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Abstract

This work is motivated by the mostly unsolved task of
parsing biological images with multiple overlapping artic-
ulated model organisms (such as worms or larvae). We
present a general approach that separates the two main
challenges associated with such data, individual object
shape estimation and object groups disentangling. At the
core of the approach is a deep feed-forward singling-out
network (SON) that is trained to map each local patch to
a vectorial descriptor that is sensitive to the characteris-
tics (e.g. shape) of a central object, while being invariant
to the variability of all other surrounding elements. Given
a SON, a local image patch can be matched to a gallery of
isolated elements using their SON-descriptors, thus produc-
ing a hypothesis about the shape of the central element in
that patch. The image-level optimization based on integer
programming can then pick a subset of the hypotheses to
explain (parse) the whole image and disentangle groups of
organisms.

While sharing many similarities with existing “analysis-
by-synthesis” approaches, our method avoids the need
for stochastic search in the high-dimensional configura-
tion space and numerous rendering operations at test-time.
We show that our approach can parse microscopy images
of three popular model organisms (the C.Elegans round-
worms, the Drosophila larvae, and the E. Coli bacteria)
even under significant crowding and overlaps between or-
ganisms. We speculate that the overall approach is applica-
ble to a wider class of image parsing problems concerned
with crowded articulated objects, for which rendering train-
ing images is possible.

1. Introduction

Parsing images of biological substances has become one
of the important applications of computer vision [8]. In
many biologically-important scenarios it is necessary to

C Elegans Drosophila E.Coli
(roundworms) (larvae) (bacteria)

Figure 1. We consider the image parsing tasks for three different
organisms that are popular in biomedical research. In each case,
parsing is made hard because of a certain shape variability of in-
dividual organisms as well as organism overlap and crowding. Al-
though the three organisms are very different biologically, we ap-
proach the corresponding parsing tasks with a unified framework
that first uses a specially-designed deep network to propose hy-
potheses about the shapes of individual organisms and then use
integer programming to pick a viable hypotheses set.

deal with images of overlapping objects or organisms. In re-
cent years, several approaches have been proposed that can
parse images when objects have simple blob-type shapes
(e.g. cell cultures) [1, 2, 4, 7, 23]. Less attention, however,
has been paid to images containing more complex organ-
isms exhibiting significant shape and pose variations, such
as worms, larvae, and bacilli. The sheer importance of such
model organisms for biomedical studies calls for further im-
provement of parsing approaches for this class of images.

Two factors make parsing of such images a complicated
task. First, organisms can exhibit significant rigid and non-
rigid pose variations. Secondly, these organisms often form
clusters that cannot be segmented into individual organisms
using simple image processing methods. The two factors
complicate each other, as the variation of the appearance
of clusters can be combinatorially larger than the variation
of the appearance of a single organism, thus defying brute-
force parsing approaches.

Our approach uses a combination of deep learning and
generative modeling to tackle the challenge of organism
cluster parsing. The approach starts by training a deep
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Figure 2. Given a patch containing overlapping organisms (here
Drosophila larvae), our deep architecture (the SON-network) com-
putes a vectorial SON-descriptor. We then perform nearest-
neighbor search in the gallery of images of single organisms with
precomputed SON-descriptors (here, images corresponding to the
first three nearest neighbors are shown). Because of the prop-
erties of these descriptors, the matched organisms have similar
shapes/poses to the organism that covers the central pixel of the
query patch. The remaining organisms in the query patch have
little effect on the matching process. The recovered hypotheses
about central organisms can be then used in the whole image pars-
ing process.

feed-forward network that maps each local image patch P
to a descriptor that is sensitive to the configuration of the
central object in P , while being insensitive to other ob-
jects in P . Informally speaking, such a singling-out net-
work (SON), distinguishes the central element from its sur-
rounding, and then describes the appearance/configuration
of this element by a SON-descriptor. At test-time, the SON-
network allows to obtain a large set of hypotheses about
individual objects in the cluster. This is done by compar-
ing SON-descriptors of various image patches covering the
cluster against a pre-computed large set of SON-descriptors
of patches with known central elements (Figure 2). As a
last step, we use a facility-location type discrete optimiza-
tion [14, 3, 6] to pick a small subset of hypotheses that “ex-
plains” the appearance of the whole cluster.

