and image
captioning are detailed in Sec. 4 and Sec. 5 respectively.

3.1. CNN-RNN

A CNN-RNN model is composed of two parts: a visual
encoder perceives the visual content of an image and en-
codes it to an image embedding; and a decoder takes the em-
bedding as input and generates sequences of labels (words).

Given an image I , a visual encoder will encode it to a
fixed length vector Ie ∈ Rd×1 called image embedding:

Ie = fenc(I), (1)

where fenc is the encoder, which could be a pretrained CNN
optionally with some additional transformation layers. So
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Figure 2. The full pipeline of the proposed semantically regularised annotation model. The ground truth semantic concepts serve as strong
supervision in the middle to regularise the training of the unary model (a). Due to the use of semantic concepts as the interface between
CNN and RNN, the unary model and relational models can be pretrained in parallel, as shown in (b), (c).

Ie could either be a feature layer [14, 22, 31], e.g., FC7
layer of VGG16 [25], or its linear transform [29, 30]. In
this paper, we enforce it to be a semantic representation to
better interact with the RNN.

The RNN decoder will then take Ie as a condition, and
generate a predictive path π = (a1, a2, ..., ans), where for
multi-label classification, ai is semantic label, and ns is the
number of labels predicted for image I; while for image
captioning ai is the word token, and ns is the length of the
sentence. The path is an ordered sequence, so in multi-label
classification, a priority of the labels has to be defined to
convert labels to a sequence. We take a rare first order so as
to give rare classes more importance during the prediction,
therefore countering the label imbalance problem.

Many different CNNs have been considered for the en-
coder, but for the RNN decoder, the long short-term mem-
ory (LSTM) model [12] has been chosen by almost all exist-
ing models. This is because it controls message passing be-
tween times steps with gates in order to alleviate the vanish-
ing/exploding gradient problem which plagued the training
of prior RNN models. The model has two types of states:
cell state c and hidden state h. Following [11], a forward
pass at time t with input xt is computed as follows.

it = σ(Wi,h · ht−1 +Wi,c · ct−1 +Wi,x · xt + bi)

ft = σ(Wf,h · ht−1 +Wf,c · ct−1 +Wf,x · xt + bf )

ot = σ(Wo,h · ht−1 +Wo,c · ct−1 +Wo,x · xt + bo)

gt = δ(Wg,h · ht−1 +Wg,c · ct−1 +Wg,x · xt + bg)

ct = ft � ct−1 + it � gt
ht = ot � δ(ct)

(2)

where ct and ht are the model’s cell and hidden states,
it, ft, ot are the activation of input gate, forget gate,

and output gate respectively; W·,h, W·,c are the recurrent
weights, andW·,x is the input weight, and b· are the biases.
σ(·) is the sigmoid function, and δ is the output activation
function.

At time step t, the model uses its last prediction at−1 as
input, and computes a distribution over possible outputs:

xt = E · at−1,

ht = LSTM(xt,ht−1, ct−1),

yt = softmax(W · ht + b),

(3)

where E is the word embedding matrix, ht−1 is the hidden
state of the recurrent units at t−1,W , b are the weight and
bias of the output layer, at−1 is the one-hot coding of last
prediction at−1, and LSTM(·) is a forward step of the unit.
The output yt defines a distribution over possible actions,
from which the next action at+1 is sampled.

To generate image-conditioned sequences, the decoder
has to take advantage of the image embedding Ie, and exist-
ing models achieve this in multiple ways. Vinyals et al. [29]
(Fig. 1(a)) propose to feed Ie as step zero input to the LSTM
model, that is, (h0, c0) = LSTM(Ie,0,0), where 0 is
a zero vector. In this case the weights of the word embed-
ding are shared with image embedding, which is a question-
able assumption, as the two embeddings have very different
meanings and their dimensions have not been aligned. In-
stead of treating Ie as an LSTM input, Wang et al. [31] and
Mao et al. [22] combine word embedding and image fea-
tures via output fusion (Fig. 1(c)). In contrast, Jin et al. [14]
use the image embedding to initialise the LSTM (Fig. 1(b))
by setting hidden state h0 = Wi · Ie + bi, where Wi, bi
are image input weights and biases.

