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Abstract

Mean Field inference is central to statistical physics. It has attracted much in-
terest in the Computer Vision community to efficiently solve problems expressible
in terms of large Conditional Random Fields. However, since it models the pos-
terior probability distribution as a product of marginal probabilities, it may fail to
properly account for important dependencies between variables.

We therefore replace the fully factorized distribution of Mean Field by a weighted
mixture of such distributions, that similarly minimizes the KL-Divergence to the
true posterior. By introducing two new ideas, namely, conditioning on groups of
variables instead of single ones and using a parameter of the conditional random
field potentials, that we identify to the temperature in the sense of statistical physics
to select such groups, we can perform this minimization efficiently. Our extension
of the clamping method proposed in previous works allows us to both produce a
more descriptive approximation of the true posterior and, inspired by the diverse
MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that
this positively impacts real-world algorithms that initially relied on mean fields.

1 Introduction
Mean Field (MF) is a modeling technique that has been central to statistical physics for
a century. Its ability to handle stochastic models involving millions of variables and
dense graphs has attracted much attention in our community. It is routinely used for
tasks as diverse as detection [13, 2], segmentation [31, 23, 9, 41], denoising [10, 27,
25], depth from stereo [14, 23] and pose-estimation [34].

MF approximates a “true” probability distribution by a fully-factorized one that is
easy to encode and manipulate [22]. The true distribution is usually defined in practice
through a Conditional Random Field (CRF), and may not be representable explicitly,
as it involves complex inter-dependencies between variables. In such a case the MF
approximation is an extremely useful tool.
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While this drastic approximation often conveys the information of interest, the true
distribution may concentrate on configurations that are very different, equally likely,
and that cannot be jointly encoded by a product law. Section 3 depicts such a case
where groups of variables are correlated and may take one among many values with
equal probability. In this situation, MF will simply pick one valid configuration, which
we call a mode, and ignore the others. So-called structured Mean Field methods [32, 7]
can help overcome this limitation. This can be effective but requires arbitrary choices
in the design of a simplified sub-graph for each new problem, which can be impractical
especially if the initial CRF is very densely connected.

Here we introduce a novel way to automatically add structure to the MF approxima-
tion and show how it can be used to return several potentially valid answers in ambigu-
ous situations. Instead of relying on a single fully factorized probability distribution,
we introduce a mixture of such distributions, which we will refer to as Multi-Modal
Mean Field (MMMF).

We compute this MMMF by partitioning the state space into subsets in which a
standard MF approximation suffices. This is similar in spirit to the approach of [37]
but a key difference is that our clamping acts simultaneously on arbitrarily sized groups
of variables, as opposed to one at a time. We will show that when dealing with large
CRFs with strong correlations, this is essential. The key to the efficiency of MMMF
is how we choose these groups. To this end, we introduce a temperature parameter
that controls how much we smooth the original probability distribution before the MF
approximation. By doing so for several temperatures, we spot groups of variables that
may take different labels in different modes of the distribution. We then force the
optimizer to explore alternative solutions by clamping them, that is, forcing them to
take different values. Our temperature-based approach, unlike the one of [37], does
not require a priori knowledge of the CRF structure and is therefore compatible with
“black box” models.

In the remainder of the paper, we will describe both MF and MMMF in more
details. We will then demonstrate that MMMF outperforms both MF and the clamping
method of [37] on a range of tasks.

2 Background and Related Work
Conditional Random Fields (CRFs) are often used to represent correlations between
variables [36]. Mean Field inference is a means to approximate them in a computation-
ally efficient way. We briefly review both techniques below.

2.1 Conditional Random Fields
Let X = (X1, . . . , XN ) represent hidden variables and I an image evidence. A CRF
relates the ones to the others via a posterior probability distribution

P (X | I) = exp (−E(X | I)− log(Z(I))) , (1)

where E(X | I) is an energy function that is the sum of terms known as potentials
φc(·) defined on a set of graph cliques c ∈ C, log(Z(I)) is the log-partition function
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that normalizes the distribution. From now on, we will omit the dependency with
respect to I.

2.2 Mean Field Inference
The set of all possible configurations of X, that we denote by X , is exponentially large,
which makes the explicit computation of marginals, Maximum-A-Posteriori (MAP) or
Z intractable and a wide range of variational methods have been proposed to approxi-
mate P (X) [19]. Among those, Mean Field (MF) inference is one of the most popular.
It involves introducing a distribution Q written as

Q(X = (x1, . . . , xN )) =

N∏
i=1

qi(xi) , (2)

where qi( . ) is a categorical discrete distribution defined for xi in a possible labels
space L. The qi are estimated by minimizing the KL-divergence

KL(Q||P ) =
∑
x∈X

Q(X = x) log
Q(X = x)

P (X = x)
. (3)

SinceQ is fully factorized, the terms of the KL-divergence can be recombined as a sum
of an expected energy, containing as many terms as there are potentials and a convex
negative entropy containing one term per variable. Optimization can then be performed
using a provably convergent gradient-descent scheme [3].

As will be shown in Section 3, this simplification sometimes comes at the cost of
downplaying the dependencies between variables. The DivMBest method [29, 4] ad-
dresses this issue starting from the following observation: When looking for an assign-
ment in a graphical model, the resulting MAP is not necessarily the best because the
probabilistic model may not capture all that is known about the problem. Furthermore,
optimizers can get stuck in local minima. The proposed solution is to sequentially
find several local optima and force them to be different from each other by introduc-
ing diversity constraints in the objective function. It has recently been shown that it
is provably more effective to solve for diverse MAPs jointly but under the same set of
constraints [20]. However, none of these methods provide a generic and practical way
to choose local constraints to be enforced over variable sub-groups. Furthermore, they
only return a set of MAPs. By contrast, our approach yields a multi-modal approxima-
tion of the posterior distribution, which is a much richer description and which we will
show to be useful.

Another approach to improving the MF approximation is to decompose it into a
mixture of product laws by “clamping” some of the variables to fixed values, and find-
ing for each set of values the best factorized distribution under the resulting determin-
istic conditioning. By summing the resulting approximations of the partition function,
one can provably improve the approximation of the true partition function [37]. This
procedure can then be repeated iteratively by clamping successive variables but is only
practical for relatively small CRFs. At each iteration, the variable to be clamped is
chosen on the basis of the graphical model weights, which requires intimate knowl-
edge about its internals, which is not always available.
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Our own approach is in the same spirit but can clamp multiple variables at a time
without requiring any knowledge of the graph structure or weights.

Finally, DivMBest approaches do not provide a way to choose the best solution
without looking at the ground-truth, except for the one of [39] that relies on training a
new classifier for that purpose. By contrast, we will show that the multi modal Bayesian
nature of our output induces a principled way to use temporal consistency to solve
directly practical problems.

