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Abstract

We propose an approach for semi-automatic annotation
of object instances. While most current methods treat ob-
ject segmentation as a pixel-labeling problem, we here cast
it as a polygon prediction task, mimicking how most current
datasets have been annotated. In particular, our approach
takes as input an image crop and sequentially produces ver-
tices of the polygon outlining the object. This allows a hu-
man annotator to interfere at any time and correct a vertex
if needed, producing as accurate segmentation as desired
by the annotator. We show that our approach speeds up the
annotation process by a factor of 4.7 across all classes in
Cityscapes, while achieving 78.4% agreement in IoU with
original ground-truth, matching the typical agreement be-
tween human annotators. For cars, our speed-up factor is
7.3 for an agreement of 82.2%. We further show general-
ization capabilities of our approach to unseen datasets.

1. Introduction
Semantic image segmentation has been receiving signif-

icant attention in the community [5, 17]. With new bench-
marks such as Cityscapes [6], object instance segmentation
is also gaining steam [14, 24, 34, 21, 29]. Most of the re-
cent approaches are based on neural networks, achieving
impressive performance for these tasks [5, 17, 10, 21]. Deep
learning approaches are, however, data hungry and their
performance is strongly correlated with the amount of avail-
able training data. This requires the community to annotate
large-scale datasets which is both time consuming and ex-
pensive. Our goal in this paper is to make this process faster,
while yielding ground-truth as precise as the one available
in the current datasets.

There have been several attempts at reducing the depen-
dency on very detailed annotation such as object segmen-
tation masks. In the weakly-supervised setting, approaches
aim at learning segmentation models from weak annotation
such as image tags or bounding boxes [13, 31, 11]. In [15],
the authors rely on scribbles, one on each object, while [1]
requires only a single point on the object. While these ap-

Figure 1. Given a bounding box, we automatically predict the
polygon outlining the object instance inside the box, using our
Polygon-RNN. Our method is designed to facilitation annotation,
and easily incorporates user corrections of points to improve the
overall object’s polygon. Our method cuts down the number of
required annotation clicks by a factor of 4.74.

proaches hold promise, their performance is not yet compet-
itive with fully supervised approaches. Other work exploits
easier-to-obtain ground-truth such as bounding boxes, and
produces (noisy) labeling inside each box with a GrabCut
type of approach [25, 4]. It has been shown that such an-
notation can serve as useful auxilary data to train neural
segmentation networks [36, 29]. Yet, these segmentations
cannot be used as official ground-truth for a benchmark due
to its inherent imprecisions.

Most of the large-scale segmentation datasets have been
collected by having annotators outline the objects with a
polygon [8, 18, 16, 6, 37]. Since typically objects are con-
nected and without holes, polygons provide a way of anno-
tating an object with a relatively small number of clicks,
typically around 30 to 40 per object. In this paper, we
propose an interactive segmentation method that produces
highly accurate and structurally coherent object annota-
tions, and reduces annotation time by a factor of 4.7.

Given a ground-truth bounding box, our method gener-
ates a polygon outlining the object instance using a Recur-
rent Neural Network, which we call Polygon-RNN. Our ap-
proach takes as input an image crop and sequentially pro-
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duces vertices of the polygon outlining the object. This
allows a human annotator to interfere at any time and cor-
rect a vertex if needed, producing as accurate segmentations
as desired by the annotator. We show that our annotation
approach speeds up annotation process by factor of 4.7,
while achieving 78.4% agreement with original ground-
truth, matching the typical agreement of human annotators.
We plan to release our code and create a web-annotation
interface running our model at the backend. Please re-
fer to our project page: http://www.cs.toronto.edu/
polyrnn. We hope this will cut down annotation time and
cost of segmentation benchmarks in the future.

