
Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

Jing Zhang, Wanqing Li, Philip Ogunbona
Advanced Multimedia Research Lab, University of Wollongong, Australia

jz960@uowmail.edu.au, wanqing@uow.edu.au, philipo@uow.edu.au

Abstract

This paper presents a novel unsupervised domain adap-
tation method for cross-domain visual recognition. We
propose a unified framework that reduces the shift be-
tween domains both statistically and geometrically, re-
ferred to as Joint Geometrical and Statistical Alignment
(JGSA). Specifically, we learn two coupled projections that
project the source domain and target domain data into low-
dimensional subspaces where the geometrical shift and dis-
tribution shift are reduced simultaneously. The objective
function can be solved efficiently in a closed form. Extensive
experiments have verified that the proposed method signifi-
cantly outperforms several state-of-the-art domain adapta-
tion methods on a synthetic dataset and three different real
world cross-domain visual recognition tasks.

1. Introduction
A basic assumption of statistical learning theory is that

the training and test data are drawn from the same distribu-
tion. Unfortunately, this assumption does not hold in many
applications. For example, in visual recognition, the dis-
tributions between training and test can be discrepant due
to the environment, sensor type, resolution, and view an-
gle. In video based visual recognition, more factors are in-
volved in addition to those in image based visual recogni-
tion. For example, in action recognition, the subject, per-
forming style, and performing speed increase the domain
shift further. Labelling data is labour intensive and expen-
sive, thus it is impractical to relabel a large amount of data
in a new domain. Hence, a realistic strategy, domain adapta-
tion, can be used to employ previous labeled source domain
data to boost the task in the new target domain. Based on
the availability of target labeled data, domain adaptation can
be generally divided into semi-supervised and unsupervised
domain adaptation. The semi-supervised approach requires
a certain amount of labelled training samples in the target
domain and the unsupervised one requires none labelled
data. However, in both semi-supervised and unsupervised
domain adaptation, sufficient unlabeled target domain data

are required. In this paper, we focus on unsupervised do-
main adaptation which is considered to be more practical
and challenging.

The most commonly used domain adaptation approaches
include instance-based adaptation, feature representation
adaptation, and classifier-based adaptation [1, 2]. In unsu-
pervised domain adaptation, as there is no labeled data in
the target domain, the classifier-based adaptation is not fea-
sible. Alternatively, we can deal with this problem by mini-
mizing distribution divergence between domains as well as
the empirical source error [3]. It is generally assumed that
the distribution divergence can be compensated either by an
instance based adaptation method, such as reweighting sam-
ples in the source domain to better match the target domain
distribution, or by a feature transformation based method
that projects features of two domains into another subspace
with small distribution shift. The instance-based approach
requires the strict assumptions [1, 4] that 1) the conditional
distributions of source and target domain are identical, and
2) certain portion of the data in the source domain can be
reused for learning in the target domain through reweight-
ing. While the feature transformation based approach re-
laxes these assumptions, and only assumes that there exists
a common space where the distributions of two domains are
similar. This paper follows the feature transformation based
approach.

Two main categories of feature transformation methods
are identified [5] among the literature, namely data cen-
tric methods and subspace centric methods. The data cen-
tric methods seek a unified transformation that projects data
from two domains into a domain invariant space to reduce
the distributional divergence between domains while pre-
serving data properties in original spaces, such as [6, 7, 8,
9]. The data centric methods only exploit shared feature
in two domains, which will fail when the two different do-
mains have large discrepancy, because there may not exist
such a common space where the distributions of two do-
mains are the same and the data properties are also maxi-
mumly preserved in the mean time. For the subspace cen-
tric methods, the domain shift is reduced by manipulat-
ing the subspaces of the two domains such that the sub-
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space of each individual domain all contributes to the final
mapping [10, 11, 12]. Hence, the domain specific features
are exploited. For example, Gong et al. [10] regard two
subspaces as two points on Grassmann manifold, and find
points on a geodesic path between them as a bridge between
source and target subspaces. Fernando et al. [11] align
source and target subspaces directly using a linear transfor-
mation matrix. However, the subspace centric methods only
manipulate on the subspaces of the two domains without ex-
plicitly considering the distribution shift between projected
data of two domains. The limitations of both data centric
and subspace centric methods will be illustrated on a syn-
thetic dataset in Section 4.1.