3 Motivation
To motivate our approach, we present here a toy example that illustrates a typical failure
mode of the standard MF technique, which ours is designed to prevent. Fig. 1 depicts
a CRF where each pixel represents a binary variable connected to its neighbors by
attractive pairwise potentials.

For the sake of illustration, we split the grid into four zones as follows. The attrac-
tive terms are weak on left side but strong on the right. Similarly, in the top part, the
unary terms favor value of 1 while being completely random in the bottom part.

The unary potentials are depicted at the top left of Fig. 1 and the result of the
standard MF approximation at the bottom in terms of the probability of the pixels being
assigned the label 1. In the bottom right corner of the grid, because the interaction
potentials are strong, all pixels end up being assigned high probabilities of being 1 by
MF, where they could just as well have all been assigned high probabilities to be zero.
We explain below how our MMMF algorithm can produce two equally likely modes,
one with all pixels being zero with high probability and the other with all pixel being
one with high probability.

4 Multi-Modal Mean Fields
Given a CRF defined with respect to a graphical model and the probability P (X = x)
for all states in X , the state space introduced in Section 2.1, the standard MF approxi-
mation only models a single mode of the P , as discussed in Section 2.2. We therefore
propose to create a richer representation that accounts for potential multiple modes
by replacing the fully factorized distribution of Eq. 2 by a weighted mixture of such
distributions that better minimizes the KL-divergence to P .

The potential roadblock is the increased difficulty of the minimization problem. In
this section, we present an overview of our approach to solving it, and discuss its key
aspects in the following two.

Formally, let us assume that we have partitioned X into disjoint subsets Xk for
1 ≤ k ≤ K. We replace the original Mean Field (MF) approximation by one of the
form

P (X = x) ≈ QMM (X = x) =
∑
k

mkQk(x) , (4)

Qk(x) =
∏
i

qki (xi) ,
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Figure 1: A typical failure mode of MF resolved by MMMF. Grey levels indicate
marginal probabilities, under the prior (Input) and under the product laws (MF and
MMMF).

where Qk is a MF approximation for the states x ∈ Xk with individual probabilities
qki that variable i can take value xi in a set of labels L, and mk is the probability that a
state belongs to Xk.

We can evaluate the mk and qki values by minimizing the KL-divergence between
QMM and P . The key to making this computation tractable is to guarantee that we
can evaluate the qki parameters on each subset separately by performing a standard MF
approximation for each. One way to achieve that is to constrain the support of the Qk

distributions to be disjoint, that is,

∀k 6= k′, Qk′ (Xk) = 0 . (5)

In other words, each MF approximation is specialized on a subset Xk of the state space
and is computed to minimize the KL-Divergence there. In practice, we enrich our ap-
proximation by recursively splitting a set of states Xk among our partition X1, . . . ,XK

into two subsetsX 1
k andX 2

k to obtain the new partitionX1, . . . ,Xk−1,X 1
k ,X 2

k ,Xk+1, . . . ,XK ,
which is then reindexed from 1 to K+1. Initially, Xk represents the whole state space.
Then we take it to be the newly created subset in a breadth-first order until a preset
number of subsets has been reached. Each time, the algorithm proceeds through the
following steps:

• It finds groups of variables likely to have different values in different modes of the
distribution using an entropy-based criterion for the qki .

• It partitions the set into two disjoint subsets according to a clause that sets a thresh-
old on the number of variables in this group that take a specific label. X 1

k will
contain the states among Xk that meet this clause and X 2

k the others.
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• It performs an MF approximation within each subset independently to compute pa-
rameters qk,1i and qk,2i for each of them. This is done by a standard MF approxima-
tion, to which we add the disjointness constraint 5.

This yields a binary tree whose leaves are the Xk subsets forming the desired state-
space partition. Given this partition, we can finally evaluate the mk. In Section 5,
we introduce our cardinality based criterion and show that it makes minimization of
the KL-divergence possible. In Section 6, we show how our entropy-based criterion
selects, at each iteration, the groups of variables on which the clauses depend.

5 Partitioning the State Space
In this section, we describe the cardinality-based criterion we use to recursively split
state spaces and explain why it allows efficient optimization of the KL-divergence
KL(QMM‖P ), where QMM is the mixture of Eq. 4.

5.1 Cardinality Based Clamping
The state space partitionXk , 1≤k≤K introduced above is at the heart of our approxima-
tion and its quality and tractability critically depend on how well chosen it is. In [37],
each split is obtained by clamping to zero or one the value of a single binary vari-
able. In other words, given a set of states Xk to be split, it is broken into subsets
X 1

k = {x ∈ Xk|xi = 0} and X 2
k = {x ∈ Xk|xi = 1}, where i is the index of a specific

variable. To compute a Mean Field approximation to P on each of these subspaces,
one only needs to perform a standard Mean Field approximation while constraining
the qi probability assigned to the clamped variable to be either zero or one. However,
this is limiting for the large and dense CRFs used in practice because clamping only
one variable among many at a time may have very little influence overall. Pushing the
solution towards a qualitatively different minimum that corresponds to a distinct mode
may require simultaneously clamping many variables.

To remedy this, we retain the clamping idea but apply it to groups of variables
instead of individual ones so as to find new modes of the posterior while keeping
the estimation of the parameters mk and qki computationally tractable. More specif-
ically, given a set of states Xk to be split, we will say that the split into X 1

k and X 2
k is

cardinality-based if

X 1
k = {x ∈ Xk s.t.

∑
u=1...L

1(xiu = vu) ≥ C} , (6)

X 2
k = {x ∈ Xk s.t.

∑
u=1...L

1(xiu = vu) < C} , (7)

where the i1, . . . , iL denote groups of variables that are chosen by the entropy-based
criterion and v1, . . . , vL is a set of labels in L. In other words, in one of the splits,
more than C of the variables have the assigned values and in the other less than C do.
For example, for semantic segmentation X 1

k would be the set of all segmentations in
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Xk for which at least C pixels in a region take a given label, and X 2
k the set of all

segmentations for which less than C pixels do.
We will refer to this approach as cardinality clamping and will propose a practical

way to select appropriate i1, . . . , iL and v1, . . . , vL for each split in Section 6.

5.2 Instantiating the Multi-Modal Approximation
The cardinality clamping scheme introduced above yields a state space partitionXk , 1≤k≤K .
We now show that given such a partition, minimizing the KL-divergence KL(QMM‖P )
using the multi-modal approximation of Eq. 4 under the disjointness constraint, be-
comes tractable.

In practice, we relax the constraint 5 to near disjointness

∀k 6= k′, Qk′ (Xk) ≤ ε , (8)

where ε is a small constant. It makes the optimization problem better behaved and
removes the need to tightly constrain any individual variable, while retaining the ability
to compute the KL divergence up to O(ε log(ε)).