Below, in Section 4 we show that this approach can be
successfully applied to three diverse datasets corresponding
to three popular model organisms: C.Elegans roundworm,
Drosophila larva, and E.Coli bacterium (Figure 1). Before
that, we discuss prior related work in Section 2, and then
explain our method in Section 3. We conclude by a short
discussion in Section 5.

2. Related work

Despite large practical importance, there is little pub-
lished work dedicated to the image analysis task we focus
on. Wählby et al. [21] describe a method for resolving
C.Elegans worms clusters based on probabilistic analysis,
which achieves impressive results. It however makes sev-
eral assumptions specific to particular organism/assay types

that can be potentially brittle, such as the ability to iso-
late tips of organisms or the ability to mine worm center-
lines as paths in the cluster skeleton. More recently, Fi-
aschi et al. [10, 9] addressed the problem of Drosophila
larvae tracking through network and integer programming.
Our approach is quite different to theirs, as we focus on
handling single frames. Below, we present results for both
Wählby et al. and Fiaschi et al. data obtained with our
method.

Algorithmically, our approach builds upon two streams
of ideas. The first stream are methods based on deep
discriminatively-trained deep convolutional networks [15],
which currently enjoy overwhelming success in image anal-
ysis. Here, the components of our methods resembles
the combination of deep descriptors and nearest-neighbor
search in [11].

The second relevant group of methods is formed by gen-
erative “analysis-by-synthesis” frameworks [7, 13, 20]. A
recent work of Kulkarni et al. [13] nicely combines the two
streams by using deep features to compare the synthesized
and the input images. “Analysis-by-synthesis” approaches
are appealing due to their conceptual simplicity, and overall
hold great potential. However the complexity of scenes that
they can parse is limited by the need to perform stochas-
tic search over the scene configuration space and the need
to re-render the scene at each step of such search. These
computational hurdles are avoided in our method.

Analyzing crowded scenes by suggesting an excessive
number of hypotheses and then picking a subset of them
through optimization is an idea that has been used in several
computer vision works. For example, Wu and Nevatia [22]
used edge-based human part detectors to hypothesize about
individual locations in crowded surveillance videos. Like-
wise, [3] used discriminatively-trained Hough transform to
obtain hypotheses. In both cases, greedy optimization was
used to pick optimal subsets, but other optimization meth-
ods could have been used. Compared to this group of meth-
ods, our contribution is the specific way the hypotheses are
obtained (SON-networks).

3. Method
In a nutshell, our approach focuses on (partial) under-

standing of image patches, and then integrating the infor-
mation from individual patches into a holistic image inter-
pretation via a joint optimization process.

Let us first introduce the notation at the level of a certain
patch P . In most microscopy image parsing scenarios (in-
cluding ours) the binary object/background segmentation is
relatively easy, and therefore it is easy to discard patches
where the central pixels are not covered by the foreground
elements. We therefore restrict our attention to the remain-
ing patches. We thus assume that the patch has a set of
objects (elements) EP = {eP0 , eP1 , . . . ePNP

} overlapping



Figure 3. The classes needed to train SON-network are generated
as sets of images with the same organism (here C.Elegans) in the
center. Here, each row shows several synthetic examples from
the same class. The network then has to learn features that can
help it to distinguish (“single out”) the central organism from the
occluders.

with it, and that eP0 denotes the central element that cov-
ers the center of the patch. Generally, we assume that each
element ePi is characterized by several degrees of freedom
(e.g. center position, orientation, shape parameters, texture
parameters).

We denote with I(P) the appearance of the patch (a mul-
tichannel image of a certain size), and assume that I(P) =
R(EP ; ξ), whereR is the rendering function, and ξ is a nui-
sance variable that incorporates such factors as image noise
or some clutter that we are not aiming to recover, etc. We
further assume that we have a reasonable approximation of
the rendering function R, and that we can draw samples
from the distribution of elements.