Despite these differences, existing CNN-RNN models
have a key common characteristic: The image embedding



Ie that acts as the interface between the CNN and RNN
models is taken to be a layer of weak and implicit seman-
tics, e.g., CNN feature layer, or its transform. This means
that the RNN has to simultaneously learn to predict seman-
tic concepts from the provided features, as well as model
the correlation of those concepts. Learning to predict the
concepts is harder for the RNN because gradients are back
propagated from relatively ‘far’ supervision away (the RNN
outputs at future time steps). Moreover fine-tuning the CNN
becomes tricky because noisy gradients propagated from
the RNN can easily degrade rather than improve perfor-
mance [30].

3.2. Semantically regularised CNN-RNN

To reduce the burden on the RNN, we propose a divide-
and-conquer strategy to separate two tasks: semantic con-
cept learning and relational modelling. Specifically, seman-
tic concept learning is now performed by the unary CNN
model which takes as input images (and associated side in-
formation if any), and produces a probabilistic estimate of
the semantic concepts. Relational modelling is handled by
the RNN model which takes in the concept probability esti-
mates and models their correlations to generate label/word
sequences. Concretely, instead of using a CNN feature layer
as embedding Ie, we use the CNN label prediction layer,
e.g., concept prediction layer of an Inception net [28]. Since
the chosen embedding is trained under direct supervision
of ground-truth labels/visual concepts, it has clear semantic
meaning: Each unit corresponds to a semantic concept.

As shown in Fig. 2, in our Semantically regularised
CNN-RNN (S-CNN-RNN), the CNN part takes an image
I as input, and predicts the likelihood of the semantic con-
cepts ŝ ∈ Rk×1 where k is the number of semantic con-
cepts1. The RNN model takes ŝ as input, and generates
sequences π. The key implication is that supervision can
now be added at both the RNN output layer and the em-
bedding layer ŝ. This results in two losses: a loss for con-
cept prediction Lu(s, ŝ) and a loss for relational modelling
Lr(π, π

∗|ŝ). Formally, we have

Lu(s, ŝ) =
∑

i

`u(si, ŝi)

Lr(π, π
∗|ŝ) =

∑

i

`r(πi, π
∗
i |ŝi)

L = Lu(s, ŝ) + Lr(π, π
∗|ŝ), (4)

where si is the ground truth concept labels for the i-th train-
ing image and ŝi is the corresponding prediction; For the
RNN loss Lr(π, π

∗|s̃), π∗
i is the ground truth path; πi is the

predicted path, which is a sequence of word tokens or list of
tags. The specific form of the losses will be discussed next.

1k is the size of label space in multi-label classification. For image
captioning, k is the number of visual concepts, which is typically smaller
than the vocabulary size as not all words are visual.

3.3. Training and inference

The introduction of semantic regularisation in the mid-
dle of CNN-RNN allows for more effective and efficient
model training. It facilitates a two-staged training strategy
illustrated in Fig. 2. In the first stage, we pretrain the CNN
model and RNN model in parallel and in the second stage,
they are fine-tuned together.

CNN For pretraining of the CNN model (Fig. 2(b)), the
ground truth semantic concepts si are used as the learning
target in a standard cross entropy loss for k visual concepts:

`u(si, ŝi) =
k∑

j

sij · log(ŝij)+(1−sij) · log(1− ŝij), (5)

LSTM For the LSTM pretraining (Fig. 2(c)), the concept
input ŝi is first connected to a fully connected (FC) layer be-
fore being used to set the initial hidden state of the LSTM2.
The LSTM model learns to maximise the likelihood of gen-
erating the target sequences conditioned on the semantic in-
put, and the loss Lr(π, π

∗|ŝ) is simply the sum of the nega-
tive log likelihood over all time steps. By feeding s , rather
than ŝ the LSTM can be pre-trained independently of the
CNN.

