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Abstract

Image captioning often requires a large set of training
image-sentence pairs. In practice, however, acquiring suf-
ficient training pairs is always expensive, making the re-
cent captioning models limited in their ability to describe
objects outside of training corpora (i.e., novel objects). In
this paper, we present Long Short-Term Memory with Copy-
ing Mechanism (LSTM-C) — a new architecture that in-
corporates copying into the Convolutional Neural Networks
(CNN) plus Recurrent Neural Networks (RNN) image cap-
tioning framework, for describing novel objects in captions.
Specifically, freely available object recognition datasets are
leveraged to develop classifiers for novel objects. Our
LSTM-C then nicely integrates the standard word-by-word
sentence generation by a decoder RNN with copying mech-
anism which may instead select words from novel objects at
proper places in the output sentence. Extensive experiments
are conducted on both MSCOCO image captioning and Im-
ageNet datasets, demonstrating the ability of our proposed
LSTM-C architecture to describe novel objects. Further-
more, superior results are reported when compared to state-
of-the-art deep models.

1. Introduction

Automatically describing the content of an image with
a complete and natural sentence, a problem known as im-
age captioning, has great potential impact for instance on
robotic vision or helping visually impaired people. Inten-
sive research interests from both computer vision and natu-
ral language processing communities have been paid for this
emerging topic. Most of recent attempts on this problem
[4, 23, 26, 29] are Convolutional Neural Networks (CNN)
plus Recurrent Neural Networks (RNN) based sequence
learning methods, which are mainly inspired from the ad-
vances by using RNN in machine translation [21]. The ba-

Detected Objects:

LRCN: a cat sitting on top of a red chair

LSTM-C: a cat laying on a suitcase

cat, suitcase, clothes, bag, luggage, eyes...

Figure 1. An example of object recognition and image captioning.
The input is an image, while the output is the detected objects and
a natural sentence, respectively. (upper row: the detected objects
in the image; middle row: the sentence generated by LRCN [4]
image captioning approach; bottom row: the sentence generated
by our LSTM-C model.)

sic idea is an encoder-decoder mechanism for translation.
Specifically, a CNN is employed to encode image content
and then a decoder RNN is exploited to generate a natural
sentence. While encouraging performances are reported,
the sequence learning methods learn directly from image
and sentence pairs, which fail in their ability to describe the
objects out of the training data, i.e., novel objects. Take
the image in Figure 1 as an example, the output sentence
generated by a popular image captioning method Long-term
Recurrent Convolutional Networks (LRCN) [4] is unable to
describe “suitcase” as this object is non-existent in the train-
ing corpora. More importantly, manually labeling a large-
scale image captioning dataset is an intellectually expensive
and time-consuming process.

We demonstrate in this paper that the above limitations
could be mitigated by incorporating the knowledge from ex-
ternal visual recognition datasets, which are freely available
for developing object detectors. Specifically, we present
a novel Long Short-Term Memory with Copying Mecha-
nism (LSTM-C) framework to generate words by integrat-
ing “copying mechanism.” Copying mechanism is origi-
nated from human language communication and refers to
the mechanism that locates a certain segment of the input
sequence and directly puts the segment in the output se-
quence [7]. The spirit behind is the rote memorization in
language processing of human being, which needs to refer
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to sub-sequences of the input. We extend the copying idea
here to select novel objects learnt from external sources and
put them at proper places in the generated sentence. The
overview of LSTM-C framework is illustrated in Figure 2.
Given an image, a CNN is utilized to extract visual features,
which will be fed into LSTM at the initial time step for sen-
tence generation. Meanwhile, the objects of the input image
are also predicted by object detectors pre-trained on recog-
nition dataset. A copying layer is devised at the top of the
whole architecture to accommodate the generative model of
LSTM and copying mechanism from the detected objects.
By integrating copying mechanism into image captioning,
the word “suitcase” is copied from detected objects and out-
put in the sentence generated by our LSTM-C as shown in
Figure 1. The whole architecture is trained end-to-end.

The main contribution of this work is the proposal of
LSTM-C framework by incorporating the knowledge from
external sources to address the issue of predicting novel ob-
jects in image captioning task. This issue also leads to an
elegant view of how to accommodate both generative model
and copying mechanism from detected objects for sentence
generation, which is a problem not yet fully understood.

2. Related Work

We briefly group the related works into two categories:
image captioning and novel object captioning. The first cat-
egory reviews the research in sentence generation for im-
ages, while the second investigates a variety of recent mod-
els which attempt to describe novel objects in context.

2.1. Image Captioning

The research on image captioning has proceeded along
three different dimensions: template-based methods [11,
14, 27], search-based approaches [3, 6, 15], and language-
based models [4, 10, 23, 24, 26, 28, 29].