3.1. Inverse rendering using Singling-Out Networks

The key idea of our approach is to learn the partial in-
verse mapping S : I(P) → eP0 that recovers the central
element eP0 from the appearance I(P) while ignoring the
impact of eP1 , . . . e

P
NP

on the appearance I . Overall, we
achieve this using the combination of a deep feedforward
network learning and nearest-neighbor search.

The vital component of such partial reverse mapping is
a deep feedforward singling-out network f(I; Θ) that maps
the appearance I of an image patch to a high-dimensional
descriptor vector d (where Θ are the parameters of the deep
network). The learning process tries to adjust Θ to ensure
that the appearance of patches with similar central elements
are mapped to close singling-out network (SON) descriptor
vectors and vice versa.

Training SON-networks. There are several potential
approaches to the training process of the SON-networks.
One can use Siamese pairwise loss [5] or triplet loss [18],
which would require sampling pairs or triplets of patches
with some patches having “similar” central elements, and
other patches having “dissimilar” central elements. Pair-
based and triplet-based learning of deep feedforward net-
works is however known to be hard in terms of finding suit-
able initialization, setting the meta-parameters of the net-
work architecture and the learning process (learning rate),
as well as setting pairs/triplets generation properly. There-

fore we used a proxy classification problem (Figure 3) to
learn a classification network (as in e.g. [19]) using a stan-
dard classification softmax loss.

In the training classification dataset, each class j is gen-
erated as follows. At first, a random central element ej0 is
drawn. Then each training image of the class is created
by sampling additional elements eji,1, e

j
i,2, . . . , e

j
i,nj,i

and a

random nuisance parameter ξji and rendering the correspon-
dence appearance:

Iji = R
(
{ej0, e

j
i,1, e

j
i,2, . . . , e

j
i,nj,i
}, ξji

)
(1)

The training class j then consists of images Iji for all possi-
ble i.

The SON-network is then trained to classify between a
large number of classes generated with this procedure. In
our experiments, we use convolutional neural networks [15]
with three convolutional and three fully-connected layers.
After training the last layer that predicts class posteriors is
discarded and the output of the penultimate layer serves as a
descriptor of the input image (i.e. the feedforward mapping
from the input image to the activations of the penultimate
layer serve as f(I; Θ)).

Gallery matching. We augment the deep descriptor
learning with nearest-neighbor search to conclude the par-
tial inverse mapping. We thus synthesize K random cen-
tral elements ê1, ê2, . . . êK , render them, and then pass the
resulting image patches through the trained SON-network,
obtaining their SON-descriptors d̂i:

d̂i = f (R({êi}; ξi); Θ) (2)

The elements together with their descriptors are then stored
in a gallery {d̂1:ê1, d̂2:ê2, . . . , d̂K :êK}. Alternatively to ar-
tificial rendering process, the gallery patches can be sam-
pled from the annotated training images, whereas geometric
and photometric data augmentation can be used to increase
the diversity of gallery patches.

Given an image patch I we can then generate a hypothe-
sis about the central element in that patch by first obtaining
its SON-descriptor d = f(I; Θ), then finding the nearest
neighbor d̂t in the gallery of SON-descriptors. The associ-
ated central element êt then provides a hypothesis. Let us
denote the compound mapping from the appearance I to the
hypothesis as g: g(I) = êt. Figure 2 provides the examples
of such mapping.

3.2. Image-level Parsing

While the learned partial inverse mapping can provide
a hypothesis for a single central patch, an additional op-
timization step is needed to obtain a set of elements that
“explain” the entire image.



To obtain the full image parsing, we first collect a set of
hypotheses. For that, assuming that an approximate fore-
ground/background segmentation is given, we consider a
large number M of patches with centers belonging to fore-
ground. For each such patch centered at (xi, yi) with the
appearance Ii, we obtain a hypothesis hi using the partial
inverse mapping, i.e. hi = g(Ii) (each hypothesis is thus
just an element in a certain configuration). Since an element
can be central for a number of patches (to be precise, for all
patches centered at the pixels covered by the element), the
set of hypotheses obtained in this way is excessive, and the
goal of the further processing is to pick a subset of those.