Joint CNN-LSTM After the CNN and RNN models are
pretrained, the whole model can be jointly trained by simul-
taneously optimising the deeply supervised joint lossL. For
inference, we condition on the image by setting the initial
state, then feed a start signal and recurrently sample model
predictions of the previous step as input until an end signal
is generated. For multi-label classification, we just greedily
take the maximum model output, whilst beam search with a
width of three is employed for image captioning [30].

4. Application to Multi-label Classification

4.1. Formulation

To apply our S-CNN-RNN to multi-label classification,
we first rank the training labels according to their frequency
in the training set and generate a ordered label list with the
rare labels first. We also explore the use of side information
[15, 13]: exploiting the noisy user-provided tags available
with each image. In this case the model in Fig. 2 is slightly
modified. Specifically, we pretrain a multiple layer percep-
tion (MLP) (single 256 neuron hidden layer and ReLU ac-
tivation) to predict the true tags given the noisy metadata.
Then we combine the image model with the pretrained tag
model by summing their predictions as the final embedding
ŝ), and train them together with a cross entropy loss [37].

2This is to allow for the flexibility of using arbitrary LSTM unit size.



4.2. Datasets and settings

Datasets Two widely used large-scale benchmark
datasets are selected to evaluate our model. NUS-WIDE [5]
dataset contains 269,648 images. Originally coming from
Flickr, there are 5,018 unique user tags released along with
the images. Of them, 81 tags are manually selected and
refined as the ground truth [5], covering different aspects
including object classes, scenes, and attributes. The ground
truth labels are highly imbalanced: the most frequent tag,
sky appears 74,190 times while the rarest one map appears
60 times. In addition, the user-provided tags are extremely
noisy and sparse – 8.73 noisy tags per image on average.
Following [15, 13], we consider two settings: multi-label
classification with only imagery data and with both images
and noisy tags as side information. The most popular 1,000
noisy user tags are kept and we remove the images without
any ground-truth tags. As in many Flicker based studies,
the numbers of images used by different works vary as they
download the images at different times. For fair compari-
son, we use the same train/test split ratio as [15, 13]; as a
result, 15,000 images are used for training and 59,347 for
testing. Microsoft COCO [21] is popular for tasks such as
object detection, segmentation and image captioning. Fol-
lowing [31], we also use it for multi-label classification by
treating the 80 object classes as labels. Since there are nor-
mally many types of objects in each image, it is naturally a
multi-label classification problem. Because the label space
contains objects only and some objects are rather small, it
is perhaps more suitable than NUS-WIDE for evaluating
a structured prediction model, as modelling label correla-
tion becomes more important to detect visually similar and
small objects. We also download the original user tags from
Flickr via the provided URLs, and the most frequent 1,000
tags are used as side information. We keep the original
train/validation split [21] for training and evaluation.
Implementation details For fair comparisons with pre-
vious work, in our S-CNN-RNN model, we use the caffe
reference net [8] as our unary CNN subnet on the NUS-
WIDE dataset [5], and VGG16 on MS COCO. Both mod-
els are pretrained on the ILSVRC12 dataset [24]. For pre-
training the CNN subnet, the learning rate is set to 1e-4 for
NUS-WIDE and 1e-3 for MS COCO. For the RNN subnet,
we use 512 LSTM cells and a 256 dimensional word em-
bedding. The output vocabulary size is set to 82 for NUS-
WIDE and 81 for MS COCO, including all labels and an
END token. We use the BasicLSTMCell in TensorFlow
as LSTM cells and employ ReLU as activation function.
The relational model is trained using a RMS Prop optimiser
with a learning rate of 1e-4. Both the code and trained mod-
els will be made available at the first author’s website.
Evaluation metrics As in [14, 31], both per-class and
per-image metrics including mean precision and mean re-
call are used. For each class/image, the precision is de-