2. Related Work
Our approach is related to work on semi-automatic im-

age annotation and object instance segmentation.
Semi-automatic annotation. There has been significant

effort at making pixel-level image labeling faster for the
annotators. In [2], the authors used scribbles as seeds to
model the appearance of foreground and background, and
performed segmentation via graph-cuts by combining ap-
pearance cues and a smoothness term [3]. [19] uses multi-
ple scribbles on the object and background and exploits mo-
tion cues to annotate an object in a video. Scribbles were
also recently used in [15] to train CNNs for semantic im-
age segmentation. GrabCut [25] exploits annotations in the
form of 2D bounding boxes, and performs per-pixel label-
ing with foreground/background models using EM. Build-
ing on top of this idea, [23] combined GrabCut with CNN
to segment medical images. In [4], the authors exploited
3D bounding boxes and a point cloud to facilitate labeling.
A different type of approach has been to exploit multiple
bounding boxes and perform co-segmentation [13, 11].

Since most of these approaches define a graphical model
at the pixel-level, with the smoothness term as the main
relation among pixels, it is hard to incorporate shape pri-
ors. These are particularly important in ambiguous regions
caused by shadows, image saturation or low-resolution of
the object. Furthermore, nothing prevents these models to
provide labelings with holes. If the method makes mistakes
in outlining the object, the human annotator has a hard and
tedious work to correct for such mistakes. Thus, these meth-
ods have mainly been used to produce additional, yet noisy
training examples, but their output is typically not accurate
enough to serve as official ground-truth of a benchmark.

Annotation tools. [32] labeled clothing in images by
performing annotation at the superpixel-level. This makes
the labeling process more efficient, but inherently depends
on the superpixel scale and thus typically merges small ob-
jects or parts. This issue was somewhat resolved in [22] by
labeling videos at multiple superpixel scales.

Object instance segmentation. Our work is also re-
lated to object instance segmentation. Most of these ap-

proaches [14, 24, 36, 34, 20, 21] operate on the pixel-level,
typically exploiting a CNN inside a box or a patch to per-
form the labeling. Work most related to ours is [35, 28]
which aims to produce a polygon around an object. These
approaches start by detecting edge fragments and find an
optimal cycle that links the edges into a coherent region.
In [7], the authors propose a method that produces super-
pixels in the from of small polygons which they combine
into object regions with the aim to label aerial images. In
our work, we predict the polygon around the object directly,
using a carefully designed RNN.

3. Polygon-RNN
Our goal is to create an efficient annotation tool for label-

ing object instances with polygons. As is typical in an anno-
tation setting, we assume that the user provides the bound-
ing box around the object. Given the image patch inside
the box, our method predicts a (closed) polygon outlining
the object using a Recurrent Neural Network. We allow the
user to correct a predicted vertex of the polygon at any time
step if needed, which we integrate in our prediction task.

We parametrize the polygon as a sequence of 2D vertices
(ct)t∈N, c ∈ R2. We assume the polygon is closed, i.e.,
there is an edge between any two consecutive vertices, as
well as the last and the first vertices. Note that a closed poly-
gon is a cycle and thus has multiple equivalent parametriza-
tions obtained by choosing any of the vertices as the begin-
ning of the sequence, as well as selecting the orientation of
the sequence. Here, we fix the polygon to always follow the
clockwise orientation, but the starting point of the sequence
can be any of the vertices.

Our model is an RNN, that predicts a vertex at every time
step. As input in each step of the RNN we use a CNN rep-
resentation of the image crop, as well as the vertices pre-
dicted one and two time steps ago, plus the first point. By
explicitly providing information of the past two points we
help the RNN to follow a particular orientation of the poly-
gon. On the other hand, the first vertex helps the RNN to
decide when to close (finish) the polygon. We train the
RNN+CNN model end-to-end. This essentially helps the
CNN to be fine-tuned to object boundaries, while the RNN
learns to follow these boundaries and exploits its recurrent
nature to also encode priors on object shapes. Our model
thus returns a structurally coherent representation of the ob-
ject. We name our model Polygon-RNN.

Figure 2 shows the overview of the model. We next de-
scribe each component of the model in more detail.

3.1. Model Architecture
We start by providing details on the image representation

via a CNN, and then explain the design of the RNN.

http://www.cs.toronto.edu/polyrnn
http://www.cs.toronto.edu/polyrnn


Figure 2. Our Polygon-RNN model. At each time step of the RNN-decoder (right), we feed in an image representation using a modified
VGG architecture. Our RNN is a two-layer convolutional LSTM with skip-connection from one and two time steps ago. At the output at
each time step, we predict the spatial location of the new vertex of the polygon.