In this paper, we propose a unified framework that re-
duces the distributional and geometrical divergence be-
tween domains simultaneously by exploiting both the
shared and domain specific features. Specifically, we learn
two coupled projections to map the source and target data
into respective subspaces. After the projections, 1) the vari-
ance of target domain data is maximized to preserve the
target domain data properties, 2) the discriminative infor-
mation of source data is preserved to effectively transfer
the class information, 3) both the marginal and conditional
distribution divergences between source and target domains
are minimized to reduce the domain shift statistically, and 4)
the divergence of two projections is constrained to be small
to reduce domain shift geometrically.

Hence, different from data centric based methods, we
do not require the strong assumption that a unified trans-
formation can reduce the distribution shift while preserving
the data properties. Different from subspace centric based
methods, we not only reduce the shift of subspace geome-
tries but also reduce the distribution shifts of two domains.
In addition, our method can be easily extended to a kernel-
ized version to deal with the situations where the shift be-
tween domains are nonlinear. The objective function can be
solved efficiently in a closed form. The proposed method
has been verified through comprehensive experiments on
a synthetic dataset and three different real world cross-
domain visual recognition tasks: object recognition (Of-
fice, Caltech-256), hand-written digit recognition (USPS,
MNIST), and RGB-D-based action recognition (MSRAc-
tion3DExt, G3D, UTD-MHAD, and MAD).

2. Related Work

2.1. Data centric approach

Pan et al. [6] propose the transfer component analysis
(TCA) to learn some transfer components across domains
in RKHS using Maximum Mean Discrepancy (MMD) [13].
TCA is a typical data centric approach that finds a unified
transformation φ(·) that projects data from two domains
into a new space to reduce the discrepancy. In TCA, the

authors aim to minimize the distance between the sample
means of the source and target data in the k-dimensional
embeddings while preserving data properties in original
spaces. Joint distribution analysis (JDA) [7] improves TCA
by considering not only the marginal distribution shift but
also the conditional distribution shift using the pseudo la-
bels of target domain. Transfer joint matching (TJM) [8]
improves TCA by jointly reweighting the instances and
finding the common subspace. Scatter component analy-
sis (SCA) [9] takes the between and within class scatter of
source domain into consideration. However, these methods
require a strong assumption that there exist a unified trans-
formation to map source and target domains into a shared
subspace with small distribution shift.

2.2. Subspace Centric Approach

As mentioned, subspace centric approach can address
the issue of data centric methods that only exploit common
features of two domains. Fernando et al. [11] proposed
a subspace centric method, namely Subspace Alignment
(SA). The key idea of SA is to align the source basis vectors
(A) with the target one (B) using a transformation matrix
M . A and B are obtained by PCA on source and target do-
mains, respectively. Hence, they do not assume that there
exist a unified transformation to reduce the domain shifts.
However, the variance of projected source domain data will
be different from that of target domain after mapping the
source subspace using a linear map because of the domain
shift. In this case, SA fails to minimize the distributions
between domains after aligning the subspaces. In addition,
SA cannot deal with situations where the shift between two
subspaces are nonlinear. Subspace distribution alignment
(SDA) [14] improves SA by considering the variance of the
orthogonal principal components. However, the variances
are considered based on the aligned subspaces. Hence, only
the magnitude of each eigen direction is changed which may
still fail when the domain shift is large. This has been val-
idated by the illustration of synthetic data in Figure 2 and
the experiment results on real world datasets.

3. Joint Geometrical and Statistical Alignment
This section presents the Joint Geometrical and Statisti-

cal Alignment (JGSA) method in detail.

3.1. Problem Definition

We begin with the definitions of terminologies. The
source domain data denoted as Xs ∈ RD×ns are draw from
distribution Ps(Xs) and the target domain data denoted as
Xt ∈ RD×nt are draw from distribution Pt(Xt), where D
is the dimension of the data instance, ns and nt are number
of samples in source and target domain respectively. We
focus on the unsupervised domain adaptation problem. In
unsupervised domain adaptation, there are sufficient labeled



source domain data, Ds = {(xi, yi)}ns
i=1, xi ∈ RD, and un-

labeled target domain data, Dt = {(xj)}nt
j=1, xj ∈ RD,

in the training stage. We assume the feature spaces and la-
bel spaces between domains are the same: Xs = Xt and
Ys = Yt. Due to the dataset shift, Ps(Xs) 6= Pt(Xt).
Different from previous domain adaptation methods, we do
not assume that there exists a unified transformation φ(·)
such that Ps(φ(Xs)) = Pt(φ(Xt)) and Ps(Ys|φ(Xs)) =
Pt(Yt|φ(Xs)), since this assumption becomes invalid when
the dataset shift is large.