fined as: p(ŷ, y) = |y ∩ ŷ|/|ŷ|; and recall is defined as:
r(ŷ, y) = |y ∩ ŷ|/|y|, where y and ŷ are the set of ground
truth labels and predicted labels, and | · | is the cardinality
of a set. The overall precision (O-P)/recall (O-R) is com-
puted by taking the average precision/recall over all sam-
ples, while the per class precision (C-P)/recall (C-R) is av-
eraged over all classes. F1 score is also computed by com-
puting the harmonic mean of precision and recall. As in
existing CNN-RNN models [14, 31], we let the model to
decide its own prediction length [14, 31], whilst for other
compared fixed-length predictive models [13, 15, 31], we
use the top 3 ranked predictions.

4.3. Experimental results

Competitors We compare with the following models. In
all compared models, the same CNN and RNN modules are
used. CNN+Logistic: This model treats each label inde-
pendently by fitting a logistic regression classifier for each
label. The results are reported in [13]. CNN+Softmax: A
CNN model that uses softmax as classifier, and the cross en-
tropy between prediction and ground truth is used as the loss
function. The results reported in [10] for NUS-WIDE and
[31] for MS COCO are used. CNN+WARP: Same CNN
model as above, but uses a weighted approximate ranking
loss function for training to promote the prec@K metric.
We use the results reported in [10] for NUS-WIDE and [31]
for MS COCO. CNN-RNN: A CNN-RNN model which
uses output fusion (Fig. 1(c)) to merge CNN output fea-
tures and RNN outputs [31]. RIA: In this CNN-RNN model
[14], the CNN output features are used to set the LSTM hid-
den state (Fig. 1(b)). Note that only smaller datasets were
used in [14] and no code is available; we thus use our own
carefully trained implementation in the experiments. Tag-
Neighbour: It uses a non-parametric approach to find im-
age neighbours according to metadata, and then aggregates
image features for classification. Tag neighbour with 5K
tags gives the best performance [15]. It uses more side in-
formation than ours and is also transductive requiring access
to the whole test set at once. SINN: It [13] uses different
concept layers of tags, groups, and labels to model the se-
mantic correlation between concepts of different abstraction
levels. A bidirectional RNN-like algorithm is adopted to in-
tegrate information for prediction. 1K noisy tags and 698
query words are used as side information, which is more
than what our model uses. Variants of our model: Our S-
CNN-RNN with and without the side information are called
Ours and Ours+Tag1K respectively. Since the results re-
ported by SINN [13] and TagNeighbour [15] were based
on ImageNet-pretrained CNN models, for direct compari-
son we train a variant of our model that fixes the weights of
the CNN subnet without finetuning (Ours+Tag1K Fix).

Results on NUS-WIDE We make the following observa-
tions from the results shown in Table 1. (1) The proposed S-



Algorithms C-R C-P C-F1 O-R O-P O-F1

CNN+logistic [13] 45.03 45.60 45.31 70.77 51.32 59.50
CNN+Softmax [10] 31.22 31.68 31.45 59.52 47.82 53.03
CNN+WARP [10] 35.60 31.65 33.51 60.49 48.59 53.89
CNN-RNN [31] 30.40 40.50 34.70 61.70 49.90 55.20
RIA [14] 43.62 52.92 47.82 66.75 68.98 67.85
TagNeighboor† [15] 57.30 54.74 55.99 75.10 53.46 62.46
SINN† [13] 60.63 58.30 59.44 79.12 57.05 66.30

Ours 50.17 55.65 52.77 71.35 70.57 70.96
Ours+Tag1K Fix† 58.52 63.51 60.91 77.33 76.21 76.77
Ours+Tag1K† 61.73 71.73 66.36 76.88 77.41 77.15

Table 1. Multi-label classification results on NUS-WIDE. Results
that use side information are marked with superscript †.