3.1.1 Image Representation via a CNN with Skip Con-
nections

We adopt the VGG-16 architecture [27] and modify it for
the purpose of our task. We first remove the fully connected
layers as well as the last max-pooling layer, pool5. The out-
put of this modified network has a downsampling factor of
16. We then add additional convolutional layers with skip-
connections that fuse information from the previous layers
and upscale the output by factor of 2 (downsampling factor
of 8 wrt to the original size of the image crop, which is al-
ways scaled to 224× 224). This allows the CNN to extract
features that contain both low-level information about the
edges and corners, as well as semantic information about
the object. The latter helps the model to “see” the object,
while the former helps it to follow the object’s boundaries.

We employ a similar architecture for the skip-
connections as the one in [21]. The design guideline is to
first process the features in the skip-layers using another
convolutional layer, then concatenate all outputs, and fi-
nally process this concatenated feature using another con-
volutional layer. We employ convolutional filters with a
kernel size of 3×3, followed by a ReLU non-linearity. Con-
catenation layers join the channels of different outputs into
a single tensor. Since we use features from multiple skip-
layers which have different spatial dimensions, we employ
bilinear upsampling or max-pooling in order to get outputs
that all have the same spatial resolution. We refer the reader
to Fig. 2 for a visualization and further details about the ar-
chitecture (the CNN is highlighted in green).

3.1.2 RNN for Vertex Prediction
An RNN is a powerful representation of time-series data,
as it carries more complex information about the history by
employing linear and non-linear functions. In our case, we
hope the RNN to capture the shape of the object and thus
make coherent predictions even in ambiguous cases such as

for example shadows and saturation.
In particular, we employ a Convolutional LSTM [30] in

our model, and use it as a decoder. ConvLSTMs operate
in 2D, which allows us to preserve the spatial information
received from the CNN. Furthermore, a ConvLSTM em-
ploys convolutions, thus greatly reducing the number of pa-
rameters to be learned compared to using a fully-connected
RNN. In its simplest form, a ConvLSTM (single layer)
computes the hidden state ht given the input xt according
to the following equations:

it
ft
ot

gt

 = Wh ∗ ht−1 +Wx ∗ xt + b (1)

ct = σ(ft)� ct−1 + σ(it)� tanh(gt)

ht = σ(ot)� tanh(ct)

Here i, f , o denote the input, forget, and output gate, h is
the hidden state and c is the cell state. σ denotes the sig-
moid function, � indicates an element-wise product and ∗
a convolution. Wh denotes the hidden-to-state convolution
kernel and Wx the input-to-state convolution kernel.

In particular, we model the polygon with a two-layer
ConvLSTM with kernel size of 3×3 and 16 channels, which
outputs a vertex at each time step. We formulate the vertex
prediction as a classification task. Specifically, we represent
our output at time step t as one-hot encoding of aD×D+1
grid, where theD×D dimensions represent the possible 2D
positions of the vertex, and the last dimension corresponds
to the end-of-sequence token (i.e., polygon is closed). The
position of the vertices are thus quantized to the resolution
of the output grid. Let yt denote the one-hot encoding of a
vertex, output at time step t.

Our ConvLSTM gets as input a tensor xt at time step t,
that concatenates multiple features: the CNN feature repre-



sentation of the image, yt−1 and yt−2, i.e., a one-hot encod-
ing of the previous predicted vertex and the vertex predicted
from two time steps ago, as well as the one-hot encoding of
the first predicted vertex y1.

Given two consecutive vertices, the next vertex on the
polygon is uniquely defined. However, this is not the case
for the first vertex, since any vertex of the polygon can serve
as a starting point (polygon is a cycle). We thus treat the
starting point as special, and predict it in the following way.
We reuse the same architecture of the CNN as in Sec. 3.1.1,
but add two layers, each of dimension D ×D. One branch
predicts object boundaries while the other takes as input the
output of the boundary-predicting layer as well as the image
features and predicts the vertices of the polygon. We treat
both, the boundary and vertices as a binary classification
problem in each cell in the output grid.