3.2. Formulation

To address limitations of both data centric and subspace
centric methods, the proposed framework (JGSA) reduces
the domain divergence both statistically and geometrically
by exploiting both shared and domain specific features of
two domains. The JGSA is formulated by finding two cou-
pled projections (A for source domain, and B for target do-
main) to obtain new representations of respective domains,
such that 1) the variance of target domain is maximized,
2) the discriminative information of source domain is pre-
served, 3) the divergence of source and target distributions
is small, and 4) the divergence between source and target
subspaces is small.

3.2.1 Target Variance Maximization

To avoid projecting features into irrelevant dimensions, we
encourage the variances of target domain is maximized in
the respective subspaces. Hence, the variance maximization
can be achieved as follows

max
B

Tr(BTStB) (1)

where
St = XtHtX

T
t (2)

is the target domain scatter matrix, Ht = It − 1
nt

1t1
T
t is

the centering matrix, 1t ∈ Rnt is the column vector with all
ones.

3.2.2 Source Discriminative Information Preservation

Since the labels in the source domain are available, we can
employ the label information to constrain the new represen-
tation of source domain data to be discriminative.

max
A

Tr(ATSbA) (3)

min
A
Tr(ATSwA) (4)

where Sw is the within class scatter matrix, and Sb is the be-
tween class scatter matrix of the source domain data, which
are defined as follows,

Sw =

C∑
c=1

X(c)
s H(c)

s (X(c)
s )T (5)

Sb =

C∑
c=1

n(c)s (m(c)
s − m̄s)(m

(c)
s − m̄s)

T (6)

where X(c)
s ∈ RD×n(c)

s is the set of source samples belong-

ing to class c, m(c)
s = 1

n
(c)
s

∑n(c)
s

i=1 x
(c)
i , m̄s = 1

ns

∑ns

i=1 xi,

H
(c)
s = I

(c)
s − 1

n
(c)
s

1
(c)
s (1

(c)
s )T is the centering matrix of

data within class c, I(c)s ∈ Rn(c)
s ×n

(c)
s is the identity matrix,

1s ∈ Rn(c)
s is the column vector with all ones, n(c)s is the

number of source samples in class c.

3.2.3 Distribution Divergence Minimization

We employ the MMD criteria [13, 6, 7] to compare the dis-
tributions between domains, which computes the distance
between the sample means of the source and target data in
the k-dimensional embeddings,

min
A,B
‖ 1

ns

∑
xi∈Xs

ATxi −
1

nt

∑
xj∈Xt

BTxj‖2F (7)

Long et al. [7] has been proposed to utilize target pseudo la-
bels predicted by source domain classifiers for representing
the class-conditional data distributions in the target domain.
Then the pseudo labels of target domain are iteratively re-
fined to reduce the difference in conditional distributions
between two domains further. We follow their idea to mini-
mize the conditional distribution shift between domains,

min
A,B

C∑
c=1

‖ 1

n
(c)
s

∑
xi∈X(c)

s

ATxi −
1

n
(c)
t

∑
xj∈X(c)

t

BTxj‖2F (8)

Hence, by combining the marginal and conditional distri-
bution shift minimization terms, the final distribution diver-
gence minimization term can be rewritten as

min
A,B

Tr

(
[AT BT ]

[
Ms Mst

Mts Mt

][
A
B

])
(9)

where

Ms = Xs(Ls +

C∑
c=1

L(c)
s )XT

s , Ls =
1

n2
s

1s1
T
s ,

(L(c)
s )ij =

{
1

(n
(c)
s )2

xi,xj ∈ X(c)
s

0 otherwise

(10)

Mt = Xt(Lt +

C∑
c=1

L
(c)
t )XT

t , Lt =
1

n2
t

1t1
T
t ,

(L
(c)
t )ij =


1

(n
(c)
t )2

xi,xj ∈ X(c)
t

0 otherwise

(11)



Mst = Xs(Lst +

C∑
c=1

L
(c)
st )X

T
t , Lst = −

1

nsnt
1s1

T
t ,

(L
(c)
st )ij =

−
1

n
(c)
s n

(c)
t

xi ∈ X(c)
s ,xj ∈ X(c)

t

0 otherwise

(12)

Mts = Xt(Lts +

C∑
c=1

L
(c)
ts )XT

s , Lts = − 1

nsnt
1t1

T
s ,

(L
(c)
ts )ij =

−
1

n
(c)
s n

(c)
t

xj ∈ X(c)
s ,xi ∈ X(c)

t

0 otherwise

(13)

Note that this is different from TCA and JDA, because we
do not use a unified subspace because there may not exist
such a common subspace where the distributions of two do-
mains are also similar.

