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Abstract

Deep neural network is difficult to train and this predica-
ment becomes worse as the depth increases. The essence
of this problem exists in the magnitude of backpropagated
errors that will result in gradient vanishing or explod-
ing phenomenon. We show that a variant of regularizer
which utilizes orthonormality among different filter banks
can alleviate this problem. Moreover, we design a back-
ward error modulation mechanism based on the quasi-
isometry assumption between two consecutive parametric
layers. Equipped with these two ingredients, we propose
several novel optimization solutions that can be utilized for
training a specific-structured (repetitively triple modules of
Conv-BN-ReLU) extremely deep convolutional neural net-
work (CNN) WITHOUT any shortcuts/ identity mappings
from scratch. Experiments show that our proposed solu-
tions can achieve distinct improvements for a 44-layer and
a 110-layer plain networks on both the CIFAR-10 and Im-
ageNet datasets. Moreover, we can successfully train plain
CNNs to match the performance of the residual counter-
parts.

Besides, we propose new principles for designing net-
work structure from the insights evoked by orthonormality.
Combined with residual structure, we achieve comparative
performance on the ImageNet dataset.

1. Introduction

Deep convolutional neural networks have improved per-
formance across a wider variety of computer vision tasks,
especially for image classification [17, 34, 39, 31, 45], ob-
ject detection [42, 26, 33] and segmentation [20, 5, 25].
Much of this improvement should give the credit to grad-
ually deeper network architectures. In just four years, the
layer number of networks escalates from several to hun-
dreds, which learns more abstract and expressive repre-

sentations from large amount of data, e.g. [27]. Simply
stacking more layers onto current architectures is not a rea-
sonable solution, which incurs vanishing/exploding gradi-
ents [4, 9]. To handle the relatively shallower networks,
a variety of initialization and normalization methodologies
are proposed [9, 30, 12,37, 15,22, 13, 1], while deep resid-
ual learning [ 1] is utilized to deal with extremely deep
ones.

Though other works, e.g. [36, 35], have also announced
that they can train an extremely deep network with im-
proved performance, deep residual network [ 1] is still the
best and most practical solution for dealing with the degra-
dation of training accuracy as depth increases. However, it
is substantial that residual networks are exponential ensem-
bles of relatively shallow ones (usually only 10-34 layers
deep), as an interpretation by Veit et al. [41], it avoids the
vanishing/exploding gradient problem instead of resolving
it directly. Intrinsically, the performance gain of networks
is determined by its multiplicity, not the depth. So how to
train an ultra-deep network is still an open research question
with which few works concern. Most researches still focus
on designing more complicated structures based on residual
block and its variants [18, 43]. Anyway, dose there exist
an applicable methodology that can be used for training a
genuinely deep network?

In this paper, we try to find a direct feasible solution
to answer above question. We think batch normalization
(BN) [13] is necessary to ensure the propagation stabil-
ity in the forward pass in ultra-deep networks and the key
of learning availability exists in the backward pass which
propagates errors with a top-down way. We constrain the
network’s structure to repetitive modules consisted by Con-
volution, BN and ReLU [23] layers (Fig. 1) and analyze
the Jacobian of the output with respect to the input between
consecutive modules. We show that BN cannot guarantee
the magnitude of errors to be stable in the backward pass
and this amplification/attenuation effect to signal will ac-
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Figure 1. Diagram of the plain CNN network architecture (left)
and repetitive triple-layer module (right) in this paper. Green box
is for input data, Red color ones denotes parametric layers (convo-
lutional or fully connected), yellow represents batch normalization
layers and blue means activation layers. Actually, this structure is
similar with the plain CNN designed by He ez al. [11].

cumulate layer-wisely which results in gradients explod-
ing/vanishing. From the view of norm-preserving, we find
that keeping the orthonormality between filter banks within
a layer during learning process is a sufficient and neces-
sary condition to ensure the stability of backward errors.
While this condition cannot be satisfied in nonlinear net-
works equipped with BN, this orthonormal constrain can
mitigate backward signal’s attenuation and we prove it by
experiments. An orthonormal regularizer is introduced to
replace traditional weight decay regularization [8]. Exper-
iments show that there is 3% ~ 4% gains for a 44-layer
network on CIFAR-10.