CNN-RNN performs consistently better than all alternatives
in terms of the F1 score, both with (Ours+Tag1K) and with-
out side information (Ours). (2) Looking at the precision
and recall metrics, our model is more impressive on preci-
sion than recall. This is expected because compared to the
non-CNN-RNN based models that predict a fixed number
of 3 labels, a CNN-RNN model tends to makes less predic-
tions for this dataset with on average 2.4 ground truth tags
per image. (3) The gaps between Ours and CNN-RNN [31]
and RIA [14] show clearly the importance of adding seman-
tic regularisation to the CNN embedding layer. (4) Com-
paring Ours+Tag1K Fix with TagNeighboor [15] and SINN
[13], we can see that significant improvements are obtained
even with less side information. This is due to the ability of
the RNN decoder in our CNN-RNN model to model high-
order label correlations. (5) Our full model (Ours+Tag1K)
further improves over Ours+Tag1K Fix on both per class
and per image metric. This shows the importance of hav-
ing an end-to-end CNN-RNN that can be trained effectively
with the introduced deeply supervised semantic regularisa-
tion. Qualitative results can be found in the supplementary
material.
Results on MS COCO Similar conclusions can be drawn
from the results in Table 2. Comparing with the results on
NUS-WIDE, it is noted that the performance gain obtained
by using the 1K noisy tags as side information is smaller.
This is because that the number of user-provided tags on
COCO is smaller (2.93 vs. 6.10 per image with 1K unique
tags).

5. Application to Image Captioning
5.1. Datasets and settings

Datasets and metrics We use the popular Microsoft
COCO dataset [21] for evaluation. The dataset contains
82,783 training images and 40,504 validation images. Each
image is manually annotated with 5 captions. The compari-
son against the state-of-the-art is conducted using the actual
MS COCO test set comprising 40,775 images. Note that

Algorithms C-R C-P C-F1 O-R O-P O-F1

CNN+logistic [31] 58.60 59.30 58.90 65.00 61.70 63.30
CNN+Softmax [31] 59.00 57.00 58.00 60.20 62.10 61.10
CNN+WARP [31] 59.30 52.50 55.70 59.80 61.40 60.70
CNN-RNN [31] 55.60 66.00 60.40 66.40 69.20 67.80
RIA [14] 54.07 64.32 58.75 64.57 74.20 69.05

Ours 59.83 67.40 63.39 68.73 76.63 72.47
Ours+Tag1K† 63.13 71.38 67.00 73.05 77.41 75.16

Table 2. Multi-label classification results on Microsoft COCO.

the annotation of the test set is not publicly available, so
the results are obtained from the COCO evaluation server.
For an ablation study, we also follow the setting of [29, 30]
by a held-out set of 4,051 images from the validation set as
the test set. The widely used BLEU, CIDEr, METEOR, and
ROUGE scores are employed to measure the quality of gen-
erated captions. For the ablation study, they are computed
using the coco-evaluation code [3].
Implementation details For our S-CNN-RNN, we use
Inception v3 [28] as the CNN subnet, and an LSTM network
is used as RNN subnet. The number of LSTM cells is 512,
equalling to the dimension of the word embedding. The
output vocabulary size for sentence generation is 12,000.
Note that all these are exactly the same as the NIC v2 [30]
model ensuring a fair comparison. For semantic regulari-
sation by deep supervision of image embedding layer, we
need to extract a set of semantic concepts/training labels
from the vocubulary. To this end, we follow [9] and simply
use the 1,000 most frequent words in the captions, which
cover 92% of word occurrences. The ground truth labels for
a training image is defined as the words that appear at least
once in the 5 captions. For the CNN pretraining, we initially
just learn the prediction layer, and then tune all the parame-
ters for 30,000 iterations with a batch size of 32 and learn-
ing rate of 1e-4. In parallel, the RNN model is pretrained
for 1,000,000 iterations with the ground truth semantic la-
bels as image embedding. After both models are pretrained,
the full model is fine-tuned for 500,000 iterations.