3.2. Training
To train our model we use cross-entropy at each time

step of the RNN. In order to not over-penalize the incor-
rect predictions that are close to the ground-truth vertex, we
smooth our target distribution at each time step. We assign
non-zero probability mass to those locations that are within
a distance of 2 in our D ×D output grid.

We follow the typical training regime where we make
predictions at each time step but feed in ground-truth vertex
information to the next. We train our model using the Adam
optimizer [12] with a batch size b = 8 and an initial learning
rate of λ = 1e − 4. We decay the learning rate after 10
epochs by a factor of 10 and use the default values of β1 =
0.9 and β2 = 0.999.

For the task of first vertex prediction, we train another
CNN using a multi-task loss. In particular, we use the
logistic loss for every location in the grid. As ground-
truth for the object boundaries, we draw the edges of the
ground-truth polygon, and use the vertices of the polygon
as ground-truth for the vertex layer. Our full model takes
approximately a day to train on a Nvidia Titan-X GPU.

3.3. Inference and Annotators in the Loop
Inference in our model is done by taking the vertex with

the highest log-prob at each time step of the RNN. This al-
lows for a simple annotation interface: the annotator can
correct the prediction at any time step, and we feed in the
corrected vertex to the next time-step of the RNN (instead
of the prediction). This puts the model back ”on the right
track”. Typical inference time is 250 ms per object.

3.4. Implementation details
We predict the polygon at resolution D ×D. In our ex-

periments we used D = 28, corresponding to an 8x down-
sampling factor with the input resolution and matching the
resolution of the ConvLSTM. We perform polygon simpli-
fication with zero error in the quantized grid to eliminate
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Figure 3. Distribution of instances across different sizes: The
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Figure 4. IoU vs size of instance comparing different approaches.
Here, ours is run in prediction mode.

vertices that lie on a line and to remove multiple vertices
that would fall in the same grid position as a result of the
quantization process.

We perform three different types of data augmentation:
(1) we randomly flip the image crop and the correspond-
ing polygon annotation, (2) we randomly select the amount
of context expansion (enlarging the box) between 10% and
20% of the original bounding box and (3) we randomly se-
lect the starting vertex of our polygon annotation.

4. Results
We evaluate our approach for the task of object instance

annotation on the Cityscapes dataset [6], and provide addi-
tional results on KITTI [9]. Note that in all our experiments
we assume to be given a ground-truth box around the object.
Our goal then is to provide a polygon outlining this object
as accurately as possible and with minimal number of clicks
required from the annotator. We report our performance
with the standard IOU measure, as well as the number of
vertex corrections of the predicted polygon. A box around
the object in principle requires two additional clicks. How-
ever, boxes are typically much easier and cheaper to obtain
using crowd-sourcing services such as AMT, while for most
major segmentation benchmarks, polygons have been col-
lected with high quality (in-house) annotators.

4.1. Cityscapes Dataset
We evaluate our approach on the Cityscapes instance

segmentation dataset [6]. This dataset has images taken



Split # Img. Person Rider Car Truck Bus Train Mbike Bike
Train 2711 16452 1575 24982 455 352 136 657 3400
Val. 264 1462 180 1962 27 27 32 78 258
Test 500 3395 544 4658 93 98 23 149 1167

Table 1. Number of object instances per class in Cityscapes.

Mode Car Truck Train Bike Prsn. Rider Mbike Bus Avg.
Comp-wise 24.3 27.2 23.6 24.2 27.9 31.6 29.2 26.1 26.8
Inst-wise 31.7 41.7 66.6 40.0 35.0 44.7 45.7 50.8 44.5

Table 2. Average number of vertices in polygon annotations for dif-
ferent object classes in Cityscapes.

from 27 cities in Germany and neighboring countries. It
contains 2975 training, 500 validation and 1525 test im-
ages. Since we do not have ground truth instances on the
test set, we use an alternative split, where the 500 origi-
nal validation images form our test set. We then split the
original training set and select the images from two cities
(Weimar and Zurich) as our validation, while the remaining
cities become our training set. The dataset has annotations
for eight object categories: person, rider, car, truck, bus,
train, motorcycle and bicycle. The number of instances for
each of these classes in our split is shown in Table 1. The
Cityscapes dataset has instances with a large variation in
their sizes. We show the distribution of instances for dif-
ferent lengths of the longest side of the box, in Fig. 3. We
observe a large variance, from 28 pixels to 1792 pixels.