However, as depth increases, e.g. deeper than 100 lay-
ers, the non-orthogonal impact induced by BN, ReLU and
gradients updating accumulates, which breaks the dynamic
isometry [30] and makes learning unavailable. To neutral-
ize this impact, we design a modulation mechanism based
on the quasi-isometry assumption between two consecutive
parametric layers. We show the quasi-isometry property
with both mathematical analysis and experiments. With the
modulation, a global scale factor can be applied on the mag-
nitude of errors a little unscrupulously during the backward
pass in a layer-wise fashion. Combined with orthonormal-
ity, experiments show that a plain CNN shown in Fig. 1 can
be trained relatively well and match the performance of its
residual counterpart.

The contributions of this paper are summarized as fol-
lows. 1) We demonstrate the necessity of applying BN and
explain the potential reason which results in degradation
problem in optimizing deep CNNs; 2) A concise method-
ology equipped with orthonormality and modulation is pro-
posed to provide more insights to understand learning dy-
namics of CNNs; 3) Experiments and analysis exhibit inter-

esting phenomenons and promising research directions.

2. Related Work

Initialization in Neural Networks. As depth increases,
Gaussian initialization cannot suffice to train a network
from scratch [34]. The two most prevalent works are pro-
posed by Glorot & Bengio [9] and He et al. [12] respec-
tively. The core idea of their works is to keep the unit vari-
ance of each layer’s output. Sussillo & Abbott [37] pro-
pose a novel random walk initialization and mainly focus
on adjusting the so-called scalar factor g to make the ratio
of input/output error to be constant around 1. Kréhenbiihl
et al. [15] introduce data-dependent initialization to ensure
all layers training at an equal rate.

Orthogonality is also in consideration. Saxe et al. [29,

] analyse the dynamics of learning in linear deep neural
networks. They find that the convergence rate of random
orthogonal initialization of weights is equivalent to unsu-
pervised pre-training, which are both superior to random
Gaussian initialization. LSUYV initialization method [22] is
proposed which not only takes advantage of orthonormal-
ity but also makes use of the unit-variance of each layer’s
output.

In our opinion, a well-behaved initialization is not
enough to resist the variation as learning progresses, which
is to say, to have a good initial condition (e.g. isometry)
cannot ensure the preferred condition to keep unchanged all
the time, especially in extremely deep networks. This argu-
ment forms the basic idea that motivates us to explore the
solutions for genuinely deep networks.

Signal Propagation Normalization. Normalization is
a common and ubiquitous technique in machine learning
community. The whitening and decorrelation of input data
brings benefits to both deep learning and other machine
learning algorithms, which helps speeding up the training
process [19]. Batch normalization [ 3] generalize this idea
to ensure each layer’s output to be identical distributions
which reduce the internal covariate shift. Weight normal-
ization [28] is inspired by BN by decoupling the norm of the
weight vector from its direction while introducing indepen-
dencies between the examples in a minibatch. To overcome
the disadvantage of BN that dependent on minibatch size,
layer normalization [2] is proposed to solve the normaliza-
tion problem for recurrent neural networks. But this method
cannot be applied to CNN, as the assumption violates the
statistics of the hidden layers. For more applicable in CNN,
Arpit et al. introduce normalization propagation [1] to re-
duce the internal covariate shift for convolutional layers and
even rectified linear units. The idea of normalization each
layers’ activations is promising, but a little idealistic in prac-
tice. Since the incoherence prior of weight matrix is actu-
ally not true in the initialization phase and even worsen in
iterations, the normalized magnitude of each layer’s activa-



tions cannot be guaranteed in an extremely deep network.
In our implementation, it even cannot prevent the exploding
activations’ magnitude just after initialization.

Signal Modulation. Few work is done in this field ex-
plicitly, but implicitly integrated the idea of modulation. In
a broad sense, modulation can be viewed as a persistent pro-
cess of the combination of normalization and other method-
ology to keep the magnitude of a variety of signals steady
at learning. With this understanding, we can summarize all
the methods above with a unified framework, e.g. batch nor-
malization [13] for activation modulation, weight normal-
ization [28] for parameter modulation, efc.

3. Methodology
3.1. Why is BN a requisite?

Since the complexity dynamics of learning in nonlinear
neural networks [30], even a proven mathematical theory
cannot guarantee that a variety of signals keeping isomet-
rical at the same time in practice applications. Depth itself
results in the “butterfly effect” with exponential diffusion
while nonlinear gives rise to indefiniteness and randomness.
Recently proposed methods [1, 37, 15] which utilize isom-
etry fail to keep the steady propagation of signals in over-
100-layer networks. These methods try to stabilize the mag-
nitude of signals from one direction (forward/backward) as
a substituted way to control the signals in both directions.
However, since the complexity variations of signals, it is
impossible to have conditions held on both ways with just
one modulation method.