Let m̂ and q̂ stand for all the mk and qki parameters that appear in Eq. 4. We
compute them as

min
m̂,q̂

KL(QMM‖P )= min
m̂,q̂

∑
x∈X

∑
k≤K

mkQk(x) log

(
QMM (x)

P (x)

)
≡ min

m̂

∑
k≤K

mk log(mk)−
∑
k≤K

mkAk , (9)

where Ak = max
qki ,i=1...N

∑
x∈X

Qk(x) log

(
e−E(x)

Qk(x)

)
(10)

where Ak is maximized under the near-disjointness constraint of Eq. 16.
As proved formally in the supplementary material, the second equality of Eq. 9 is

valid up to a constant and after neglecting a term of order O(ε log ε) which appears
under the near disjointness assumption of the supports. Given the Ak terms of Eq. 10
and under the constraints that the mixture probabilities m̂ sum to one, we must have

mk =
eAk∑

k′≤K
eAk′

, (11)

and we now turn to the computation of these Ak terms. We formulate it in terms of a
constrained optimization problem as follows.

5.2.1 Handling Two Modes

Let us first consider the case where we generate only two modes modeled by Q1(x) =∏
q1i (xi) and Q2(x) =

∏
q2i (xi) and we seek to estimate the q1i probabilities. The q2i

probabilities are evaluated similarly.
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Recall from Section 5.2 that the q1i must be such that the A1 term of Eq. 10 is
maximized subject to the near disjointness constraint of Eq. 16, which becomes

Q1

( ∑
u=1...L

1(Xiu = vu) < C

)
≤ ε , (12)

under our cardinality-based clamping scheme defined by Eq. 7. Performing this maxi-
mization using a standard Lagrangian Dual procedure [8] requires evaluating the con-
straint and its derivatives. Despite the potentially exponentially large number of terms
involved, we can do this in one of two ways. In both cases, the Lagrangian Dual proce-
dure reduces to a series of unconstrained Mean Field minimizations with well known
additional potentials.

1. When C is close to 0 or to L, the Lagrangian term can be treated as a specific
form of pattern-based higher-order potentials, as in [35, 13, 21, 1].

2. When C is both substantially greater than zero and smaller than L, we treat∑
u=1...L 1(Xiu = vu) as a large sum of independent random variables un-

der Q1. We therefore use a Gaussian approximation to replace the cardinality
constraint by a simpler linear one, and finally add unary potentials to the MF
problem. Details are provided in the supplementary material.

We will encounter the first situation when tracking pedestrians and the second when
performing semantic segmentation, as will be discussed in the results section.

5.2.2 Handling an Arbitrary Number of Nodes

Recall from Section 5 that, in the general case, there can be an arbitrary number of
modes. They correspond to the leaves of a binary tree created by a succession of
cardinality-based splits. Let us therefore consider mode k for 1 ≤ k ≤ K. Let B
be the set of branching points on the path leading to it. The near disjointness 16, can
be enforced with only |B| constraints. For each b ∈ B, there is a list of variables
ib1, . . . , i

b
Lb , a list of values vb1, . . . , v

b
Lb , a cardinality threshold Cb, and a sign for the

inequality ≥b that define a constraint

Qk

( ∑
u=1...Lb

1(Xibu
= vbu) ≥b C

b

)
≤ ε (13)

of the same form as that of Eq. 12. It ensures disjointness with all the modes in the
subtree on the side of b that mode k does not belong to. Therefore, we can solve
the constrained maximization problem of Eq. 10, as in Section 5.2.1, but with |B|
constraints instead of only one.

6 Selecting Variables to Clamp
We now present an approach to choosing the variables i1, . . . , iL and the values v1, . . . , vL,
which define the cardinality splits of Eqs. 6 and 7, that relies on phase transitions in the
graphical model.
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To this end, we first introduce a temperature parameter in our model that lets us
smooth the probability distribution we want to approximate. This well known param-
eter for physicists [18] was used in a different context in vision by [28]. We study its
influence on the corresponding MF approximation and how we can exploit the resulting
behavior to select appropriate values for our variables.

6.1 Temperature and its Influence on Convexity
We take the temperature T to be a number that we use to redefine the probability
distribution of Eq. 1 as

PT (x) =
1

ZT
e
−

1

T
E(x)

, (14)

where ZT is the partition function that normalizes PT so that its integral is one. For
T = 1, PT reduces to P . As T goes to infinity, it always yields the same Maximum-A-
Posteriori value but becomes increasingly smooth. When performing the MF approx-
imation at high T , the first term of the KL-Divergence, the convex negative entropy,
dominates and makes the problem convex. As T decreases, the second term of the KL-
Divergence, the expected energy, becomes dominant, the function stops being convex,
and local minima can start to appear. In the supplementary material, we introduce a
physics-inspired proof that, in the case of a dense Gaussian CRF [23], we can approx-
imate and upper-bound, in closed-form, the critical temperature Tc at which the KL
divergence stops being convex. We validate experimentally this prediction, using di-
rectly the denseCRF code from [23]. This makes it easy to define a temperature range
[1, Tmax] within which to look for Tc. For a generic CRF, no such computation may be
possible and the range must be determined empirically.

6.2 Entropy-Based Splitting
We describe here our approach to splitting X into X1 and X2 at the root node of the
tree. The subsequent splits are done in exactly the same way. The variables to be
clamped are those whose value change from one local minimum to another so that we
can force the exploration of both minima.

To find them, we start at Tmax, a temperature high enough for the KL divergence
to be convex and progressively reduce it. For each successive temperature, we per-
form the MF approximation starting with the estimate for the previous one to speed
up the computation. When looking at the resulting set of approximations starting from
the lowest temperature ones T = 1, a telltale sign of increasing convexity is that the
assignment of some variables that were very definite suddenly becomes uncertain. In-
tuitively, this happens when the CRF terms that bind variables is overcome by the
entropy terms that encourage uncertainty. In physical terms, this can be viewed as a
local phase-transition [18].

Let T be a temperature greater than 1 and letQT andQ1 be the corresponding Mean
Field approximations, with their marginal probabilities qTi and q1i for each variable i.
To detect such phase transitions, we compute

δi(T ) = 1[H(qTi ) > hhigh]1[H(q1i ) < hlow] , (15)
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for all i, whereH denotes the individual entropy.
All variables and labels with positive δi become candidates for clamping. If there

are none, we increase the temperature. If there are several, we can either pick one at
random or use domain knowledge to pick the most suitable subset and values as will
be discussed in the Results Section.