Cityscapes provides instance segmentation ground truth
both in terms of a pixel labeling as well as in terms of poly-
gons. In the former, each pixel can correspond to at most
one instance, thus representing the visible portion of the ob-
ject. However, Cityscapes’ polygons typically also capture
some occluded parts of an instance, since the annotation
tool performed depth ordering of objects to effectively re-
move the occluded portions [6]. We process the polygons to
recreate the layering effect and obtain polygons represent-
ing only the visible portions of each object. The average
number of vertices from the resulting polygons are shown
in Table 2. Since objects can be broken into multiple com-
ponents due to occlusion, component-wise statistics treats
each component as a single example, while instance-wise
statistics treats the entire instance as an example. Based on
this statistics, we choose a hard limit of 70 time steps for our
RNN, taking also GPU memory requirements into account.

Evaluation Metrics: We measure two aspects of our pre-
dicted annotations. For evaluating their quality, we use the
intersection over union (IoU) metric, computed on a per-
instance basis, and averaging across all instances. This is a
strict measure since the small objects are penalized the same
as the large instances. For evaluating the amount of human
action required to correct our annotations, we simulate an
annotator that corrects a point each time the predicted ver-
tex deviates from the GT vertex more than a threshold. We
then report the number of corrections (measured as clicks).

4.2. Prediction Mode
We first sanity check the performance of our model with-

out any interaction from the annotator, i.e., we predict the
full polygon automatically. We will refer to this setting as
the prediction mode.

Baselines: We use the recently proposed DeepMask [20]
and SharpMask [21] as state-of-the-art baselines. Given
an input image patch, DeepMask uses a CNN to output a
pixel labeling of an object, and does so agnostic to the class.
Sharpmask extends Deepmask by clever upsampling of the
output to obtain the labeling at a much higher resolution
(160 vs 56). Note that in their original approach, [20, 21]
exhaustively sample patches at different scales over the en-
tire image. Here, we use ground-truth boxes when report-
ing performance for their approach. Further, DeepMask and
SharpMask use a 50 layer ResNet [10] architecture, which
has been trained on the COCO [16] dataset. We fine-tune
this network on our Cityscapes split in two steps. In the
first step, we fine-tune the feed-forward ResNet architec-
ture for 150 epochs, followed by fine-tuning the weights for
the Sharpmask’s upsampling layers, for 70 epochs. This
two step process is in the same spirit as that suggested in
the paper. Note that while these two approaches perform
well in labeling the pixels, their output cannot easily be cor-
rected by an annotator in cases when mistakes occur. This
is in contrast to our approach, which efficiently integrates a
human in the loop in order to get high quality annotations.

We use two additional baselines, SquareBox and Dila-
tion10. SquareBox is a simple baseline where the full box
is labeled as the object. Instead of taking the tight-fit box,
we reduce the dimensions of the box, keeping the same as-
pect ratio. Based on the validation set, we get the best re-
sults by choosing 80% of the original box. If an instance
has multiple components, we fit a box for each individual
component as opposed to using the full box. This baseline
mimics the scenario, in which the object is modeled simply
as a box rather than a polygon. For the Dilation10 base-
line, we use the segmentation results from [33], which was
trained on the Cityscapes segmentation dataset. For each
bounding box, we consider the pixels belonging to the re-
spective object category as the instance mask.

Quantitative Results: We report the IoU metric in Ta-
ble 3. We outperform the baselines in 6 out of 8 categories,
as well as in the average across all classes. We perform
particularly well in car, person, and rider, outperforming
Sharpmask by 12%, 7%, and 6%, respectively. This is par-
ticularly impressive since Sharpmask uses a more powerful
ResNet architecture (we use VGG).

Effect of object size: In Fig. 4, we see how our model
performs w.r.t baselines on different instance sizes. For
small instances our model performs significantly better than
the baselines. For larger objects, the baselines have an ad-



Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean
Square Box 35.41 53.44 26.36 39.34 54.75 39.47 46.04 26.09 40.11
Dilation10 46.80 48.35 49.37 44.18 35.71 26.97 61.49 38.21 43.89

DeepMask [20] 47.19 69.82 47.93 62.20 63.15 47.47 61.64 52.20 56.45
SharpMask [20] 52.08 73.02 53.63 64.06 65.49 51.92 65.17 56.32 60.21

Ours 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 61.40
Table 3. Performance (IoU in %) on all the Cityscapes classes without the annotator in the loop.