An alternative option is to simplify this problem to con-
strain the magnitude of signals in either direction, which we
can pay the whole attention to another direction'. Batch
normalization is an existed solution that satisfies our re-
quirement. It does normalization in the forward pass to re-
duce internal covariate shift with a layer-wise Wayz, which,
in our opinion, make us to focus all the analyses on the op-
posite direction.

From [13], during the backpropagation of the gradient of
loss ¢ through BN, we can formulate errors between adja-
cent layers as follow:
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where z; is ith sample in a mini-batch (we omit activation

For a specified weight that connected ith neuron in Ith layer and
kth neuron in (I + 1)th layer, wg), its gradient can be computed as

v wgl.) = az(.l) X 0 (.l+1). If the two variables are independent from each
other, then the magnitude of gradient can be directly related with just one
factor (activation/error).

2Methods modulate signals without a layer-wise manner, e.g. [1], will
accumulate the indefiniteness with a superlinear way and finally the prop-
agated signals will be out of control.

index for simplicity), so E?Tfi denotes output error. §; =

88—; -~y where g—; is the input error and  is scale parameter
of BN. s = +

m

", 6; is mean of scaled input errors,
where m denotes mini-batch’s size. ; = Z=EE is the
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corresponding normalized activation.

Equation 1 represents a kind of “pseudo-normalization”
transformation for error signals d; compared with its for-
ward operation. If the mean of distribution of input error
d; is zero and symmetric, we can infer that the mean of
distribution of output error is approximately zero. It cen-
tralizes the errors and the last term % Z;n:l 02, will bias
the distribution but these biases may be cancelled out from
each other owing to the normalized coefficient Z; which is
normal distribution. Besides, errors are normalized with
a mismatched variance. This type of transformation will
change error signal’s original distribution with a layer-wise
way since the second order moment of each layer’s output
errors loses its isometry progressively. However, this phe-
nomenon can be ignored when we only consider a pair of
consecutive layers. In a sense, we can think the backward
propagated errors are also normalized as well as its forward
pass, which is why we apply “Conv-BN-ReLLU” triple in-
stead of “Conv-ReLU-BN"*.

The biased distribution effect will accumulated as depth
increases and distort input signals’ original distribution,
which is one of several reasons that make training extreme
deep neural network difficult. In next section we try to solve
the problem to some extent.

3.2. Orthonormality

Norm-preserving resides in the core idea of this sec-
tion. A vector x € R% is mapped by a linear transfor-
mation W € R%&X % to another vector y € R%, say,
y = W'x. If ||ly|| = |/x||, then we call this transforma-
tion norm-preserving. Obviously, orthonormality, not the
normalization proposed by [1] alone, is both sufficient and
necessary for holding this equation, since

Iyl = 3Ty = VXTWWTx = VxTx = x| if f. WWT = 1
2

Given the precondition that signals in forward pass are
definitely normalized, here we can analyse the magnitude
variation of errors only in backward pass. To keep the
gradient with respect to the input of previous layer norm-
preserving, it is straightforward to conclude that we would
better maintain orthonormality among columns* of a weight
matrix in a specific layer during learning process rather
than at initialization according to Eq. 2, which equivalently

3 Another reason is that placing ReLU after BN guarantees approxi-
mately 50% activations to be nonzero, while the ratio may be unstable if
putting it after convolution operation.

4Beware of the direction, which results in the exchange of notations in
equation 2. So the rows and columns of the matrix are also exchanged.



makes the Jacobian to be ideally dynamical isometry [30].
Obviously in CNN this property cannot be ensured be-
cause of 1) the gradient update which makes the correlation
among different columns of weights stronger as learning
proceeding; 2) nonlinear operations, such as BN and ReL.U,
which destroy the orthonormality. However, we think it is
reasonable to force the learned parameters to be conformed
with the orthogonal group as possible, which can alleviate
vanishing/exploding phenomenon of the magnitude of er-
rors and the signal distortion after accumulated nonlinear
transformation. The rationality of these statements and hy-
potheses has been proved by experiments.