7 Results
We first use synthetic data to demonstrate that MMMF can approximate a multi-modal
probability density function better than both standard MF and the recent approach
of [37], which also relies on clamping to explore multiple modes. We then demonstrate
that this translates to an actual performance gain for two real-world algorithms—one
for people detection [13] and the other for segmentation [9, 40]—both relying on a
traditional Mean Field approach. We will make all our code and test datasets publicly
available.

The parameters that control MMMF are the number of modes we use, the cardi-
nality threshold C at each split, the ε value of Eq. 16, the entropy thresholds hlow and
hhigh of Eq. 15, and the temperature Tmax introduced in Section 6. In all our exper-
iments, we use ε = 10−4, hlow = 0.3, and hhigh = 0.7. As discussed in Section 6,
when the CRF is a dense Gaussian CRF, we can approximate and upper bound the
critical temperature Tc in closed-form and we simply take Tmax to be this upper bound
to guarantee that Tmax > Tc. Otherwise, we choose Tmax empirically on a small
validation-set and fix it during testing.

7.1 Synthetic Data
To demonstrate that our approach minimizes the KL-Divergence better than both stan-
dard MF and the clamping one of [37], we use the same experimental protocol to
generate conditional random fields with random weights as in [12, 38, 37]. Our task
is then to find the MMMF approximation with lowest KL-Divergence for any given
number of nodes. When that number is one, it reduces to MF. Note that the authors
of [37] look for an approximation of the log-partition function, which is strictly the
same as minimizing the KL-Divergence, as demonstrated in the supplementary mate-
rial. Because it involves randomly chosen positive and negative weights, this problem
effectively mimics difficult real-world ones with repulsive terms, uncontrolled loops,
and strong correlations.

In Fig. 2, we plot the KL-Divergence as a function of the number of modes used
to approximate the distribution on the standard benchmarks. These modes are ob-
tained using either our entropy-based criterion as described in Section 6, or the MaxW
one of [37], which we will refer to as BASELINE-MAXW. It involves sequentially
clamping the variable having the largest sum of absolute values of pairwise potentials
for edges linking it to its neighbors. It was shown to be one of the best methods among
several others, which all performed roughly similarly. In our experiments, we
used the phase-transition criterion of Section 6 to select candidate variables to clamp.
We then either randomly chose the group of L variables to clamp or used the MaxW
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criterion of [37] to select the best L variables. We will refer to the first as OURS-
RANDOM and to the second as OURS-MAXW. Finally, in all cases, C = L and the
values vu correspond to the ones taken by the MAP of the mode split.

In Fig. 2, we plot the resulting curves for L = 1 and L = 3, evaluated on 100
instances. OURS-RANDOM performs better than the method BASELINE-MAXW
in most cases, even though it does not use any knowledge of the CRF internals, and
OURS-MAXW, which does, performs even better. The results on the 13 × 13 grid
demonstrate the advantage of clamping variables by groups when the CRF gets larger.

Mixed grid Attractive grid Mixed random Attractive random

Figure 2: KL-divergence using either our clamping method or that of [37] averaged
over 100 trials. The vertical bars represent standard deviations. Attractive means that
pairwise terms are drawn uniformly from [0, 6] whereas Repulsive means drawn from
[−6, 6]. Grid indicates a grid topology for the CRF, whereas Random indicates that
the connections are chosen randomly such that there are as many as in the grids. We
ran our experiments with both 7× 7 and 13× 13 variables CRFs.

7.2 Multi-modal Probabilistic Occupancy Maps
The Probabilistic Occupancy Map (POM) method [13] relies on Mean Field inference
for pedestrian detection. More specifically, given several cameras with overlapping
fields of view of a discretized ground plane, the algorithm first performs background
subtraction. It then estimates the probabilities of occupancy at every discrete location
as the marginals of a product law minimizing the KL divergence from the “true” condi-
tional posterior distribution, formulated as in Eq. 1 by defining an energy function. Its
value is computed by using a generative model: It represents humans as simple cylin-
ders projecting to rectangles in the various images. Given the probability of presence or
absence of people at different locations and known camera models, this produces syn-
thetic images whose proximity to the corresponding background subtraction images is
measured and used to define the energy.

This algorithm is usually very robust but can fail when multiple interpretations of
a background subtraction image are possible. This stems from the limited modeling
power of the standard MF approximation, as illustrated in the supplementary material.
We show here that, in such cases, replacing MF by MMMF while retaining the rest of
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the framework yields multiple interpretations, among which the correct one is usually
to be found.

Fig. 3 depicts what happens when we replace MF by MMMF to approximate the
true posterior, while changing nothing else to the algorithm. To generate new branches
of the binary tree of Section 5, we find potential variables to clamp as described in
Section 6. Among those, we clamp the one with the largest entropy gap—H(qTi ) −
H(q1i ), using the notations of Eq. 15—and its neighbors on the grid. When evaluating
our cardinality constraint, we take C to be 1, meaning that one branch of the tree
corresponds to no one in the neighborhood of the selected location and the other to at
least one person being present in this neighborhood. Since we typically create those
locations by discretizing the ground plane into 10cm× 10cm grid cells, this forces the
two newly instantiated modes to be significantly different as opposed to featuring the
same detection shifted by a few centimeters. In Fig. 3, we plot the results as dotted
curves representing the MODA scores as functions of the distance threshold used to
compute them [6]. In all cases, we used 4 modes for the MMMF approximation and
followed the DivMBest evaluation metric [4] to produce a score by selecting among
the 4 detection maps corresponding to each mode the one yielding the highest MODA
score. This produces red dotted MMMF curves that are systematically above the blue
dotted MF.

However, to turn this improvement into a practical technique, we need a way to
choose among the 4 possible interpretations without using the ground truth. We use
temporal consistency to jointly find the best sequence of modes, and reconstruct trajec-
tories from this sequence. In the original algorithm, the POMs computed at successive
instants were used to produce consistent trajectories using the a K-Shortest Path (KSP)
algorithm [5]. This involves building a graph in which each ground location at each
time step corresponds to a node and neighboring locations at consecutive time steps
are connected. KSP then finds a set of node-disjoint shortest paths in this graph where
the cost of going through a location is proportional to the negative log-probability of
the location in the POM [33]. Since MMMF produces multiple POMs, we then solve
a multiple shortest-path problem in this new graph, with the additional constraint that
at each time step all the paths have to go through copies of the nodes corresponding to
the same mode, as described in more details in the supplementary material.

The solid blue lines in Fig. 3 depict the MODA scores when using KSP and the red
ones the multi-modal version, which we label as KSP∗. The MMMF curves are again
above the MF ones. This makes sense because ambiguous situations rarely persist for
more than a few a frames. As a result, enforcing temporal consistency eliminates them.