We approach this pruning task using facility location-
like optimization, which is a standard approach in image
understanding (see e.g. [14, 3, 6]). We thus introduce bi-
nary variables x1, x2, . . . xM , where xi = 1 means that the
i-th hypothesis is selected (xi are thus “facility” variables).
We demand that each of the M patches we consider, is “ex-
plained” by one of the picked hypotheses (i.e. the patches
are the “clients”). To measure the quality of the explanation,
we compute the value dij that measures if the hypothesis hi
can explain the patch j (small values of dij correspond to
the case when such explanation is good).

The distance between the SON-descriptor of the patch
Ii and the SON-descriptor of the hypothesis hi is a natural
choice for dii as it is computed at the stage of the nearest-
neighbor search:

dii = ‖f (Ii; Θ)− f (R ((hi); ξ))‖ , (3)

where the nuisance parameter ξ is taken arbitrarily.
One way to compute dij , when i 6= j is to evaluate the

distance between the SON-descriptor of Ij and the SON-
descriptor of the hypothesis hi shifted according to the dis-
placement between the ith and the jth pixel (in other words,
in the coordinate frame associated with the patch j):

dij = ‖f (Ij ; Θ)− f (R (Ti→j(hi); ξ))‖ , (4)

where Ti→j is an operator that translates the element hi by
(xj −xi, yj − yi) into the coordinate frame associated with
the jth patch before rendering.

Evaluating (4) however requires rendering each hypoth-
esis multiple times for different translations, and is there-
fore rather slow. Alternatively, for each gallery element one
can precompute the change of the descriptor under different
translations, and store it in the dataset. An easier approach
is however to reuse the distance dii computed in (3) for all
patches with central pixels that are covered by the hypothe-
sis hi placed on the image. Hence one can define:

dij = δ(hi, j) dii, (5)

where δ(hi, j) = 1 if the hypothesis hi covers the center
of patch pj and δ(hi, j) = +∞ otherwise (expressing the

fact that the hypothesis cannot explain a patch, for which it
does not cover the central pixel). Below, we present results
for this fast approach using the distance estimates (5), and
also selected results for the slow approach based on a more
principled estimates (4).

Yet another fast heuristic that can be used to compute
dij is to look at the difference between the hypotheses sug-
gested for the ith and the jth patches. In case, the two are
covered by the same organism and the descriptor match-
ing has worked well, the two hypotheses should be similar.
Therefore, we can use some distance between hypotheses
(e.g. the Hausdorf distance between hypotheses centerlines)
to compute the distance estimates dij (again the two hy-
potheses are compared in the “global” coordinate frames).

Once the distance estimates are computed, the binary
variables yij are introduced, where yij = 1 means that the
patch j is actually explained by the hypothesis hi accord-
ing to our image interpretation. The following optimization
formulation (facility location) then implements the image
parsing problem:

minimize
x,y

M∑
i=1

λxi +

M∑
i=1

M∑
j=1

dij yij

subject to xi ∈ {0, 1}, yij ∈ {0, 1}
∀i, j yij ≤ xi,

∀i
M∑
j=1

yij = 1.

(6)

Here, the first term in the objective implements the MDL
(“minimum description length”) prior penalizing the num-
ber of selected hypotheses, whereas the coefficient λ con-
trols the strength of the prior, while the second term en-
courages the explanation of the patches by the hypotheses
with matching SON-descriptors.

The optimization of (6) is well studied in the context
of computer vision application with a variety of problem-
specific algorithms suggested [6]. We, however, utilize a
general-purpose ILP solver [12], which allows solving (6)
to global optimality in most cases in our experiments.

If it is known (e.g. from the training data) that two organ-
isms cannot overlap beyond some threshold, we can find the
set S of all pairs of hypotheses (k, l) such that hl and hk
overlap by more than this threshold. We can then add the
following constraint set into the optimization formulation
(6):

∀(k, l) ∈ S xk + xl ≤ 1. (7)

Such set of equations ensures that too tightly overlapping
hypotheses will not be picked simultaneously. While the
set S of such “conflicting” pairs can be very large, the con-
straints (7) can be enforced in a cutting-plane fashion, start-
ing the optimization without them and iteratively activating



only the violated once while resolving for the optimal set.
Due to the tendency of the facility location to avoid picking
hypotheses that are too similar, few cutting plane iterations
suffice in practice.