To adapt the orthonormality for convolutional opera-
tions, we generalize the orthogonal expression with a di-
rect modification. Let W, € RW> Hx Cx M denote a set
of convolution kernels in [th layer, where W, H, C, M
are width, height, input channel number and output chan-
nel number, respectively. We replace original weight decay
regularizer with the orthonormal regularizer:
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where A is the regularization coefficient as weight decay,
D is total number of convolutional layers and/or fully con-
nected layers, I is the identity matrix and W; € Rfinx fout
where fi, =W x H x Cand fou,t = M. |- ||F represents
the Frobenius norm. In other words, equation 3 constraints
orthogonality among filters in one layer, which makes the
learned features have minimum correlation with each other,
thus implicitly reduce the redundancy and enhance the di-
versity among the filters, especially those from the lower
layers [32].

Besides, orthonormality constraints provide alternative
solution other than L2 regularization to the exploration of
weight space in learning process. It provides more proba-
bilities by limiting set of parameters in an orthogonal space
instead of inside a hypersphere.

3.3. Modulation

The dynamical isometry of signal propagation in neu-
ral networks has been mentioned and underlined several
times [, 30, 13], and it amounts to maintain the singular
values of Jacobian, say J = %, to be around 1. In this
section, we will analyze the variation of singular values of
Jacobian through different types of layers in detail. We omit
the layer index and bias term for simplicity and clarity.

For linear case, we have y = WTX, which shows that
having dynamical isometry is equivalent to keep orthogo-
nality since J = W7 and JJ7 = W'W.

Next let us consider the activations after normalization
transformation, y = BN.Y_ﬂ(WTX), which we borrow the
notation from [13]. Given the assumption that input dimen-

sion equals output dimension and both are d-dimension vec-
tors, the Jacobian is
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- ayik) 3y§k) o 3y§k> -
Bxék) am%’” ozl
oy 9wy . dys"
Q) ® Q)
Jix = Oz Oxy Oy, 5)
oy ey gyl
L Oxgk) ax;’” 81&,];) i

x
Here Zz—ikz denotes partial derivative of output of ith sample
with respect to jth sample in kth component. The Jacobian
of BN has its speciality that its partial derivatives are not
only related with components of activations, but also with
samples in one mini-batch. Because of each component k
of activations is transformed independently by BN, J can be
expressed with a blocked diagonal matrix as Eq. 4. Again
since the independence among activations, we can analyse
just one of d sub-Jacobians, e.g. Jxx.
From equation 1 we can get the entries of Jj, which is

dy; 1+ i
U p|aG=g- -

ox; m

(6)

L and A(-) is the indicator operator. Here

we still omit index k since dropping it brings no ambiguity.
Eq. 6 concludes obviously that JJ© # I So the or-
thonormality is not held after BN operation. Now the corre-
lation among columns of W is directly impacted by normal-
ized activations, while the corresponding weights determine
these activations in turn, which results in a complicated sit-
uation. Fortunately, we can deduce the preferred equation
according to subadditivity of matrix rank [3], which is

where p =

1-2 0 0 0
0 1-22 ¢ 0
J=pp| O 0 1 0 P (7
0 0 0 -+ 1
mXxXm

where P is the matrix consists of eigenvectors of J. \;
and )\, are two nonzero eigenvalues of U, say U;; = 1 +
25, i=1---m,j=1---m.

Eq. 7 shows us that JJ© ~ p?I 5. The approximation
comes from first two diagonal entries in Eq. 7 which may

5The Jacobian after ReLU is amount to multiply a scalar with J [1],
which we can merge it into p instead.



be close to zero. We think it is one of reasons that violate
the perfect dynamic isometry and result in the degradation
problem with this kind of non-full rank. Since value of p
is determined by v and op, it is bounded as long as these
two variables keep stable during the learning process, which
achieves the so-called quasi-isometry [6].

Notice that p changes with v and op while v and op
will change in every iteration. Based on the observation,
we propose the scale factor p should be adjusted dynami-
cally instead of fixing it like [ 1, 37, 30]. According to [30],
when the nonlinearity is odd, so that the mean activity in
each layer is approximately 0, neural population variance,
or second order moment of output errors, can capture these
dynamical properties quantitatively. ReLU nonlinearity is
not satisfied but owing to the pseudo-normalization we can
regard the errors propagated backwardly through BN as
having zero mean, which makes the second order moment
statistics reasonable.