3.2.4 Subspace Divergence Minimization

Similar to SA [11], we also reduce the discrepancy between
domains by moving closer the source and target subspaces.
As mentioned, an additional transformation matrix M is re-
quired to map the source subspace to the target subspace in
SA. However, we do not learn an additional matrix to map
the two subspaces. Rather, we optimize A and B simulta-
neously, such that the source class information and the tar-
get variance can be preserved, and the two subspaces move
closer in the mean time. We use following term to move the
two subspaces close:

min
A,B
‖A−B‖2F (14)

By using term (14) together with (9), both shared and do-
main specific features are exploited such that the two do-
mains are well aligned geometrically and statistically.

3.2.5 Overall Objective Function

We formulate the JGSA method by incorporating the above
five quantities ((1), (3), (4), (9), and (14)) as follows:

max
µ{Target Var.}+ β{Between Class Var.}

{Distribution shift}+ λ{Subspace shift}+ β{Within Class Var.}

where λ, µ, β are trade-off parameters to balance the im-
portance of each quantity, and Var. indicates variance.

We follow [9] to further impose the constraint that
Tr(BTB) is small to control the scale of B. Specifically,
we aim at finding two coupled projectionsA andB by solv-
ing the following optimization function,

max
A,B

Tr

(
[AT BT ]

[
βSb 0
0 µSt

][
A
B

])

Tr

(
[AT BT ]

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

][
A
B

]) (15)

where I ∈ Rd×d is the identity matrix.
Minimizing the denominator of (15) encourages small

marginal and conditional distributions shifts, and small
within class variance in the source domain. Maximizing the
numerator of (15) encourages large target domain variance,
and large between class variance in the source domain. Sim-
ilar to JDA, we also iteratively update the pseudo labels of
target domain data using the learned transformations to im-
prove the labelling quality until convergence.

3.3. Optimization

To optimize (15), we rewrite [AT BT ] as WT . Then
the objective function and corresponding constraints can be
rewritten as:

max
W

Tr

(
WT

[
βSb 0
0 µSt

]
W

)

Tr

(
WT

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

]
W

) (16)

Note that the objective function is invariant to rescaling of
W . Therefore, we rewrite objective function (16) as

max
W

Tr

(
WT

[
βSb 0
0 µSt

]
W

)
(17)

s.t. T r

(
WT

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

]
W

)
= 1

The Lagrange function of (17) is

L = Tr

(
WT

[
βSb 0
0 µSt

]
W

)

+ Tr

((
WT

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

]
W − I

)
Φ

) (18)

By setting the derivative ∂L
∂W = 0, we get:[

βSb 0
0 µSt

]
W =

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

]
WΦ (19)

where Φ = diag(λ1, ..., λk) are the k leading eigenvalues
and W = [W1, ...,Wk] contains the corresponding eigen-
vectors, which can be solved analytically through general-
ized eigenvalue decomposition. Once the transformation
matrix W is obtained, the subspaces A and B can be ob-
tained easily. The pseudo code of JGSA is summarised in
Algorithm 1.

3.4. Kernelization Analysis

The JGSA method can be extended to nonlinear prob-
lems in a Reproducing Kernel Hilbert Space (RKHS) using
some kernel functions φ. We use the Representer Theorem
P = Φ(X)A and Q = Φ(X)B to kernelize our method,
where X = [Xs, Xt] denotes all the source and target train-
ing samples, Φ(X) = [φ(x1), ..., φ(xn)] and n is the num-
ber of all samples. Hence, the objective function becomes,



Algorithm 1: Joint Geometrical and Statistical Alignment
Input : Data and source labels: Xs, Xt, Ys; Parameters:

λ = 1, µ = 1, k, T , β.
Output: Transformation matrices: A and B; Embeddings:

Zs, Zt; Adaptive classifier: f .
1 Construct St, Sb, Sw, Ms, Mt, Mst, and Mts according to