7.3 Multi-Modal Semantic Segmentation
CRF-based semantic segmentation is one of best known application of MF inference
in Computer Vision and many recent algorithms rely on dense CRF’s [23] for this pur-
pose. We demonstrate here that our MMMF approximation can enhance the inference
component of two such recent algorithms [9, 40] on the Pascal VOC 2012 segmentation
dataset and the MPI video segmentation one [15].
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Figure 3: Replacing MF by MMMF in the POM algorithm [13]. The blue curves are
MODA scores [6] obtained using MF and the red ones scores using MMMF. They
are shown as solid lines when temporal consistency was enforced and as dotted lines
otherwise. Note that the red MMMF lines are above corresponding blue MF ones in
all cases. (a) 1000 frames from the MVL5 [26] dataset using a single camera. (b) 400
frames from the Terrace dataset [5] using two cameras. (c) 80 frames of the EPFL-Lab
dataset [5] using a single camera. (d) 80 frames from the EPFL-Lab dataset [5] using
two cameras.

Individual VOC Images We write the posterior in terms of the CRF of [9], which
we try to approximate. To create a branch of the binary tree of Section 5, we first find
the potential variables to clamp as described in Section 6. As in 7.2, we select the ones
in the sliding window with the largest entropy gap,H(qTi )−H(q1i ). We then take C to
be L/2 when evaluating our cardinality constraint, meaning that we seek the dominant
label among the selected variables and split the state space into those for which more
than half these variables take this value and those in which less than half do.

Fig. 4 illustrates the results on an image of the VOC dataset. To evaluate such re-
sults quantitatively, we first use the DivMBest metric [4], as we did in Section 7.2. We
assume we have an oracle that can select the best mode of our multi-modal approxi-
mation by looking at the ground truth. Fig. 5 depicts the results on the validation set
of the VOC 2012 Pascal dataset in terms of the average intersection over union (IU)
score as a function of the number of modes. When only 1 mode is used, the result boils
down to standard MF inference as in [9]. Using 32 yields a 2.5% improvement over the
MF approximation. This may seem small until one considers that we only modify the
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(a) (b)

(c) (d)

Figure 4: Qualitative semantic segmentation. (a) Original image. (b) Entropy gap. (c)
Labels with maximum a Posteriori Probability after MF approximation. (d) Labels with
maximum a Posteriori Probability for the best mode of the MMMF approximation.

algorithm’s inference engine and leave the unary terms unchanged. In [9, 41], this en-
gine has been shown to contribute approximately 3% to the overall performance, which
means that we almost double its effectiveness. For analysis purposes, we implemented
two baselines:

• Instead of clamping groups of variables, we only clamp the variable with the
maximum entropy gap at each step. As depicted by the red curve in Fig. 5, this
has absolutely no effect and illustrates the importance of clamping groups of
variable instead of single ones as in [37].

• The DivMBest approach [4] first computes a MAP and then adds a penalty term
to the energy function to find another MAP that is different from the first. It
then repeats the process. We adapted this approach for MF inference. The green
curve in Fig. 5 depicts the result, which MMMF outperforms by 1.5%.

Semantic Video Segmentation. We ran the same experiment on the images of the
MPI video segmentation dataset [15] using the CRF of [40]. In this case, we can
exploit temporal consistency to avoid having to use an oracle and nevertheless get an
exploitable result, as we did in Section 7.2. Furthermore, we can do this in spite of the
relatively low frame-rate of about 1Hz.
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IU
score for the best mode

Figure 5: Quantitative semantic segmentation on VOC 2012. IU score for best mode
as a function of the number of modes. MMMF in blue, baselines in red and green.

Method Mean IOU
MF 44.9%
[37] + Temp 44.9%
MMMF + Temporal 47.3%
MMMF-Best 53.2%

Table 1: Quantitative semantic segmentation MPI dataset [15].

More specifically, we first define a compatibility measure between consecutive
modes based on label probabilities of matching key-points, which we compute using a
key-point matching algorithm [30]. We then compute a shortest path over the sequence
of modes, taking into account individual mode probabilities given by Eq. 11. Finally,
we use only the MAP corresponding to the mode chosen by the shortest path algorithm
to produce the segmentation. In Fig. 1, we again report the results in terms of IU score.
This time the improvement is around 2.4%, which indicates that imposing temporal
consistency very substantially improves the quality of the inference. To the best of our
knowledge, other state of the art video semantic segmentation methods are not appli-
cable for such image sequences. [17] requires non-moving scenes and a super-pixel
decomposition, which prevents using all the dense CRF-based image segmentors. [24]
was only applied to street scenes and requires a much higher frame rate to provide an
accurate flow estimation.
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8 Conclusion
We have shown that our MMMF aproach makes it possible to add structure to the
standard MF approximation of CRFs and to increase the performance of algorithms that
depend on it. In effect, our algorithm creates several alternative MF approximations
with probabilities assigned to them, which effectively models complex situations in
which more than one interpretation is possible.

Since MF has recently been integrated into structured learning architectures through
the Back Mean-Field procedure [11, 25, 41, 1], future work will aim to replace MF by
MMMF in this context as well.
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Appendices
A Proofs for Multi-Modal Mean-Fields via Cardinality-

Based Clamping
This document provides technical details and proofs related to Section 5. We first
prove the approximation of the KL-Divergence used in Eq. 9. Then, we show that the
problem that we are trying to solve in Eq. 9, the minimization of the KL-Divergence,
is actually equivalent to the one solved by [37], namely, finding an approximation to
the log-partition function. It eventually justifies the benchmark experiments ran in
7.1. Finally, we justify the Gaussian approximation used in the case of large clamping
groups in 5.2.1-(2).

A.1 Minimising the KL-Divergence
Let us see how the KL-Divergence between QMM and P of Eq. 3 can be minimised
with respect to the parameters mk and to the distributions Qk, leading to Eq. 9. We
reformulate the minimisation problem up to a constant approximation factor of order
ε log(ε).

First, remember that our minimisation problem enforces the near-disjointness con-
dition,

∀k 6= k′
∑
x∈X ′

k

Qk(x) ≤ ε , (16)

between the elements of the mixture.
Let us then prove the following useful Lemma.

Lemma A.1 For all mixture element k ≤ K,

∑
x∈X

Qk(x) log

∑
k′≤K

mk′Qk′(x)

 =
∑
x∈X

Qk(x) log (mkQk(x)) +O(ε log ε) .