4. Experiments
4.1. Datasets

The C.Elegans dataset from the Broad Biomedical
Benchmark Collection [16] consists of 100 images obtained
using bright-field microscopy. The roundworms are sub-
jected to various compounds, and the ultimate goal of the
image processing in this case it to tell alive worms from the
dead ones as dead worms possess characteristic (straight)
shape. Similarly to [21], we consider the binary segmenta-
tion rather than the raw data. We use 50 images for training,
which leaves 50 images for testing. All images were scaled
down by a factor of 2.5.

The Larvae dataset was used in [9] and corresponds to a
high-resolution (1400x1400) video with 9000 frames con-
taining a large number of Drosophila larvae. As there is a
limited movement between the upper and the lower halves,
we used the upper half of the video for training and valida-
tion, and test on the lower half.

The Coli dataset contains 9 large (1024x1024) phase-
contrast microscopy images of colonies of E.Coli bacteria
(grown in mono-layer). Each image contains on average
514 worms. We use 7 images for training, 1 images to val-
idate the method parameters, and report results on the re-
maining 2 images containing 531 worms. Unlike the first
two datasets, the background segmentation task is not triv-
ial, and we learn a linear pixel classifier using the convo-
lutional features at the first layer of the SON-network for
foreground/background segmentation.

4.2. Rendering

Our approach requires rendering a large number of
crowded patches to train SON-networks and another collec-
tion of patches to form the gallery. Since the three datasets
were of different kind and had different types of annotation,
we used three different approaches to tackle these rendering
tasks. For the C.Elegans case, we followed [21] and took
the skeletons of singleton worms to build the PCA-based
shape model that was further used to generate both crowded
patches for SON-training as well as gallery patches. For
the Larvae dataset, we simply isolated the singleton worms
from the top of the dataset and used various similarity trans-
forms and superimpositions to do the rendering (examples
of renderings can be seen in Figure 2). Finally, for E.Coli
we do not have sufficient number of singleton bacteria that
would be easy to isolate. However, the bacteria have sim-
pler shapes mostly defined by the two endpoints (and were
annotated this way). We therefore align worms of the same
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Figure 4. The architecture of the SON-networks used in our exper-
iments. SON-descriptors are obtained by passing the input patch
through two convolutional layers and two fully-connected layers
(interleaved with rectified linear units (ReLU) and 2 × 2 max-
pooling with downsampling layers. The network is trained so that
the SON-descriptors could be used to linearly classify synthetic
classes. See text for more details.

length rotated to a certain fixed orientation to define a cer-
tain class for SON-network training. We also created the
gallery directly from training patches (for which the pose of
the central worm is known).

The sizes of the training datasets were 1000 classes
with 500 images in each for C.Elegans and Larvae, and
198 classes of average size 550 for E.Coli. The gallery
size was 4 millions for C.Elegans, 6 millions for Larvae
and 240 thousands for E.Coli. Generally the patch sizes
were 100x100, 40x40 and 50x50 for C.Elegans, Larvae and
E.Coli respectively.

4.3. Network design and training

In the experiments the SON-networks had the architec-
ture specified in Figure 4. The SON-descriptors are thus 64
dimensional. For the Coli dataset the number of convolu-
tional maps in each layer was halved.

To learn the classifiers the network was augmented at
training time by an additional ReLU layer followed by a
linear dense layers with 1000 (C.Elegans, Larvae) or 198
(E.Coli) output units corresponding to different classes. The
classification was trained with the softmax loss. We used
stochastic gradient descent algorithm (with momentum) and
trained networks for 53, 40 and 100 epochs for Larvae,
C.Elegans and E.Coli respectively. After each epoch the
learning rate was scaled by factor 0.85.