(2), (3), (4), (10), (11), (12), and (13); Initialize pseudo
labels in target domain Ŷt using a classifier trained on
original source domain data;

2 repeat
3 Solve the generalized eigendecompostion problem in

Equation (19) and select the k corresponding
eigenvectors of k leading eigenvalues as the
transformation W , and obtain subspaces A and B;

4 Map the original data to respective subspaces to get the
embeddings: Zs = ATXs, Zt = BTXt;

5 Train a classifier f on {Zs, Ys} to update pseudo labels
in target domain Ŷt = f(Zt);

6 Update Ms, Mt, Mst, and Mts according to (10), (11),
(12), and (13).

7 until Convergence;
8 Obtain the final adaptive classifier f on {Zs, Ys}.

max
P,Q

Tr

(
[PT QT ]

[
βSb 0
0 µSt

][
P
Q

])

Tr

(
[PT QT ]

[
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I

][
P
Q

]) (20)

where all the Xt’s are replaced by Φ(Xt) and all the Xs’s
are replaced by Φ(Xs) in St, Sw, Sb, Ms, Mt, Mst, and
Mts in the kernelized version.

We replace P and Q with Φ(X)A and Φ(X)B and obtain
the objective function as follows,

max
A,B

Tr

(
[AT BT ]

[
βSb 0
0 µSt

][
A
B

])

Tr

(
[AT BT ]

[
Ms + λK + βSw Mst − λK

Mts − λK Mt + (λ+ µ)K

][
A
B

]) (21)

where St = K̃tK̃t
T

, Sw = KsH
(c)
s KT

s , with
K = Φ(X)T Φ(X), Ks = Φ(X)T Φ(Xs), Kt =
Φ(X)T Φ(Xt), K̃t = Kt − 1tK − Kt1n + 1tK1n,
1t ∈ Rnt×n and 1n ∈ Rn×n are matrices with all
1
n . In Sb, m(c)

s = 1

n
(c)
s

∑n(c)
s

i=1 k
(c)
i , m̄s = 1

ns

∑ns

i=1 ki,

with ki = Φ(X)Tφ(xi). In MMD terms, Ms =

Ks(Ls +
∑C

c=1 L
(c)
s )KT

s , Mt = Kt(Lt +
∑C

c=1 L
(c)
t )KT

t ,
Mst = Ks(Lst +

∑C
c=1 L

(c)
st )KT

t , Mts = Kt(Lts +∑C
c=1 L

(c)
ts )KT

s . Once the kernelized objective function
(21) is obtained, we can simply solve it in the same way
as the original objective function to compute A and B.

4. Experiments
In this section, we first conduct experiments on a syn-

thetic dataset to verify the effectiveness of the JGSA meth-
ods. Then we evaluate our method for cross-domain ob-
ject recognition, cross-domain digit recognition, and cross
dataset RGB-D-based action recognition. The codes are
available online1. We compare our method with several
state-of-the-art methods: subspace alignment (SA) [11],
subspace distribution alignment (SDA) [14], geodesic flow
kernel (GFK) [10], transfer component analysis (TCA) [6],
joint distribution analysis (JDA) [7], transfer joint match-
ing (TJM) [8], scatter component analysis (SCA) [9], opti-
mal transport (OTGL) [15], and kernel manifold alignment
(KEMA) [16]. We use the parameters recommended by the
original papers for all the baseline methods. For JGSA,
we fix λ = 1, µ = 1 in all the experiments, such that
the distribution shift, subspace shift, and target variance are
treated as equally important. We empirically verified that
the fixed parameters can obtained promising results on dif-
ferent types of tasks. Hence, the subspace dimension k,
number of iteration T , and regularization parameter β are
free parameters.

4.1. Synthetic Data

Here, we aim to synthesize samples of data to demon-
strate that our method can keep the domain structures as
well as reduce the domain shift. The synthesized source
and target domain samples are both draw from a mixture of
three RBFian distributions. Each RBFian distribution rep-
resents one class. The global means, as well as the means
of the third class are shifted between domains. The original
data are 3-dimensional. We set the dimensionality of the
subspaces to 2 for all the methods.