5.2. Experimental results

Competitors Five state-of-the-art models are selected for
comparison: MSRCap: The Microsoft Captivator [7] com-
bines the bottom-up based word generation model [9] with a
gated recurrent neural network [4] (GRNN) for image cap-
tioning. mRNN: The multimodal recurrent neural network
[22] uses a multimodal layer to combine the CNN and RNN.
NICv2: The NICv2 [30] is an improved version of the Neu-
ral Image Caption generator [29]. It uses a better image
encoder Inception V3. In addition, scheduled sampling [1]
and an ensemble of 15 models are used; both improved the
accuracy of captioning. Neither is used in our model. V2L:
The V2L model [32] use a CNN based attribute detector to



Metric B-1 B-2 B-3 B-4 METEOR ROUGE CIDEr
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

MSRCap [7] 0.71520 0.9078 0.54319 0.8199 0.40719 0.71010 0.30816 0.60110 0.24816 0.33911 0.52619 0.68014 0.93115 0.93716
mRNN [22] 0.71618 0.89020 0.54518 0.79820 0.40420 0.68720 0.29921 0.57520 0.24226 0.32525 0.52123 0.66624 0.91718 0.93517
V2L [32] 0.72510 0.89218 0.55611 0.80317 0.41414 0.69417 0.30618 0.58218 0.24619 0.32921 0.52816 0.67218 0.91120 0.92420
NICv2 [30] 0.71321 0.89517 0.54221 0.80218 0.40718 0.69418 0.30915 0.58716 0.2548 0.3466 0.53015 0.68211 0.94312 0.94614
ATT [35] 0.7319 0.90014 0.5659 0.81511 0.4248 0.70911 0.3169 0.59911 0.25013 0.33517 0.5358 0.68212 0.94311 0.95811

Ours 0.7435 0.9174 0.5785 0.8404 0.4346 0.7355 0.3236 0.6215 0.2557 0.3437 0.5406 0.6915 0.9866 1.0025

Table 3. Results from the official MS-COCO testing server (https://www.codalab.org/competitions/3221#results).
The subscript indicates the ranking as on the submission date w.r.t. each metric.

firstly generate 256 attributes, and then feed as initial in-
put to a LSTM model to generate captions. ATT: The se-
mantic attention model [35] uses both image features and
visual attributes, and introduces an attention mechanism to
reweight the attribute context to improve captioning accu-
racy. All five models use a CNN and a RNN, but only
NICv2 does end-to-end training. In contrast, ATT does at-
tention model and RNN joint training, and uses a 5-model
ensemble. There is no joint training for the other three.

Results We submit our results to the official evaluation
server to compare with the five baselines which also appear
in the official ranking. The evaluation is done with both 5
and 40 reference captions (C5 and C40). It can be seen from
Table 3 that our model beats all five competitors on all 14
metrics, often by a significant margin. Among the 39 sub-
mitted models, our model is ranked the 5th and we could
not find references for the four higher ranked models. Note
that our performance across all metrics is very consistent.
In contrast, the 5 competitors often do well on some met-
rics but very badly on others. It is worth pointing out that
our result is obtained without a model ensemble, a practice
commonly used in this type of benchmarking exercise (e.g.,
both NICv2 and ATT use ensembles). In addition, no aux-
iliary captioning data is used for training. This result thus
represents the state-of-the-art. For qualitative results please
see the supplementary material.