Template-based methods predefine the template for sen-
tence generation and split sentence into several parts (e.g.,
subject, verb, and object). With such sentence fragments,
many works align each part with visual content (e.g., CRF
in [11] and HMM in [27]) and then generate the sentence
for the image. Obviously, most of them highly depend on
the templates of sentence and always generate sentence with
syntactical structure. Search-based approaches [3, 6, 15]
“generate” sentence for an image by selecting the most
semantically similar sentences from sentence pool. This
direction indeed can achieve human-level descriptions as
all the output sentences are from existing human-generated
ones. The need to collect human-generated sentences, how-
ever, makes the sentence pool hard to be scaled up.

Different from template-based and search-based models,
language-based models aim to learn the probability distri-
bution in the common space of visual content and textual

sentence to generate novel sentences with more flexible syn-
tactical structures. In this direction, recent works explore
such probability distribution mainly using neural networks
and have achieved promising results for image captioning
task. Kiros et al. [10] employ the neural networks to gen-
erate sentence for an image by proposing a multimodal log-
bilinear neural language model. In [23], Vinyals et al. pro-
pose an end-to-end neural networks architecture by utiliz-
ing LSTM to generate sentence for an image, which is fur-
ther incorporated with attention mechanism in [26] to au-
tomatically focus on salient objects when generating cor-
responding words. More recently, in [24], high-level con-
cepts/attributes are shown to obtain clear improvements on
image captioning task when injected into existing state-of-
the-art RNN-based model. Such high-level attributes are
further utilized as semantic attention in [29] and comple-
mentary representations to visual features in [17, 28] to en-
hance image/video captioning.

2.2. Novel Object Captioning

The novel object captioning is a new problem that has
received increasing attention most recently, which leverages
additional image-sentence paired data [13] or unpaired im-
age/text data [8, 22] to describe novel objects in existing
RNN-based image captioning frameworks. [13] is one of
the early works that enlarges the original limited word dic-
tionary to describe novel objects by using only a few paired
image-sentence data. In particular, a transposed weight
sharing scheme is proposed to avoid extensive retraining. In
contrast, with the largely available unpaired image/text data
(e.g., ImageNet and Wikipedia), Hendricks et al. [8] ex-
plicitly transfer the knowledge of semantically related ob-
jects to compose the descriptions about novel objects in
the proposed Deep Compositional Captioner (DCC). The
DCC model is further extended to an end-to-end system by
simultaneously optimizing the visual recognition network,
LSTM-based language model, and image captioning net-
work with different sources in [22].

Our model mainly focuses on the latter scenario, that in-
corporates the knowledge learnt from freely available un-
paired object recognition data for novel object captioning.
Different from previous methods which solely rely on the
standard word-by-word sentence generation through a de-
coder RNN, we integrate the regular decoder RNN with
copying mechanism which can simultaneously “copy” the
novel objects to the output sentence and the framework is
trainable in an end-to-end fashion.

3. Image Captioning with Copying Mechanism
The main goal of our Long Short-Term Memory with

Copying Mechanism (LSTM-C) framework is to describe
novel objects in the output sentences by incorporating the
copying mechanism into the decoding stage of image cap-
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Figure 2. The overview of Long Short-Term Memory with Copying Mechanism (LSTM-C) for describing novel objects (better viewed
in color). (a) Wg and Wc are the vocabularies on paired image-sentence dataset and unpaired object recognition dataset, respectively.
(b) The image representation extracted by CNN is injected into LSTM at the initial time for standard word-by-word sentence generation.
Meanwhile, the object classifiers learnt on unpaired object recognition dataset are utilized to detect the object candidates which are addi-
tionally incorporated into LSTM for directly “copying” them into the output sentence, enabling the captioning for novel objects. To better
leverage both generative mechanism for standard word-by-word sentence generation and our adopted copying mechanism, a copying layer
is specially devised to integrate them in an end-to-end trainable architecture.

tioning. The overall training of LSTM-C is similar to regu-
lar CNN plus RNN systems by minimizing the energy loss
which estimates the contextual relationships among the gen-
erated words in the decoding stage. Particularly, we mea-
sure the log probability of target word through not only
the natural generation by generic RNN decoder, but also
the direct “copying” from the detected objects learnt on
largely object recognition datasets, enabling the captioning
for novel objects. The framework overview is shown in Fig-
ure 2.