4. Implementation Details

We insist to keep the orthonormality throughout the
training process, so we implement this constraint both at
initialization and in regularization. For a convolution pa-
rameter W; € Rfin* fout of [th layer, we initialize subset
of W, say f;,-dimension vectors, on the first output chan-
nel. Then Gram-Schmidt process is applied to sequentially
generate next orthogonal vectors channel by channel. Math-
ematically, generating n orthogonal vectors in d-dimension
space which satisfies n > d is ill-posed and, hence, impos-
sible. So one solution is to avoid the fan-ins and fan-outs of
kernels violating the principle, say fi;, > fout, in design-
ing structures of networks; another candidate is group-wise
orthogonalization proposed by us. If f;;, < fous, we divide
the vectors into f);’“t + fourmod f;, groups, orthogonaliza-
tion is implemented within each group independently. We
do not encourage the hybrid utilization of L2 regularization
for those parameters of f;, < fo,+ and orthonormal regu-
larization for those of f;;, > fou:. Forcing parameters to
retract into inconsistent manifolds may cause convergence
problems. Details can be referred in experiments.

For signal modulation, we compute the second order mo-
ment statistics of output errors between consecutive para-
metric layers (convolutional layer in our case) in each itera-
tion. The scale factor p is defined as the square root of ratio
of second order moment of higher layer, say ¢'*', to that,
say ¢!, of lower layer. However, if we modulate all the lay-
ers as long as ¢!t # ¢!, then the magnitude of propagated
signal will tend to be identical with the input error signal,
which probably eliminate the variety encoded in the error
signal. So we make a trade-off that the modulation only
happens when the magnitudes of propagated signals of con-
secutive layers mismatch. Experiments show that it is a rel-
atively reasonable and non-extreme modulation mechanism

which has a capability of maintaining magnitude constancy
for error signals.

5. Experiments

First of all, we must demonstrate that the core idea of this
paper is to show that the proposed methods can be used to
train extremely deep and plain CNNs and improve the per-
formance drastically compared against prevalent stochastic
gradient descent (SGD) with L2 regularization rather than
achieving state-of-the-art performance in a certain dataset
by all manner of means. Moreover, we try to show that the
degradation problem of training a plain network reported
in [11, 10, 35] can be partially solved by our methods.

5.1. Datasets and Protocols

Two representative datasets, CIFAR-10 [16] and Ima-
geNet [27], are used in our experiments.

CIFAR-10. CIFAR-10 consists of 60,000 32 x 32 real
world color images in 10 classes split into 50, 000 train and
10, 000 test images. All present experiments are trained on
the training set and evaluated on the test set. Top-1 accuracy
is evaluated.

ImageNet 2012 classification. For large-scale dataset,
ImageNet 2012 classification dataset is used in our experi-
ments. It consists of 1000 classes and there are 1.28 million
training images and 50k validation images. Both top-1 and
top-5 error rates are evaluated.

Protocol of CIFAR-10. To demonstrate that our pro-
posed method can partially solve the degradation problem
and show that the gap between deeper plain network and
the shallower one can be shrunk or even removed, we aim to
have fair comparison with the plain network in [11]. So we
directly adopt their proposed architectures with minor mod-
ifications for both plain networks and residual networks.
Specifically, the network inputs are 32 x 32 images, with the
per-pixel mean subtracted and standard deviation divided.
The first layer is 3 x 3 convolution and then following a
stack of 6n 3 x 3 convolution layers, in which each convolu-
tion layer is accompanied by a BN layer and a ReL.U layer
(Fig. 1). While in the residual case, when size of feature
maps doubles, e.g. 16 to 32, we use 3 X 3 projection short-
cuts instead of identity ones. All the hyperparameters such
as weight decay, momentum and learning rate are identical
with [1 1]. Horizontal flip is the only data augmentation.

Protocol of ImageNet 2012 classification. The archi-
tectures in this protocol are also with a slight variation. De-
tailed architectures can be referred in Table 1. The hyper-
parameters are identical with those of CIFAR-10 protocol.
224 x 224 crops are randomly sampled on 256 x 256 images
plus horizontal flip and color augmentation [!7]. Mean of
RGB is subtracted then scaling with a factor 0.017 (stan-
dard deviation of RGB). The mini-batch size is 256. Only
the performances on validation set are reported.



layer name output size 34-layer 101-layer
convl 112 x 112 7 X 7,64, stride 2
3 X 3 max pooling, stride 2
1x1,64
5 5 ’
conv2.x 56 X 56 [gig,gi}x?) 1% 164 «3
’ 3 x 3,256
1x1,128
conv3.x 28 x 28 [ giggg } x 4 1x1,128 | x4
’ 3 x 3,512
1x 1,256
conv4 x 14 x 14 [ § i ig‘gg } x 6 1x1,256 | x23
’ 3 x 3,1024
1x 1,512
convs.x 7TXT [gigg};]x3 Ix 1512 | x3
’ 3 X 3,2048
TX 7 3 X 3,1024
1x1 average pool, 1000-d fc, softmax

Table 1. Architectures for ImageNet. Downsampling is performed
by conv3_1, conv4_1, and conv5_1 with a stride of 2.