Ablation study We compare our full model with two
stripped-down versions. NIC-F: removing the semantic
regularisation and use the CNN output feature layer as the
inference Ie to RNN. This gives us the standard NIC model
[29] with the same Inception v3 as CNN subnet. The model
is finetuned end-to-end on COCO. NIC-deeply: this model
is closer to ours – it uses the same deeply supervised se-
mantic regularisation as our model, but the penultimate fea-
ture layer is taken as the embedding, rather than the predic-
tion layer ŝ. As a result, the CNN feature representation
benefits from the deep supervision (rather than distal super-
vision via the RNN), but the specific embedding used as
the RNN interface is not directly semantically meaningful.
The results on the validation set split are shown in Table 4.
It can be seen that: (1) Semantic regularisation is critical,

e.g., it brings about 7% on CIDEr comparing NIC-F and
our full model. (2) The deep supervision is the most crucial
contributor to the good performance of our model. Even
when the embedding layer is not semantically explicit as in
NIC-deeply, the benefit is evident. The smaller gap between
NIC-deeply and Ours is due to the use of the semantically
explicit prediction layer as the embedding at the CNN-RNN
interface.

Metric CIDEr METEOR ROUGE B-4

NIC-F 0.932 0.247 0.524 0.297
NIC-deeply 1.006 0.258 0.543 0.323
Ours 1.054 0.260 0.550 0.340

Table 4. Ablation study results on the COCO validation set split.

Computational cost Thanks to the semantic regularisa-
tion, the proposed model can be trained very efficiently. The
total training takes two days on a single Nvidia Titan X
GPU. In contrast training one of NIC’s 15-model ensem-
ble members takes more than 20 days on the same GPU.
In particular, the deep supervision allows the model to con-
verge very fast. For example, pretraining our Inception v3
[28] CNN only needs 30,000 iterations with a batch size of
32. The pretraining of the RNN model is also fast since its
inputs are ground truth labels. After the pretraining, the full
model fine-tuning converges much faster than NICv2.

6. Conclusion

We proposed a semantically regularised CNN-RNN
model for image annotation. The semantic regularisation
makes the CNN-RNN interface semantically meaningful,
distributes the label prediction and correlation tasks be-
tween the CNN and RNN models, and importantly the deep
supervision makes training the full model more stable and
efficient. Extensive evaluations on NUS-WIDE and MS-
COCO demonstrate the efficacy of the proposed model on
both multi-label classification and image captioning.
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Supplementary Material for
Semantic Regularisation for Recurrent Image Annotation

1. Qualitative results of multi-label classification
Qualitative results of multi-label classification are shown in Fig. 1. The human row shows the ground-truth annotation,

we organise them in a rare first order, where rare classes are presented earlier than the frequent classes. The CNN+tag1k use
the model in [2], the prediction are sorted according to their prediction scores in a descending order. The last row shows the
results of our model, where the prediction order of RNN is preserved.

human:	person
CNN+tag1k:	person->military->vehicle
ours+tag1k:	person->military

human:	sun->beach->sunset->ocean->lake->water->clouds->sky
CNN+tag1k:	sky->clouds->sun
ours+tag1k:	sun->beach->sunset->ocean->lake->clouds->water

human:	clouds->sky
CNN+tag1k:	sky->clouds->buildings
ours+tag1k:	nighttime->clouds->sky

human:	 leaf->plants
CNN+tag1k:	plants->flowers->sky
ours+tag1k:	flowers->plants

human:	 reflection->lake->water->clouds->sky
CNN+tag1k:	sky->clouds->reflection
ours+tag1k:	reflection->lake->clouds->water->sky

human:	house->vehicle->window->water
CNN+tag1k:	water->window->house
ours+tag1k:	house->window->boats->water

human:	skis->backpack->person
CNN+tag1k:	person->skis->snowboard
ours+tag1k:	skis->backpack->person

human:	baseballbat->baseballglove->cellphone->person
CNN+tag1k:	baseballbat->person->sportsball
ours+tag1k:	baseballbat->baseballglove->person

human:	parkingmeter->umbrella->truck->handbag
->car->person

CNN+tag1k:	person->umbrella->car
ours+tag1k:	umbrella->handbag->car->person

human:	sandwich->backpack->diningtable->chair
->person

CNN+tag1k:	person->chair->hotdog
ours+tag1k:	sandwich->diningtable->person

human:	umbrella->cup->diningtable->chair->person
CNN+tag1k:	person->umbrella->chair
ours+tag1k:	umbrella->cup->diningtable->chair->person

human:	pizza->fork->knife->bottle->cup->diningtable
->person

CNN+tag1k:	diningtable->pizza->cup
ours+tag1k:	pizza->fork->knife->cup->diningtable