Threshold Num. Clicks Mean IOU
1 15.79 84.74
2 11.77 81.43
3 9.39 78.40
4 7.86 75.79

Table 4. Annotator in the loop: Average number of corrections
per instance and IoU, computed across all classes. Threshold indi-
cates chessboard distance to the closest GT vertex.

vantage due to larger output resolution. This effect is most
notable for classes such as bus and train, in which our model
obtains lower IOU compared to the baselines.

4.3. Annotator in the loop
The main advantage of our model is that it allows a hu-

man annotator to easily interfere if a mistake occurs. In par-
ticular, at each RNN time step, the annotator has the possi-
bility to correct a misplaced vertex. The correction is fed to
the model at the next time step replacing the model’s predic-
tion, effectively helping the model to get back to the right
track. Our goal is to obtain high quality annotations while
minimizing annotation time.

We analyze how many clicks are needed to obtain dif-
ferent levels of segmentation accuracy. We perform such
analysis by simulating an annotator: we correct a predic-
tion if it deviates from the ground truth vertex by a certain
distance. Distances are computed at the model output reso-
lution using the chessboard metric. In our experiments we
compare the corrected predictions using distance thresholds
T ∈ [1, 2, 3, 4]. In Table 4 we show the resulting IoU given
different thresholds on the distance. We can observe a trade-
off between the number of corrections and these metrics.

To put our results in perspective, we hired an experi-
enced, high-quality annotator. We asked the annotator to
annotate all car (including van) instances in 10 randomly
selected Cityscapes images from our validation split. We
perform two experiments: in the first experiment, the anno-
tator is asked to annotate objects by free-viewing of the full
image. In the second experiment, we crop the image patches
using the Cityscapes boxes, and place a blue dot on the in-
stance to disambiguate annotation. We take a crop with 15%
of context around the box and scale it to size 224x224. The
annotator used the LabelMe tool [26] for annotation.

In Table 5 we report the IoU achieved by the human an-
notator as well as the mean number of clicks per instance

Method Num. Clicks IoU
Annot.

Speed-Up
Cityscapes GT 33.56 100 -
Ann. full image 79.94 69.5 -

Ann. crops 96.09 78.6 -
Ours (Automatic) 0 73.3 No ann.

Ours (T=1) 9.3 87.7 x3.61
Ours (T=2) 6.6 85.7 x5.11
Ours (T=3) 5.6 84.0 x6.01
Ours (T=4) 4.6 82.2 x7.31

Table 5. Our model vs Annotator Agreement: We hired a highly
trained annotator to label car instances on additional 10 images
(101 instances). We report IoU agreement with Cityscapes GT,
and report polygon statistics. We compare our approach with the
agreement between the human annotators.

in each experiment. We can observe that the agreement
achieved in IoU is 69.5% in the free-viewing regime, and
78.60% when shown the crops (our regime). This num-
ber sheds light on what we are to expect from automatic
methods in general, and points to some ambiguities in the
task. It also indicates that benchmarks should collect mul-
tiple annotations of images to reduce the variations and bi-
ases across the annotators. We hope our approach will make
such data collection feasible and affordable.

Notice that our model achieves a higher agreement
(82%) by requiring only 4.6 clicks on average, which is a
factor of 7.3 speed-up in annotation time. Even at agree-
ment as high as 87.7, the annotation speed-up factor is still
3.6. This showcases the effectiveness of our model as an
annotation tool. For all the categories in Cityscapes and
following the same procedure, we require only 9.39 clicks
on average to obtain 78.40% IoU agreement, obtaining a
speed-up factor of 4.74.