4.4. Matching with SON-descriptors

As our main contribution is the idea of hypothesis min-
ing on the basis of SON-descriptors, we quantitatively com-
pare the performance of the learned descriptors against
SIFT descriptors [17] and a simple baseline based on L2
pixelwise distance. In more detail, on the test set we use
600− 800 patches crowded with organisms as queries, and
then find their nearest neighbors in the gallery set. The
query patches were sampled from the test set. Patches from
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Figure 5. Cumulative plots of the accuracy of pose matching between randomly drawn query patches containing crowded organisms
and a gallery of training patches. The accuracy is judged using symmetric Hausdorf distance between centerlines (using ground truth
annotations). For matching, we compare distances between SON-descriptors (blue line), SIFT descriptors with optimally picked radii (red
line) and the L2-distance between raw image patches (green line). The plots show the number of samples (y-axis) with the pose distance
less than threshold (x-axis). In all three datasets, the SON-distance yields better performance than SIFT and raw patches.

query L2(raw) SIFT SON
Figure 6. Nearest neighbors in the gallery for the query patches
using L2 distance on raw pixels, SIFT and SON-descriptors for
the C.Elegans dataset. Uniform sampling of test sets is shown.

C.Elegans and Larvae datasets were centered on a random
pixel of random object from test set while E.Coli patches
were chosen in a such a way that the center of each patch
matched to the center of some segment which defines a
E.Coli sample from test set. SIFT descriptors were cal-
culated for the central pixel of each patch and with fixed
keypoint orientation. We gave SIFTs an advantage by op-
timizing the diameters of keypoints neighborhoods on the
test sets (separately for each dataset).

When searching for the closest neighbors we either use
L2-pixelwise distance or distances based on SIFT or SON-
descriptors. In all cases, we evaluate the distances be-
tween the poses of the central organism in the query patch
and the closest nearest neighbor. To measure the dis-
parity between the poses we used the symmetric Haus-
dorf distance (dH(A,B) = max{maxa∈A minb∈B ‖a −
b‖,maxb∈B mina∈A ‖a− b‖}) between centerlines.

Figure 5 provides numerical comparisons, while Fig-

query L2(raw) SIFT SON
Figure 7. Nearest neighbors in the gallery for the query patches
using L2 distance on raw pixels, SIFT and SON-descriptors for the
E.Coli dataset. Green lines are superimposed for clarity. Uniform
sampling of test sets is shown.

query L2(raw) SIFT SON
Figure 8. Nearest neighbors in the gallery for the query patches
using L2 distance on raw pixels, SIFT and SON-descriptors for
the Larvae dataset. Uniform sampling of test sets is shown.



ure 6, Figure 7, Figure 8 provides side-by-side qualitative
comparisons. For all three datasets, the SON-descriptors
provide more accurate pose matches compared to SIFT and
L2-distance between patches. When comparing our method
with L2-distance-based method, it is important to note that
matching using SON-descriptors is much faster as its di-
mensionality (set to 64 in all our experiments) is much
smaller than the dimensionality of image patches. For SIFT
descriptors the best results were achieved on keypoints
neighborhood of size 5 pixels for E.Coli and C.Elegans and
4 pixels for Larvae. Because of low variability of Larvae
and E.Coli such a small neighborhood can provide a good
estimation for the whole organism.

4.5. Image parsing

Finally, we provide results for full image parsing on
our dataset. Numerically, we compare the results on
C.Elegans and Larvae with the results of [21] (using their
WormToolbox software). Their method is specialized for
C.Elegans and obtains near-perfect results on their dataset.

In Figure 9, we compare the performance of the Worm
toolbox of [21] with several variants of our method on
C.Elegans. The variants differ in the way of definition dij
of optimization problem (6). We refer as fast to the vari-
ant with equation (5) and fair to the variant with (4). The
hausdorf variant is the variant where we estimate dij via
the Hausdorf distance between centerlines of the worm hy-
potheses suggested for the ith and the jth pixel. Generally,
all three variants performs worse than WormToolbox, es-
pecially for large thresholds. However these results can be
significantly improved by local fitting of the pose. In order
to show it we performed two simple postprocessing steps
on fair results. On the first step we excluded from in-
stances masks all pixels which belong to background of ini-
tial image (we refer to this results as fair+bg). On the
second step we assigned all uncovered foreground pixels of
the image to the nearest instances masks (fair+bg+fg
line in Figure 9). With this postprocessing our approach
slightly outperforms WormToolbox on the most of thresh-
olds of intersection-over-union (IoU) score.