In the following, we will first define the representations
of images, the sequential words in sentence and the detected
objects from images, followed by sequence modeling in im-
age captioning. Next, to select words from novel objects
and put them at proper places in the output sentence, we
present the copying mechanism for image captioning from
the viewpoint of rote memorization like a human being.
Finally, the overall objective and optimization strategy of
LSTM-C are presented in a CNN plus RNN framework.
Technically, we devise a copying layer at the top of CNN
plus RNN architecture, which incorporates both generative
and copying mechanisms to optimize the whole network.

3.1. Notation

Suppose we have an image I to be described by a tex-
tual sentence S, where S = {w1, w2, ..., wNs} consisting
of Ns words. Let I ∈ RDv and wt ∈ RDw denote the Dv-
dimensional visual representations of the image I and the
Dw-dimensional textual features of the t-th word in sen-
tence S, respectively. As a sentence consists of a sequence
of words, a sentence can be represented by a Dw ×Ns ma-

trix W ≡ [w1,w2, ...,wNs ], with each word in the sen-
tence as its column vector. The vocabulary for the paired
image-sentence data is denoted as Wg . Furthermore, we
utilize the freely available object recognition datasets to
train the object classifiers which will be injected into our
CNN plus RNN system for novel object captioning. Let
Wc denote the vocabulary for the unpaired object recogni-
tion dataset and the probability of image I containing each
object wi ∈ Wc is represented as δ(wi). More specifically,
for the external images with single label (e.g., ImageNet
[19]), the standard CNN architecture [20] is adopted to train
the object detectors, while for the image data with multiple
objects (e.g., MSCOCO [12]), we follow [5] and learn the
detectors by using the weakly-supervised approach of Mul-
tiple Instance Learning (MIL).

3.2. Sequence Modeling in Image Captioning

Inspired by the recent successes of probabilistic se-
quence methods leveraged in statistical machine translation
[1, 21], we aim to formulate our image captioning model in
an end-to-end fashion based on RNN model which first en-
codes the given image into a fixed dimensional vector and
then decodes it to the target output sentence consisting of
sequential words. As such, given the image, the problem
of sequence modeling for target sentence we exploit here
can be generally formulated by minimizing the following
energy loss function:

E(I,W) = − log Pr (W|I), (1)

which is the negative log probability of the correct textual
sentence given the visual image.



Since the model produces one word in the sentence at
each time step, it is natural to apply chain rule to model the
joint probability over the sequential words. Thus, the log
probability of the sentence is given by the sum of the log
probabilities over the word and can be expressed as

log Pr (W|I) =
Ns∑
t=1

log Pr (wt| I,w0, . . . ,wt−1). (2)

By minimizing this loss, the contextual relationship among
the words in the sentence can be guaranteed given the visual
content of image.

We formulate this task as a variable-length sequence
to sequence problem and model the parametric distribu-
tion Pr (wt| I,w0, . . . ,wt−1) in Eq.(2) with LSTM, which
is a widely used type of RNN in image/video captioning
[23, 28, 16, 25]. The vector formulas for a LSTM layer
forward pass are given as below. For time step t, xt and
ht are the input and output vector respectively, T are in-
put weights matrices, R are recurrent weight matrices and
b are bias vectors. Sigmoid σ and hyperbolic tangent φ are
element-wise non-linear activation functions. The dot prod-
uct of two vectors is denoted with�. Given inputs xt, ht−1

and ct−1, the LSTM unit updates for time step t are:

gt = φ(Tgx
t+Rgh

t−1+bg), i
t = σ(Tix

t+Rih
t−1+bi),

f t = σ(Tfx
t+Rfh

t−1+bf ), ct = gt�it+ct−1�f t,
ot = σ(Tox

t +Roh
t−1 + bo), ht = φ(ct)� ot,

where gt, it, f t, ct, ot, and ht are cell input, input gate,
forget gate, cell state, output gate, and cell output of the
LSTM, respectively.

As mentioned above, the LSTM model is utilized to pre-
dict each word in the sentence given the image content and
previous words. We inject the embedded image represen-
tation at the initial time to inform the whole memory cells
in LSTM about the visual content. Given the image I and
the corresponding sentence W ≡ [w0,w1, ...,wNs ], the
LSTM updating procedure is as following:

x−1 = TII, (3)

xt = Tswt, t ∈ {0, . . . , Ns − 1} , (4)

ht = f
(
xt
)
, t ∈ {0, . . . , Ns − 1} , (5)

where De is the dimensionality of LSTM input, and TI ∈
RDe×Dv and Ts ∈ RDe×Dw are the transformation ma-
trices for image representation and textual feature of word,
respectively, and f is the updating function within LSTM
unit. Please note that for the input sentence W ≡
[w0, . . . ,wNs ], we take w0 as the start sign word to inform
the beginning of sentence and wNs as the end sign word
which indicates the end of sentence, both of the special sign
words are included in the existing vocabulary Wg for the
paired image-sentence data. More specifically, at the initial

encoding step, the image representation is transformed as
the input for LSTM, and then in the next decoding steps,
word embedding xt will be input into the LSTM along with
the previous step’s hidden state ht−1.