Figure 2 illustrates the original synthetic dataset and do-
main adaptation results of different methods on the dataset.
It can be seen that after SA method the divergences between
domains are still large after aligning the subspaces. Hence,
the aligned subspaces are not optimal for reduce the domain
shift if the distribution divergence is not considered. The
SDA method does not demonstrate obvious improvement
over SA, since the variance shift is reduced based upon the
aligned subspaces (which may not be optimal) as in SA.
TCA method reduces the domain shift effectively. However,
two of the classes are mixed up since there may not exist a
unified subspace to reduce domain shift and preserve the
original information simultaneously. Even with conditional
distribution shift reduction (JDA) or instances reweighting
(TJM), the class-1 and class-2 still cannot be distinguished.
SCA considers the total scatter, domain scatter, and class
scatter using a unified mapping. However, there may not ex-
ist such a common subspace that satisfies all the constraints.

1http://www.uow.edu.au/˜jz960/

http://www.uow.edu.au/~jz960/


Obviously, JGSA aligns the two domains well even though
the shift between source and target domains is large.

4.2. Real World Datasets

We evaluate our method on three cross-domain vi-
sual recognition tasks: object recognition (Office, Caltech-
256), hand-written digit recognition (USPS, MNIST),
and RGB-D-based action recognition (MSRAction3DExt,
G3D, UTD-MHAD, and MAD). The sample images or
video frames are shown in Figure 1.

Webcam DSLR Amazon Caltech

MNIST USPS

MSR vs. G3D MSR vs. MAD MSR vs. UTD

Figure 1: Sample images of object datasets, digit datasets,
and sample video frames of depth map of RGB-D-based
action datasets.

4.2.1 Setup

Object Recognition We adopt the public Office+Caltech
object datasets released by Gong et al. [10]. This dataset
contains images from four different domains: Amazon
(images downloaded from online merchants), Webcam
(low-resolution images by a web camera), DSLR (high-
resolution images by a digital SLR camera), and Caltech-
256. Amazon, Webcam, and DSLR are three datasets stud-
ied in [17] for the effects of domain shift. Caltech-256 [18]
contains 256 object classes downloaded from Google im-
ages. Ten classes common to four datasets are selected:
backpack, bike, calculator, head-phones, keyboard, laptop,
monitor, mouse, mug, and projector. Two types of features
are considered: SURF descriptors (which are encoded with
800-bin histograms with the codebook trained from a sub-
set of Amazon images), andDecaf6 features (which are the
activations of the 6th fully connected layer of a convolu-
tional network trained on imageNet). As suggested by [10],
1-Nearest Neighbor Classifier (NN) is chosen as the base
classifier. For the free parameters, we set k = 30, T = 10,
and β = 0.1.

Digit Recognition For cross-domain hand-written digit
recognition task, we use MNIST [19] and USPS [20]
datasets to evaluate our method. MNIST dataset contains
a training set of 60,000 examples, and a test set of 10,000
examples of size 28×28. USPS dataset consists of 7,291
training images and 2,007 test images of size 16×16. Ten
shared classes of the two datasets are selected. We follow
the settings of [7, 8] to construct a pair of cross-domain
datasets USPS→MNIST by randomly sampling 1,800 im-
ages in USPS to form the source data, and randomly sam-
pling 2,000 images in MNIST to form the target data. Then
source and target pair are switched to form another dataset
MNIST→ USPS. All images are uniformly rescaled to size
16×16, and each image is represented by a feature vector
encoding the gray-scale pixel values. For the free parame-
ters, we set k = 100, T = 10, and β = 0.01.

RGB-D-based Action Recognition For cross-dataset
RGB-D-based Action Recognition, four RGB-D-based Ac-
tion Recognition datasets are selected, namely MSRAc-
tion3DExt [21, 22], UTD-MHAD [23], G3D[24], and
MAD [25]. All the four datasets are captured by both
RGB and depth sensors. We select the shared actions be-
tween MSRAction3DExt and other three datasets to form
6 dataset pairs. There are 8 common actions between
MSRAction3DExt and G3D: wave, forward punch, hand
clap, forward kick, jogging, tennis swing, tennis serve, and
golf swing. There are 10 common actions between MSRAc-
tion3DExt and UTD-MHAD: wave, hand catch, right arm
high throw, draw x, draw circle, two hand front clap, jog-
ging, tennis swing, tennis serve, and pickup and throw.
There are 7 shared actions between MSRAction3DExt and
MAD: wave, forward punch, throw, forward kick, side kick,
jogging, and tennis swing forehand. The local HON4D [26]
feature is used for the cross-dataset action recognition tasks.
We extract local HON4D descriptors around 15 skeleton
joints by following the process similar to [26]. The selected
joints include head, neck, left knee, right knee, left elbow,
right elbow, left wrist, right wrist, left shoulder, right shoul-
der, hip, left hip, right hip, left ankle, and right ankle. We
use a patch size of 24×24×4 for depth map with resolution
of 320×240 and 48×48×4 for depth map with resolution
of 640× 480 , then divide the patches into a 3× 3× 1 grid.
Since most of the real world applications of action recog-
nition are required to recognize unseen data in the target
domain, we further divide the target domain into training
and test sets using cross-subject protocol, where half of the
subjects are used as training and the rest subjects are used as
test when a dataset is evaluated as target domain. Note that
the target training set is also unlabeled. For the free param-
eters, we set k = 100 and β = 0.01. To avoid overfitting
to the target training set, we set T = 1 in action recognition
tasks. LibLINEAR [27] is used for action recognition by
following the original paper [26].
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Figure 2: Comparisons of baseline domain adaptation methods and the proposed JGSA method on the synthetic data