The main limitation of method proposed in [21] is the
ability to work only with binary masks of worms. Therefore
we trained WormToolbox model for Larvae using the binary
masks of the singleton worms (which were also used in our
method for training SON-network) and tested their model
on binary masks of worm clusters. Since our method is able
to work with any type of input images, we trained and tested
it on actual grayscale images. We also considered exploit-
ing our prior knowledge about data: Larvae organisms usu-
ally tend to overlap significantly. That fact makes choosing
the good set of hypotheses ambiguous. To facilitate pick-
ing smaller hypotheses, we change λ in (6) to λ0 + λ1si,
where si is the size of hypothesis hi. Table 1 provides preci-
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Figure 9. The graph shows the ratio of true positives (y-axis) ly-
ing within the certain intersection-over-union (IoU) score thresh-
old (x-axis) with the organisms found by the methods (all meth-
ods produced similar number of organisms). At most one-to-one
matching is enforced using Hungarian algorithm. For C.Elegans,
the performance of the proposed approach without postprocessing
(fast, fair and hausdorf lines) is mostly below the perfor-
mance of WormToolbox [21] due to lower accuracy of localization
(large values of threshold). But with simple postprocessing steps
the approach performs slightly better then WormToolbox.

Precision Recall F1-score
WormToolbox 0.7032 0.4665 0.5609

SON fast 0.8174 0.8302 0.8238
SON fast + size 0.8291 0.8787 0.8532

SON fair 0.8091 0.8103 0.8097
SON fair + size 0.8340 0.8317 0.8329
SON hausdorf 0.8277 0.8431 0.8353

SON hausdorf + size 0.8816 0.8816 0.8816
Table 1. Precision, recall and F1-score on Larvae dataset. Meth-
ods results were evaluated by Hausdorf-distance-based Hungarian
matching with threshold set to mean thickness of larvae (8 pixels).

sion, recall and F1-score values for two methods on Larvae.
The big advantage of our method over the Worm toolbox is
likely due to the use of textural information that is impor-
tant for parsing organisms clusters whose overlapping area
size is comparable with the size of the whole organism.

We also present qualitative results in Figure 10. Both
qualitative and quantitative results demonstrate the ability
of our method to parse complex clusters. The method gets
limited accuracy in terms of finding the exact worm bound-
aries, which can be addressed through local shape/pose op-
timization using our result as the initial starting point.

5. Summary
We have presented a new approach to parsing images

with crowded objects and have demonstrated its viability
for biomedical images of model organisms with medium
complexity. Our approach is not specific to these kinds of
objects and can be applied to other data. The method as-
sumes that it is possible to render training data (although



(a) Parsing (bottom row) of segmented wells (top row) with C.Elegans

(b) Parsing of clusters of Drosophila larvae (left – input cutout, right – results)
Figure 10. Qualitative results (randomly chosen) for the C.Elegans and the Larvae datasets. Better viewed in color and with zoom-in. We
used fair variant without postprocessing for C.Elegans and hausdorf variant with modification in (6) for Larvae.

in the case of E.Coli we showed that one can obtain train-
ing data directly from user-annotated images). Another as-
sumption is that the gallery can sample the pose space of
a single object densely enough. In the current version, we
also assume that foreground/background segmentation can
be performed as a pre-processing.

Our main contribution is in the mechanism for propos-
ing hypotheses about individual objects that is based on
singling-out networks. This mechanism is compatible with
different hypotheses selection approaches. E.g. it can be
used within full-fledged “analysis-by-synthesis” approach
that would choose a subset of hypotheses that minimizes the
mismatch in appearance between the synthetic and the real
image directly. In this work, we presented a faster discrete
optimization-based alternative that produced good results in
our experiments.
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