(17)

Proof Let k be the index of a mixture component k ≤ K, and let us denote the ap-
proximation error

δk =
∑
x∈X

Qk(x) log

∑
k′≤K

mk′Qk′(x)

−∑
x∈X

Qk(x) log (mkQk(x)) . (18)

Then, we use the near-disjointness condition to bound δk,

δk ≤
∑
x∈Xk

Qk(x) log

1 +

∑
k′ 6=k

mk′Qk′(x)

Qk(x)


︸ ︷︷ ︸

I

+
∑

x∈X\Xk

Qk(x) log

1 +

∑
k′ 6=k

mk′Qk′(x)

Qk(x)


︸ ︷︷ ︸

J

(19)
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We first use the well known inequality log(1 + x) ≤ x in order to upper bound I ,

I ≤
∑
x∈Xk

Qk(x)

∑
k′ 6=k

mk′Qk′(x)

Qk(x)
(20)

≤
∑
k′ 6=k

∑
x∈Xk

mk′Qk′(x) (21)

≤
∑
k′ 6=k

ε (22)

≤ O(ε) . (23)

The second term, J , can then be upper-bounded using the fact that the mk′ and Qk′ are
mixture weights and probabilities and hence

∑
k′ 6=k

mk′Qk′(x) ≤ 1 for all x. Therefore,

J ≤
∑

x∈X\Xk

Qk(x) log

(
1 +

1

Qk(x)

)
(24)

≤
∑

x∈X\Xk

−Qk(x) log (Qk(x)) (25)

≤
∑
k′ 6=k

∑
x∈Xk′

−Qk(x) log (Qk(x)) . (26)

Furthermore, for all k′ 6= k, the near-disjointness condition enforces that
∑

x∈Xk′

Qk(x) ≤

ε. Under this constraint, on each of the subsets Xk′ , the maximal entropy is reached if
Qk(x) =

ε

| Xk′ |
for all x in Xk′ . And, therefore

∑
x∈Xk′

−Qk(x) log (Qk(x)) ≤ ε log

(
| X ′k |
ε

)
(27)

≤ O(ε log ε) +O(ε) , (28)

where the factor log(| Xk |), which is of the order of the number of variables, has been
integrated in the constant.

Hence,

J ≤
∑
k′ 6=k

∑
x∈Xk′

−Qk(x) log (Qk(x)) (29)

≤ O(ε log ε) +O(ε) , (30)
(31)

which terminates the proof.
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We can then move on to the minimisation of the KL-Divergence

min
m̂,q̂

KL(QMM‖P ) = min
m̂,q̂

∑
x∈X

∑
k≤K

QMM (x) log

(
QMM (x)

P (x)

)
(32)

= min
m̂,q̂

∑
x∈X

∑
k≤K

QMM (x) log

(
QMM (x)

e−E(x)

)
+ log(Z) (33)

= min
m̂,q̂

∑
k≤K

∑
x∈X

mkQk(x) log


∑

k′≤K
mk′Qk′(x)

e−E(x)

+ log(Z)

(34)

= min
m̂,q̂

∑
k≤K

∑
x∈X

mkQk(x) log

(
mkQk(x)

e−E(x)

)
+ log(Z) +O(ε log ε)

(35)

= min
m̂

∑
k≤K

mk logmk +
∑
k≤K

min
qk

∑
x∈X

mkQk(x) log

(
Qk(x)

e−E(x)

)+ log(Z) +O(ε log ε)

(36)

= min
m̂

∑
k≤K

mk log(mk)−
∑
k≤K

mkAk + log(Z) +O(ε log ε) ,

(37)

where,

Ak = max
qki ,i=1...N

∑
x∈X

Qk(x) log

(
e−E(x)

Qk(x)

)
.

Equation 35 is obtained using Lemma A.1.
Assuming that we are able to compute Ak, for all k, the minimisation of this KL-

Divergence with respect to parameters mk, under the nomalisation constraint∑
k≤K

mk = 1 , (38)

is then straightforward and leads to

mk =
eAk∑

k′≤K
eAk′

. (39)

A.2 Equivalence with the approximation of the partition function.
The recent work of [37], that we use as a baseline, looks for the best heuristic to choose
the clamping variables. They measure the quality of the approximation through the
closeness of the estimated partition function, which they compute as the sum of MF
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approximated partition functions for each component of the mixture, to the true one.
We will now see that this problem is strictly equivalent to the minimisation of the KL-
Divergence of Eq. 9.

Indeed, replacing 38 in 37, we directly obtain that

KL(QMM‖P ) = log(
∑
k′≤K

eAk′ ) + log(Z) +O(ε log ε) (40)

= log(Z)− log(Z̃) +O(ε log ε) , (41)

where,
Z̃ =

∑
k′≤K

eAk′ , (42)

is precisely the approximation of the partition function Z proposed by [37]. In other
terms, it is the sum of local variational lower-bounds on clamped subsets of the state
space.

A.3 Gaussian approximation to the cardinality constraint.
In the following, we explain the Gaussian approximation of the cardinality constraint
used in 5.2.1-(2) and in our application to Semantic Segmentation. Let us consider
the case where we generate only two modes modelled by Q1(x) =

∏
q1i (xi) and

Q2(x) =
∏
q2i (xi) and we seek to estimate the q1i probabilities. The q2i probabilities

are evaluated similarly.
Recall that, each Ak is obtained through the constrained MF optimisation problem

max
qki ,i=1...N

∑
x∈X

Qk(x) log

(
e−E(x)

Qk(x)

)

s.t. Q1

( ∑
u=1...L

1(Xiu = vu) < C

)
≤ ε .

(43)

Under the probabilityQ1,
∑

u=1...L

1(Xiu = vu) is a sum of independent binary ran-

dom variables that are non identically distributed, in other words, a Poisson Binomial
Distribution. In the general case, there is no closed-form formula for computing the
Cumulative Distribution Function of such a distribution from the individual marginals
parametrising Q1. However, when L is large (≥ 10), the Gaussian approximation is
good enough.

Therefore, we use a Gaussian approximation to replace the cardinality constraint
by ∑

u∈{1...L}

q1iu(vu) < C + σF−1(1− ε) , (44)

where F is the Gaussian cumulative distribution fonction and σ2 the variance, which,
in theory should be

σ2 =
∑

u∈{1...L}

q1iu(vu)(1− q1iu(vu)) , (45)
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but which can be either upper-bounded by
L

4
or re-estimated at the beginning of each

Lagrangian iteration.
In short, we replace the untractable higher order constraint 43, by a simple one

involving only the sum of the MF parameters q1iu(vu).

B Computing the Critical Temperature for the Dense
Gaussian CRFs

We first compute analytically the phase transition temperature parameter Tc of 6.2
where the KL-Divergence stops being convex. In the first part Analytical Derivation,
we make strong assumptions in order to be able to obtain a closed form estimation of
Tc. We then explain how this result helps understanding real cases. In the second part
Experimental Analysis, in order to justify our assumptions, we run experiments under
three regimes, one where our assumptions are strictly verified, one which corresponds
to a real-life scenario and an intermediate one. This set of experiments shows that our
strong assumptions provide a valuable insight for practical applications.