5.2. Orthonormality Regularization Enhances the
Magnitude of Signals

In this section, we design experiments to show that or-
thonormality can indeed enhance the magnitude of propa-
gated signals in deep plain networks through decorrelating
learned weights among different channels. A 44-layer plain
network and CIFAR-10 dataset is adopted.

First we make statistics of average correlation among
different channels over all the layers between two types of
methods, say “msra” [ 2] initialization plus L2 regulariza-
tion (abbr. as “msra+L2 reg”) and our proposed orthonor-
mal initialization and orthonormality regularization (abbr.
as “ortho init+ortho reg”). Cosine distance D.,s(X,y) is
considered to compute this value:

D fout fout

5= DD DY) ®)

=1 i=1 j=i

where Vf;l) € R/in denotes ith kernel of W, in [th layer and
N is total computation count. From Fig. 2 we can see the
variation of correlation among weights with iterations. Un-
der the constraints of orthonormality, correlation of learned
weights are forced into a consistent and relatively lower
level (about 6 x 1073). On the contrary, “msra+L2 reg”
cannot prevent from increasing correlation among weights
as learning progresses. Finally, the correlation of “msra+L2
reg” is about 2.5 times higher than that of “ortho init+ortho
reg”, which demonstrates the effectiveness of orthonormal-
ity constraints.

Next we make statistics of variation of second order mo-
ments of back-propagated errors. Since the empirical risk
will convergence as learning progresses, which results in
smaller magnitude of loss value hence unscaled magnitude
of error signals, we actually plot the ratio of second order
moment of output error signals (input errors of first convo-
lution layer) to that of input error signals (input errors of last

x10°  variation of correlation of weights during learning
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Figure 2. The variation of correlation among weight vectors in 44-
layer plain network. The meaning of blue and green line can be
refereed to the legend. One may be aware of at very first phase
the correlation of blue line is lower than green one because of we
allow negative correlations and “msra+L2 reg” method generates
negative ones at first few iterations.
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Figure 3. Variation of second order moments ratios of back-
propagated errors in 44-layer plain network. Sample interval is
50 iterations for clearness. Orthonormality regularization can ef-
fectively alleviate the vanishing trend of magnitude of signals.
Top: the plot over all iterations. Bottom: enlarged plot from 5th
iteration to 32000th iteration (before learning rate is divided by
10).

convolution layer). Fig. 3 tells us that in first training phase
(when learning rate is relatively large) the evolution of sig-
nal propagation is more insensitive than the in second and
third training phases (when learning rate is small) because
of mismatched order of magnitudes between learning rate
and decay coefficient of regularizer (0.1 to 0.0001). How-



ever, it shows the advantage of orthonormal regularization
against L2 regularization no matter in which phase, espe-
cially in later phases. The magnitude of propagated signals
is enhanced one order of magnitude by orthonormality. It is
important to note that we omit the ratios of first five itera-
tions in Fig. 3 since the disproportional order of magnitude.
An interesting phenomenon is that all the magnitude of error
signals is vanishing, e.g. ratio is less than 1, except for the
initialization phase, in which the signals are amplified. We
think randomness plays the key role for this phenomenon
and it also provides evidence that makes us introduce or-
thonormality beyond initialization in optimizing extremely
deep networks.

5.3. The Rationality of Modulation

In this section, we present our findings in training deep
plain networks and aim to demonstrate modulation is a
promising mechanism to train genuinely deep networks.

We find that a 44-layer network can be trained well just
with orthonormality but a 110-layer one incurs seriously di-
vergence, which states the accumulation effect mentioned in
Sec. 3.1 by evidence. The proposed modulation is applied
to train the 110-layer network and achieves distinct perfor-
mance improvement against other one-order methods (see
Table 2). The training methodology is a little tricky that we
first apply with both orthonormality and modulation at the
first n iterations, then the signals are regulated only through
orthonormality until it converges. Keeping the magnitude
of error signals to be isometric can easily be done by our
modulation, but it is observed that this strategy undermines
propagation of signals (81.6% vs. 73.5% on CIFAR-10). So
when and how to modulation is an interesting and key re-
search topic to totally solve the degradation problem.