Table 1: Accuracy(%) on cross-domain object datasets. Notation for datasets: Caltech:C; Amazon:A; Webcam:W; DSLR:D.

Feature SURF Decaf6

data Raw SA SDA GFK TCA JDA TJM SCA
JGSA
primal

JGSA
linear

JGSA
RBF JDA OTGL

JGSA
primal

JGSA
linear

JGSA
RBF

C→A 36.01 49.27 49.69 46.03 45.82 45.62 46.76 45.62 51.46 52.30 53.13 90.19 92.15 91.44 91.75 91.13
C→W 29.15 40.00 38.98 36.95 31.19 41.69 38.98 40.00 45.42 45.76 48.47 85.42 84.17 86.78 85.08 83.39
C→D 38.22 39.49 40.13 40.76 34.39 45.22 44.59 47.13 45.86 48.41 48.41 85.99 87.25 93.63 92.36 92.36
A→C 34.19 39.98 39.54 40.69 42.39 39.36 39.45 39.72 41.50 38.11 41.50 81.92 85.51 84.86 85.04 84.86
A→W 31.19 33.22 30.85 36.95 36.27 37.97 42.03 34.92 45.76 49.49 45.08 80.68 83.05 81.02 84.75 80.00
A→D 35.67 33.76 33.76 40.13 33.76 39.49 45.22 39.49 47.13 45.86 45.22 81.53 85.00 88.54 85.35 84.71
W→C 28.76 35.17 34.73 24.76 29.39 31.17 30.19 31.08 33.21 32.68 33.57 81.21 81.45 84.95 84.68 84.51
W→A 31.63 39.25 39.25 27.56 28.91 32.78 29.96 29.96 39.87 41.02 40.81 90.71 90.62 90.71 91.44 91.34
W→D 84.71 75.16 75.80 85.35 89.17 89.17 89.17 87.26 90.45 90.45 88.54 100 96.25 100 100 100
D→C 29.56 34.55 35.89 29.30 30.72 31.52 31.43 30.72 29.92 30.19 30.28 80.32 84.11 86.20 85.75 84.77
D→A 28.29 39.87 38.73 28.71 31.00 33.09 32.78 31.63 38.00 36.01 38.73 91.96 92.31 91.96 92.28 91.96
D→W 83.73 76.95 76.95 80.34 86.10 89.49 85.42 84.41 91.86 91.86 93.22 99.32 96.29 99.66 98.64 98.64
Average 40.93 44.72 44.52 43.13 43.26 46.38 46.33 45.16 50.04 50.18 50.58 87.44 88.18 89.98 89.76 88.97

Table 2: Accuracy (%) on cross-domain digit datasets.

data Raw SA SDA GFK TCA JDA TJM SCA JGSA primal

MNIST→USPS 65.94 67.78 65.00 61.22 56.33 67.28 63.28 65.11 80.44
USPS→MNIST 44.70 48.80 35.70 46.45 51.20 59.65 52.25 48.00 68.15
Average 55.32 58.29 50.35 56.84 53.77 63.47 57.77 56.56 74.30

Table 3: Accuracy (%) on cross-dataset RGB-D-based action datasets.