Figure 1. Qualitative results of multi-label classification. The top 6 images are from the NUS-WIDE dataset, and the bottom 6 are from
MS COCO.
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The results show that our algorithm mostly make predictions follow the desired rare-first order, thereby small classes are
promoted. It tends to give more specific results rather than focus on large general concepts as does CNN+tag1k. Note that
for some images, our prediction is even more accurate than ground truth, due to the missed tagging in manual labelling.

2. Qualitative results of image captioning
In this section, we show some example captions of our model and the NIC model [1]. The generated captions are shown

in Fig 2. Compared with the NIC model, our model is more accurate in recognising concepts, e.g., objects, colour, status,
counts etc., thus being able to capture object interactions and describe an image with more detailed nouns and adjectives.
However, when the visual cue is compromised, our algorithm will also fail, as in the failure cases shown in Fig 3. Novel
concept can also influence captioning. The last example in Fig. 3 shows that novel object life guard station is beyond the
recognition ability of the algorithm, but it still manages to give a somewhat meaningful description.

NIC		:	a	bus	that	is	sitting in	the	street	.
ours:	a	red	and	white	bus	 driving	down	a	street	.

NIC:		a	close	up	of	a	toaster	on	a	wall.
ours:	a	close	up	of	a	pair	of	scissors	 .

NIC:			a	white	plate	topped	with	a	cut	in	half	sandwich.
ours:	a	white	plate	topped	with	a	sandwich	and	salad.

NIC:	a	group	of	people	 standing	on	top	of	a	sandy
beach.
ours:	a	group	of	people	standing	on	a	beach	with	
surfboards.

NIC:		a	city	street	filled	with	lots	of	traffic.
ours:	a	bus	driving	down	a	street	next	to	a	
traffic	light.

NIC:		a	person laying	on	a	bed	with	a	laptop.
ours:	a	dog	laying	on	a	bed	in	a	bedroom.

NIC:			a	group	of	giraffes	standing	in	a	field.
ours:	a	giraffe	standing	in	a	fenced	in	area.

NIC:		a	train	traveling	down	 tracks	next	to	a	forest.
ours:	a	train	is	traveling	down	the	tracks	in	the	snow.

NIC:		a	man	in	a	field	with	a	frisbee.
ours:	a	couple	of	men	playing	frisbee in	a	field.

NIC:			a	man	standing	next	to a	brown	horse.
ours:		a	man	riding	a	horse	in	a	field .

NIC:		a	group	of	people	riding	bikes down	a	
street	.
ours:	a	man	riding	a	bike	down	 a	busy	street	.

NIC:		a	black	and	white	dog	laying	on	a	grass
covered	field.
ours:	a	black	and	white	dog	playing	with	a	frisbee.

Figure 2. Qualitative results of image captioning on the MS COCO dataset. The errors in captions are hightlighted in red, while the
fine-grained detials are hightlighted in green.
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NIC:			a	building	with	a	clock	on	the	side	of	it.
ours:	a	black	and	white	photo	of	a	street	sign	.

NIC:			a	cat	sitting	on	top	of	a	tv in	a	bathroom.
ours:	a	cat	sitting	on	top	of	a	car.

NIC:			a	man	standing on	a	beach	holding	a	surfboard.
ours:	a	boaton	a	beach	with	a	yellow	board	in	the	
background	.

Figure 3. Failure cases of image captioning on the MS COCO dataset.
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