In this paper the value of n is somewhat heuristic, which
is derived from our observation to the evolution of ratios
of second-order moment of output errors of each layer to
the second-order moment of input errors at each iteration
of training a 44-layer network. Fig. 4 reveals that it proba-
bly exists a potential evolution pattern in training deep net-
works. Actually we just shrink the degradation gap instead
of eliminating it in training genuinely deep networks and
one of our future work will focus on the methodology of
modulation.

5.4. Results of Plain and Residual Network Archi-
tecture

To prove our proposed method has advantage against
other methods integrated with the idea of adaptivity in train-
ing extremely deep plain networks, we compare it with six
prevalent one-order methods in this section. We do not com-
pare with second-order methods in consideration of imple-
mentation and memory practicality. Table 2 shows the per-

Figure 4. Evolution of backward signal propagation of a 44-layer
plain network. X axis denotes layer index and Y axis denotes ra-
tio of second-order moment of current layer to highest layer. We
only present 200th, 2000th, 20000th and 30000th iteration, re-
spectively. About after 2000 to 3000 iterations, the ratio trend
to converge to a certain of stable evolution pattern shown in the
20000th and 30000th iterations.

formances®. We can see that most methods cannot handle
relatively shallow networks well other than SGD and ours
and all the methods except for ours cannot even converge
in the deeper version. As pointed by [38], most one-order
methods can only be a very effective method for optimiz-
ing certain types of deep learning architectures. So next
we will focus on making comparison against more general
SGD method. We also do not compare our method with
other modulation methods, e.g. [1], because of they will fail
convergence at the very first few iteration in such deep ar-
chitecture

Then we compare the performance with different reg-
ularizer in identical network architecture (ortho vs. L2 of
a plain network), and further compare the performance of
plain networks with residual networks have similar archi-
tectures (plain network with orthonormality vs. residual net-
work with L2). Results are shown in Fig. 5. We can con-
clude that our proposed method has distinct advantage in
optimizing plain networks and the orthonormality indeed
can enhance magnitude of signal which alleviates gradient
vanishing in training process.

To emphasize that orthonormality can be general to
prevalent network architectures and large-scale datasets, we
extend the experiments on ImageNet dataset. From Fig. 5 it
shows the decreasing performance boost in ResNet-34 and
almost comparative performance in ResNet-110. Compared
with architectures on CIFAR-10, they have more chan-
nels, e.g. 64 vs. 2048, which introduces more redundan-

6We should mention that since the particularity of AdaDelta, which is
less dependent on the learning rate, for more reasonable comparison, we
ignore this hyper-parameter.
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Figure 5. Miscellaneous performance comparisons about plain and residual networks on CIFAR-10 and ImageNet. Left: Performance
comparisons of 44-layer plain network on CIFAR-10. One can see orthonormality boosts plain network to match the performance of
residual architecture. Middle: Performance comparisons of 110-layer ResNet on CIFAR-10. Orthonormality helps convergence thus
achieve higher performance. Right: Performance comparisons of 34-layer ResNet and 101-layer ResNet with different regularization on

ImageNet.

Top-1 Accuracy (%)
Method 44-layer T 110—1ayery 44-layer*

Nesterov[24] 85.0 10.18 61.9
AdaGrad[7] 77.86 30.3 36.1
AdaDelta[44] 70.56 66.48 52.6
Adam[14] 39.85 10.0 N/A
RmsProp[40] 10.0 10.0 N/A
SGD 84.14 11.83 65.2
Ours 88.42 81.6 70.0

Table 2. Performance comparison on CIFAR-10 and ImageNet of
different optimization methods. Plain 44-layer and 110-layer net-
works are trained with these methods. All the common hyper-
parameters are identical and specific ones are default (except for
AdaDelta). L2 regularizer is applied for all the methods except for
ours. N/A demonstrates the corresponding method cannot conver-
gence at all and “*” means the methods are tested on ImageNet.

Figure 6. Weights visualization of first convolution layer in 34-
layer residual network on ImageNet. Left: converged weights by
L2 regularization. Right: converged weights by orthonormality.

cies among intra-layer’s filter banks. Fig. 6 can be used
to explain above results, so it probably be difficult for or-
thonormality to explore in parameter space with so many
redundancies. The right sub-figure in Fig. 6 shows more
noise-like feature maps than the left one, which inspires us
to design thinner architectures in the future work.