data Raw SA SDA TCA JDA TJM SCA JGSA linear

MSR→G3D 72.92 77.08 73.96 68.75 82.29 70.83 70.83 89.58
G3D→MSR 54.47 68.09 67.32 50.58 65.37 63.04 55.25 66.93
MSR→UTD 66.88 73.75 73.75 65.00 77.50 65.00 64.38 76.88
UTD→MSR 62.93 67.91 66.67 57.63 61.06 60.12 55.14 61.37
MSR→MAD 80.71 85.00 83.57 79.29 82.86 82.14 78.57 86.43
MAD→MSR 80.09 81.48 80.56 81.02 83.33 79.63 79.63 85.65
Average 69.67 75.55 74.30 67.05 75.40 70.13 67.30 77.81
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Figure 3: Parameter sensitivity study of JGSA on different types of datasets

4.2.2 Results and Discussion
The results on three types of real world cross domain
(object, digit, and action) datasets are shown in Ta-
ble 1, 2,and 3. The JGSA primal represents the results of
JGSA method on original data space, while the JGSA lin-
ear and JGSA RBF represent the results with linear kernel
and RBF kernel respectively. We follow JDA to report the
results on digit datasets in the original feature space. For
the action recognition task, it is hard to do eigen decompo-
sition in the original space due to the high dimensionality,
hence, the results are obtained using linear kernel. It can
be observed that JGSA outperforms the state-of-the-art do-
main adaptation methods on most of the datasets. As men-
tioned, the general drawback of subspace centric approach
is that the distribution shifts between domains are not ex-
plicitly reduced. The data centric methods reduce the dis-
tribution shift explicitly. However, a unified transformation
may not exist to both reduce distribution shift and preserve
the properties of original data. Hence, JGSA outperforms
both subspace centric and data centric methods on most
of the datasets. We also compare the primal and kernel-
ized versions of the algorithm on the object recognition task
(Table 1). The results show that the primal and kernelized
versions can obtain similar results on average. To evalu-
ate the effectiveness of pseudo labelling, we compare our
method with a semi-supervised method KEMA [16]. We
use the same Decaf7 feature on 8 Office-Caltech dataset
pairs as did in KEMA. Our method obtains 90.18% (linear)
and 89.91% (RBF), both of which are higher than 89.1%
reported in KEMA.

We also evaluated the runtime complexity on the cross-
domain object datasets (SURF with linear kernel). The av-
erage runtime is 28.97s, which is about three times as long
as the best baseline method (JDA). This is because JGSA
learns two mappings simultaneously, the size of matrix for
eigen decomposition is doubled compared to JDA.

4.2.3 Parameter Sensitivity
We analyse the parameter sensitivity of JGSA on differ-
ent types of datasets to validate that a wide range of pa-
rameter values can be chosen to obtain satisfactory perfor-

mance. The results on different types of datasets have val-
idated that the fixing λ = 1 and µ = 1 is sufficient for
all the three tasks. Hence, we only evaluate other three pa-
rameters (k, β, and T ). We conduct experiments on the
USPS→MNIST, W→A (SURF descriptor with linear ker-
nel), and MSR→MAD datasets for illustration, which are
shown in Figure 3. The solid line is the accuracy on JGSA
using different parameters, and the dashed line indicates
the results obtained by the best baseline method on each
dataset. Similar trends are observed on other datasets.
β is the trade-off parameter of within and between class

variance of source domain. If β is too small, the class in-
formation of source domain is not considered. If β is too
big, the classifier would be overfit to the source domain.
However, it can be seen from Figure 3a, a large range of
β (β ∈ [2−15, 0.5]) can be selected to obtain better results
than the best baseline method.

Figure 3b illustrates the relationship between various k
and the accuracy. We can choose k ∈ [20, 180] to obtain
better results than the best baseline method.

For the number of iteration T, the results on object and
digit recognition tasks can be converged to the optimum
value after several iteration. However, for the action recog-
nition, the accuracy has no obvious change (Figure 3c).
This may be because we use a different protocol for action
recognition as mentioned in Section 4.2.1. After iterative
labelling (which is done on the target training set), the map-
pings may be sufficiently good for fitting the target training
set, but it is not necessarily the case for the test set.

5. Conclusion
In this paper, we propose a novel framework for unsuper-

vised domain adaptation, referred to as Joint Geometrical
and Statistical Alignment (JGSA). JGSA reduces the do-
main shifts by taking both geometrical and statistical prop-
erties of source and target domain data into consideration
and exploiting both shared and domain specific features.
Comprehensive experiments on synthetic data and three dif-
ferent types of real world visual recognition tasks validate
the effectiveness of JGSA compared to several state-of-the-
art domain adaptation methods.
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