B.1 Analytical derivation
Let us take probability distribution P to be defined by a dense Gaussian CRF [23]. In
order to make computation tractable, we assume that the RGB distance between pixels
is uniform and equal to drgb. Therefore the RGB Kernel is constant with value

θrgb = e

−d2rgb
2σrgb . (46)

We consider the case where we have only two possible labels and the same unary
potential on all the variables. Even if this assumption sounds strong, we can expect
them to be locally valid. Formally, on a N × N dense grid, the energy function is
defined as

E(x) =
Γθrgb
2πσ2

∑
(i,j),(i′,j′)

1[x(i,j) 6= x(i′,j′)]e
−
‖(i, j)− (i′, j′)‖2

2σ

+
∑
(i,j)

U(i,j)1[x(i,j) = 0] ,

where σ controls the range of the correlations and U(i,j) is a unary potential.
Since that we assumed that all the variables receive the same unary U , all the vari-

ables are undiscernibles. Furthermore, the pairwise potentials are attractive, we there-
fore expect all the mean-field parameters qi,j = Q(xi,j = 0) to have the same value
at the fixed point solution of the Mean-Field. Therefore, we designate this common
parameter qT and we can try to find analytically the Mean-Field fixed point for qT

corresponding to a temperature T .
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At convergence, the parameter qT will have to satisfy

log(qT ) = EQ(E(x)|xi = 0)

= − Γθrgb
2πσ2T

∑
(i,j)∈Z×Z

(1− qT )e
−
‖(i, j)‖2

2σ − U

T

= − (1− qT )Γθrgb + U

T

Hence, we obtain the fixed point equation

q̃T =
1

2
tanh

(
q̃T Γθrgb − U

T

)
, (47)

where q̃T = qT − 0.5. As depicted in Figure 6, when unaries are 0 (on the left) there
are two distinct regimes for the solutions of this equation. For high T , there is only
one stable solution at q̃ = 0. For low T , there are two distinct stable solutions where
q̃ is close to −0.5 or 0.5. The temperature threshold Tc where the transition happens,
corresponds to the solution of

1

2

d tanh(
q̃Γθrgb
T

)

dq̃
|q̃=0 = 1 , (48)

and hence Tc =
Γθrgb

2
. For real images, we have θrgb ≤ 1, and therefore, Tc =

Γ

2
can

be used to upper-bound the true critical temperature.
When unaries are non-zero, there is no closed form solution for Tc, however, from

Equation 47, we can show that the smaller the unaries (U ), the lower the critical tem-
perature will be. This is intuitively justified in Fig. 6.

The authors of [37], use several heuristics which basically consist in looking for
high correlations and low unaries directly in the potentials of the graphical model, in
order to find good variables to clamp. We, instead use a criterium based on the critical
temperature in order to spot these.

B.2 Experimental analysis
We use the dense CRF implementation of [23] to verify the phase transition experimen-
tally for Γ = 10. In our experiments, we used the three following settings, which range
from the stylised example used for calculation to real semantic segmentation problems:

• Model 1: We use a uniform rgb image drgb = 0. Two classes without unary
potentials. This is exactly the model used for the derivations with θrgb = 1 and
U = 0.

• Model 2: Gaussian potentials defined over image coordinates distance + RGB
distance. Two classes without unary potentials. In other words, θrgb ≤ 1.
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Without unaries With unaries

Figure 6: tanh(
q̃Γ− U
T

) for two temperatures. Low T (blue) and High T (red).

• Model 3: Gaussian potentials defined over image coordinates distance + RGB
distance. Two classes with unary potentials produced by a CNN. This is a real-
life scenario.

Fig. 7 shows that, as expected, two regimes appear for Model 1, before and after
T = 5. We see that our prediction remains completely valid for Model 2, some non-
uniform regions fall under the regime θrgb ≤ 1 and therefore the 10 % highest entropy
percentile transitions slightly earlier. For Model 3, however, we see that the minimal
and average entropy remain low even for T > 5. This is well explained by the fact that
large regions of the image receive strong unary potentials from one class or the other,
and therefore fall under the case ”with unaries” of Fig. 6 where the U parameter cannot
be ignored. However, some uncertain regions receive unary potentials of same value
for both labels, and therefore undergo a phase transition as predicted by our calculation.
That is why the maximal entropy behaves similarly to Model 2. Our algorithm precisely
targets these uncertain regions.

Interestingly, we see that in practice, the users of DenseCRF choose the Γ and T
parameters in order to be in a Multi-Modal regime, but close to the phase transition.
For instance in the public releases of [9] and [41], the Gaussian kernel is set with
T = 1 and Γ = 3.

C K-Shortest Path algorithm for the Multi-Modal Prob-
abilistic Occupancy Maps

We present here the algorithm we use to reconstruct tracks from the Multi-Modal Prob-
abilistic Occupancy Maps (MMPOMs) of Section 7.2.

KSP In the original algorithm of [5], the POMs computed at successive instants
were used to produce consistent trajectories using the a K-Shortest Path (KSP) al-
gorithm [33]. This involves building a graph in which each ground location at each
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Model 1 Model 2 Model 3

Figure 7: Entropy as a function of temperature.

RGB Image

Model 1

Model 2

Model 3

Figure 8: Evolution of MF probability for background label when temperature in-
creases

time step corresponds to a node and neighboring locations at consecutive time steps
are connected. KSP then finds a set of node-disjoint shortest paths in this graph where
the cost of going through a location is proportional to the negative log-probability of
the location in the POM [5]. The KSP problem can be solved in linear time and an
efficient implementation is available online.

KSP for Multi-Modal POM Since MMMF produces multiple POMs, one for each
mode, at each time-step, we duplicate the KSP graph nodes, once for each mode as
well. Each node is then connected to each copy of neighboring locations from previous
and following time steps. We then solve a multiple shortest-path problem in this new
graph, with the additional constraint that at each time step all the paths have to go
through copies of the nodes corresponding to the same mode. This larger problem is
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NP-Hard and cannot be solved by a polynomial algorithm such as KSP. We therefore
use the Gurobi Mixed-Integer Linear Program solver [16].

More precisely, let us assume that we have a sequence of Multi-Modal POMs
Qt

k and mode probabilities mt
k for t ∈ {1, . . . , T} representing time-steps and k ∈

{1, . . . ,K} representing different modes. Each Qt
k is materialized through a vector of

probabilities of presence qtk,i, where each i ≤ N is indexes a location on the tracking
grid.

Using the grid topology, we define a neighborhood around each variable, which
corresponds to the maximal distance a walking person can make on a grid in one time
step. Let us denote by Ni the set of indices corresponding to locations in the neigh-
bourhood of i. The topology is fixed and hence Ni does not depend on the time steps.
We define the following log-likelihood costs.