6. Discussion and Conclusion

Recently we find that [21] has proposed similar ideas.
They unify three types of kernel normalization methods
into a geometric framework called kernel submanifolds, in
which sphere, oblique and compact Stiefel manifolds (or-
thonormal kernels) are considered. The differences exists in
three aspects: 1) The intrinsic explanations about the per-
formance improvement is different, of which they mainly
focus on regularization of models with data augmentation
and learning of models endowed with geometric invariants;
2) The orthogonalization is different, of which they orthog-
onalize convolutional kernels within a channel while we do
this among channel; 3) As the second statement tells, we
believe that their proposed method still cannot handle the
extremely deep plain networks. Besides, all the details and
key steps to implement their methods are ambiguous that
prevents from understanding and verifying it further.

Intrinsically, one can regard our proposed modulation as
assigning each parametric layer an individual and adaptive
learning rate. This kind of modulation can be more practi-
cal than local methods, e.g. second-order methods, while be
more flexible than global ones, e.g. SGD. Besides, if we can
approach some strategies to compensate the evanescent or-
thonomality as learning progresses, we believe that training
a genuinely deep network will be available.

We propose a simple and direct method to train ex-
tremely deep plain networks with orthonormality and mod-
ulation. Furthermore, orthonormality reveals its general-
ization capability which can be applied in residual net-
works. Great performance boost is observed in experi-
ments. However, the degradation problem is still not totally
solved, which may be on condition understanding more
comprehensively about the insights of signal modulation,
reparametrization and novel constraints, etc. We hope our
work will encourage more attentions on this problem.
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7. Quasi-isometry inference with Batch Nor-
malization

For batch normalization (BN) layer, its Jacobian, de-
noted as J, is not only related with components of activa-
tions (d components in total), but also with samples in one
mini-batch (size of m).

Let x§-k) and yl(k) be kth component of jth input sample
and +th output sample respectively and given the indepen-

(®)

. oy® .
dence between different components, ay—l,c) is one of m?d

J
nonzero entries of J. In fact, J is a tensor but we can express
it as a blocked matrix:

Dii D1z -+ Dip
Doy Do -+ Doy
J= . . . €))
Dml Dm2 o Dmm
where each D;; is a d x d diagonal matrix:
C oy -
(9&:51)
By,@)
&)
D, — oz (10)
Bygd)
_ ol |

Since BN is a component-wise rather than sample-wise
transformation, we prefer to analyse a variant of Eq. 9 in-
stead of D;;. Note that by elementary matrix transforma-
tion, the m? d x d matrices can be converted into d m x m
matrices:

J11 0 0
0 J» - 0
S : (1)

0 0 Jdd

and the entries of each Jy, is

8yj . . 1 + iﬁf} ;
9Yi — JIA( = §) — Tt
9z, (i=17) -

12)
The notations of p, A(-) and &) have been explained in our
main paper and here we omit the component index k for
clarity. Base on the observation of Eq. 12, we separate the
numerator of latter part and denote it as U;; = 1 + &;%;.
LetX = (&1, 82, ..., 2m) 7, e = (1,1,..1)T, we have

U =ee’ +xx” (13)

and )
Jiex = p(I— =1) (14)
m

Recall that for any column vector v, rank(vv?) = 1.
According to the subadditivity of matrix rank [3], it implies
that
)

rank(U) = rank(eel +xx") <

15)
rank(ee’) + rank(xx’) = 2

Eq. 15 tells us that U actually only has two nonzero
eigenvalues, say A\; and Ay, and we can formulate U as fol-

low:
A1
A2

U=p" 0 P (16)

0

combined with Eq. 14, finally we get the equation of Jyy
from the eigenvalue decomposition view, which is

J=P7) 1 P (17

To show that J; probably is not full rank, we formulate
the relationship between U? and U

U2 = (ee” + xx7)(ee” + xx7) = eeTee” + ee” k%"

T

T coTooT
+xx" ee” + xx' k%' = mee’ + (

[
§>
%

S



Note that &; ~ N(0, 1), so we can regard the one-order
and second-order accumulated items in Eq. 18 as approxi-
mately equaling the corresponding one-order and second-
order statistical moments for relatively large mini-batch,
from which we get U? ~ mU.

The relationship implies that A? ~ m\; and A3 ~ mX,.
Since A; and A, cannot be zeros, it concludes that \; =~
Ao &~ m therefor 1 — % ~0and 1 — ;\n—Q ~ 0 if batch size
is sufficient in a statistical sense.