Comparison with Grabcut. We also compare the per-
formance of our approach with another semi automatic
method on a set of 54 randomly chosen instances. We used
the OpenCV implementation of Grabcut [25] for this exper-
iment. On average, using Grabcut the annotators needed
42.2s and 17.5 clicks per instance, and obtained an aver-
age of 70.7% IoU agreement with the Cityscapes GT. On
the same set of images, our model achieves IoUs ranging
from 79.7% to 85.8%, with 5.0 clicks (T=4) to 9.6 clicks
(T=1), respectively. Our expert human annotator needed
87.6 clicks to obtain an IoU of 77.6% (without using any
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Figure 5. Annotator in the loop: We show IoU as a function of the number of clicks/corrections.

Method # of Clicks IOU
DeepMask [20] - 78.3
SharpMask [21] - 78.8

Beat the MTurkers [4] 0 73.9
Ours (Automatic) 0 74.22

Ours (T=1) 11.83 89.43
Ours (T=2) 8.54 87.51
Ours (T=3) 6.83 85.70
Ours (T=4) 5.84 84.11

Table 6. Car annotation results on the KITTI dataset.

semi automatic tool). Since our model requires much less
human intervention than [25] (5 vs 17.5 clicks) and requires
comparable inference time per click, we expect that in a real
world scenario our method would be much faster.

Qualitative Results: In Fig. 6 we show examples of im-
ages annotated with our method. We remind the reader,
that this labeling is obtained by exploiting the GT bound-
ing boxes. In particular, we here show the predictions ob-
tained without any corrections (0 clicks). Our model is able
to correctly segment instances with a variety of shapes and
sizes. For large instances the quantization error introduced
by the output resolution of our model becomes apparent.
Increasing the output resolution is subject of ongoing work.
The main challenges are memory considerations as well as
challenges due to longer sequences (polygons have more
vertices) that the network would need to predict.

In Fig. 7 we compare annotations of example instances
more closely by zooming in on each object. We can inspect
the agreement between the GT annotation and our in-house
annotator, as well as the quality of the predictions obtained
by PolygonRNN with and without corrections.

4.4. Annotating KITTI Instances
We also evaluate how well our model that was trained on

Cityscapes generalizes to an unseen dataset. We use KITTI
for this experiment, which has 741 annotated instances pro-
vided by [4]. We report the results in Table 6. The ob-
ject instances in KITTI are usually larger than those found
in Cityscapes, making Deepmask and SharpMask perform
very similarly. Note that [4], also a method for semi-
automatic annotation, exploited Velodyne point clouds to
perform their labeling, which puts it with an unfair advan-
tage. Our model is further penalized by its lower resolution
output. Still, their performance is lower than our fully auto-
matic approach. With only 5.84 clicks on mean per instance
our models achieves an IOU comparable to the human an-
notation agreement, thus reducing the annotation cost.

5. Conclusion
In this paper we proposed an approach to facilitate an-

notation of object instances. Our Polygon-RNN predicts
a polygon outlining an object, and easily incorporates cor-
rections from an annotator in the loop. We show annota-
tion speed-up of factor 4.74 while achieving the same an-
notation agreement as that between human annotators. The
main advantage of our approach is that it produces struc-
turally plausible annotations of objects, and allows us to
achieve a desired annotation accuracy by requiring only a
few clicks by the annotator. Additional experiments show
that our approach generalizes across different datasets, thus
showcasing its power as a generic annotation tool.

Acknowledgement
We acknowledge the support from NSERC, and thank Relu Pa-

trascu for infrastructure support. L.C. was supported by a La Caixa
Fellowship.



GT Ours (Automatic, i.e. 0 corrections)

Figure 6. Qualitative results in prediction mode: We show polygons for all classes in the original image. Note that our approach uses
GT boxes as input. (left) we show the GT labeling of the image, (right) we show our polygons without any human intervention. The GT
images contain 38, 12, 28 and 16 instances, and required 985, 308, 580 and 338 clicks respectively from their Cityscapes annotators.

GT Annotator Ours (Automatic) Ours (T=1)

Figure 7. We look at a few instances in more detail. In the first column we show the GT annotation, while in the second column we show
the polygons from the in-house annotator. We observe that these segmentations are high quality but differ in uncertain areas such as the
base of the car. In the third column we show the PolygonRNN prediction without human intervention. Finally, in the fourth column we
show a corrected prediction. We can observe that the segmentation is refined to better outline the car mirrors or wheels.
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