Using a Log-Likelihood penalty, we define the following costs:

• Ct
k,i = log

(
1− qtk,i
qtk,i

)
, representing the cost of going through variable i at time

t if mode k is chosen.

• Ct
k = log

(
1−mt

k

mt
k

)
, representing the cost of choosing mode k at time t.

We solve for an optimization problem involving the following variables:

• xtk,i,l,j is a binary flow variable that should be 1 if a person was located in i at t
and moved to j at t+ 1, while modes k and l were respectively chosen at time t
and t+ 1.

• ytk is a binary variable that indicates whether mode k is selected at time t.

We can then rewrite the Multi-Modal K-Shortest Path problem as the following
program, were we always assume that t ≤ T stands for a time step, k ≤ K and l ≤ K
stand for mode indices, and i ≤ N and j ≤ N stand for grid locations:

min
∑
t,k

Ct
ky

t
k +

∑
t,k,l≤K

∑
i,j∈Ni

Ct
k,ix

t
k,i,l,j

s.t. ∀(t, k, i) ,
∑

l,j∈Ni

xt−1l,j,k,i =
∑

l,j∈Ni

xtk,i,l,j flow conservation

∀(t, k, i) ,
∑

l,j∈Ni

xtk,i,l,j ≤ ytk disjoint paths + selected mode

∀t ,
∑
k

ytk = 1 selecting one mode

∀t, k, i, l, j , 0 ≤ xtk,i,l,j ≤ 1

∀t, k , ytk ∈ {0, 1}
(49)
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Figure 9: Illustration of the output of our K-Shortest Path algorithm in the case of
multiple modes.

KSP prunning However, the problem as written above, may involve several tens
millions of flow variables and therefore becomes intractable, even for the best MILP
solvers. We therefore first prune the graph to drastically reduce its size.

The obvious strategy would be by thresholding the POMs and removing all the
outgoing and incoming edges from locations which have probabilities below qthresh.
However, this would be self-defeating as one of the main strengths of the KSP formu-
lation is to be very robust to missing-detections and be able to reconstruct a track even
if a detection is completely lost for several frames.

We therefore resort to a different strategy. More precisely, we initially relax the con-
straint disjoint paths + selected mode, to a simple disjoint path con-
straint, and remove the constraint selecting one mode. We therefore obtain a
relaxed problem

min
∑
t,k

∑
t,k,l≤K

∑
i,j∈Ni

Ct
k,ix

t
k,i,l,j

s.t. ∀(t, k, i) ,
∑

l,j∈Ni

xt−1l,j,k,i =
∑

l,j∈Ni

xtk,i,l,j flow conservation

∀(t, k, i) ,
∑

l,j∈Ni

xtk,i,l,j ≤ 1 disjoint paths

∀t, k, i, l, j , 0 ≤ xtk,i,l,j ≤ 1
(50)

which is nothing but a vanilla K-Shortest Path Problem. It can be solved using our
linear-time KSP algorithm. This KSP problem will output a very large number of paths,
going through all the different modes simultaneously. From, this output, we extract the
set of grid locations which are used, in any mode, at each time step, and select them as
our potential locations in the final program. In our current implementation, we add to
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these locations, the ones for which qtk,i ≥ qthresh for any mode at time-step t.
We can finally solve Program 49, where non-selected locations are pruned from the

flow graph. We don’t know if our strategy, based on a relaxation and pruning, provides
a guaranteed optimal solution to 49, but this is an interesting question.

D Pseudo-code for the Multi-Modal Mean-Fields algo-
rithm

Algorithm D summarises the operations to split one mode into two, or, in other words,
to obtain the two additional constraints which are used to define the two newly created
subsets. Algorithm 2 summarises the operations to obtain the Multi-Modal Mean Field
Distribution by constructing the whole Tree.

In Algorithm 2, ConstraintTree, is taken to be a Tree in the form of a list of
constraints, one for each branching-point, or leaf,—except for the root—, in a breadth
first order. The function pathto(nNode), returns the set of indices corresponding
to the branching points on the path to the branching point, or leaf with index nNode,
including index nNode itself.
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Algorithm 1 Function:Split(ConstraintList)

Input:
E(x): An Energy function defined by a CRF;
SolveMF(E,ConstraintList): A Mean Field solver with cardinality constraint.;
Temperatures: A list of temperatures in increasing order;
Hlow,Hhigh: Entropy thresholds for the phase transition. 0.3 and 0.6 here.
C: A cardinality threshold
Output:
LeftConstraints: A triplet containing a list of variables, clamped to value, -C
RightConstraints: A triplet containing a list of variables, clamped to value, C

QT0 ← SolveMF(E)
for T in Temperatures do

QT ← SolveMF(
E

T
,ConstraintList)

ilist ← [.]
vlist ← [.]
for index in 1 . . .len(Qt), v in labels do

if 1[H(qTindex) > 0.6]1[H(qT0

index) < 0.3]1[qT0

index,v > 0.5] = 1 then
ilist.append(index),vlist.append(v)

end if
end for
if len(ilist) > 0 then
exit for loop

end if
end for
LeftConstraints = ilist, vlist,−C
RightConstraints = ilist, vlist, C
return LeftConstraints,RightConstraints
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Algorithm 2 Compute Multi-Modal Mean Field
Input:
E(x): An Energy function defined on a CRF;
SolveMF(E,ConstraintList): A Mean Field solver with cardinality constraint;
Split(ConstraintList): Alg. D. A function that computes the new constraints.
NModes: A target for the number of modes in the Multi-Modal Mean Field
Output:
Qlist: A list of Mean Field distributions in the form of a table of marginals
mlist: A list of probabilities, one for each mode

ConstraintTree = [.]
We first build the tree by adding constraints.
while nNode < NModes do
ConstraintList = [.]
for p in pathto(nNode) do
ConstraintList.append(ConstraintTree[p])

end for
LeftConstraints,RightConstraints← Split(ConstraintList)
ConstraintTree.append(LeftConstraints)
ConstraintTree.append(RightConstraints)

end while
We now turn to the computation of on MF distribution per leaf.
Qlist = [.], Zlist = [.],mlist = [.]
for mode in 0 . . . NModes do
ConstraintList = [.]
for p in pathto(mode+NModes− 1) do
ConstraintList.append(ConstraintTree[p])

end for
Q,Z← SolveMF(E,ConstraintList)
Qlist.append(Q)
Zlist.append(Z)

end for
Finally, we compute the mode probabilities.
for mode in 0 . . . NModes do
mlist.append(

Zlist[mode]∑
Zlist

)

end for
return Qlist, mlist
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