In the decoding stage, given the LSTM cell output ht at
the t-th time step, the widely adopted method for next word
prediction is the generative mechanism [1] which calculates
the corresponding probability of generating any target word
wt+1 as

Prgt (wt+1) = w>t+1Mgh
t, (6)

where Dh is the dimensionality of LSTM output and Mg ∈
RDw×Dh is the transformation matrix for textual features
of word in the generative mechanism. For the standard
word-by-word sentence generation model, a softmax func-
tion is applied after the probabilities measured by generative
mechanism to produce a normalized probability distribution
over all the words in the vocabularyWg .

3.3. Copying Mechanism

The copying mechanism has been shown effective for se-
quence learning [7] to address the out-of-vocabulary (OOV)
problem in text summarization. The mechanism is regarded
as the rote memorization in language processing of human
being that directly “copying” existing segments in the input
sequence to target sequence. Similar in spirit, we extend the
copying mechanism in image captioning to directly “copy-
ing” the appropriate objects from the detected candidates in
image to compose the output sentence, especially for novel
objects which never appear in paired image-sentence data,
enabling the novel object captioning. Specifically, at the
t-th decoding step, we directly take the similarity between
any word wt+1 in Wc and the corresponding LSTM cell
output ht as the probability for “copying” the target word
wt+1 to the target sentence, which is calculated as

Prct (wt+1) = ϕ
(
w>t+1Mc

)
htδ (wt+1), (7)

where Mc ∈ RDw×Dh is the transformation matrix for
mapping textual features of word in the copying mecha-
nism and ϕ is element-wise non-linear activation function.
It is also worth noticing that we additionally incorporate the
object classification score δ (wt+1) into the formulation of
“copying” probability since this classification score reflects
the chance of the object appeared in the image. The under-
lying assumption is that in addition to the effect of LSTM
cell output, the larger the classification score of this word
in the image, the higher the probability for “copying” this
word in the target sentence.

3.4. LSTM with Copying Mechanism

Unlike the existing image captioning approaches which
always model the sequence learning with generative mech-
anism for sentence generation, our proposed LSTM-C ar-
chitecture further incorporates the copying mechanism into



LSTM at the decoding stage to describe novel objects in
sentence. In particular, given the output of LSTM cell at
each decoding step, we utilize both generative and copying
mechanisms simultaneously to measure the probability of
generating any target word. As the vocabularyWc of copy-
ing mechanism is derived from external image data, it may
include the words which are not present in the vocabulary
Wg of image-sentence data, making the copying mecha-
nism able to copy such novel objects to the output sentence.
In this case, we directly consider the probability of copying
mechanism in Eq.(7) as the final probability of generating
these novel objects. Similarly, for the words that only be-
long toWg , the final probabilities of them fully depend on
their corresponding probabilities of generative mechanism
in Eq.(6). In terms of the overlapping words between Wg

and Wc, we linearly fuse the probabilities from both gen-
erative and copying mechanisms as the final output proba-
bilities. Hence, at the t-th decoding step, the final output
probability Prt (wt+1) of any target word wt+1 is defined
as follows:

Prt (wt+1) =



1
K ePr

g
t (wt+1), wt+1 ∈ Wg ∩Wc

λ
K ePr

g
t (wt+1) + 1−λ

K ePrct(wt+1), wt+1 ∈ Wg ∩Wc

1
K ePrct(wt+1), wt+1 ∈ Wg ∩Wc

0, otherwise

,

(8)

where λ is the tradeoff parameter between the two mecha-
nisms and K is the softmax normalization term.

Accordingly, we define our energy loss function in train-
ing stage for each image-sentence pair as follows:

E(I,S) = −
Ns−1∑
t=0

log Prt(wt+1). (9)

Let N denote the number of image-sentence pairs in the
training set, we have the following optimization problem:

min
TI ,Ts,Mg,Mc,θ

1
N

N∑
i=1

E(I(i),S(i))

+ ‖TI‖22 + ‖Ts‖22 + ‖Mg‖22 + ‖Mc‖22 + ‖θ‖
2
2

,

(10)
where the first term is the overall energy loss, and the rest
are regularization terms for image embedding, textual em-
bedding for LSTM input, textual embedding in generative
mechanism, textual embedding in copying mechanism, and
LSTM, respectively. Moreover, following [22], we also im-
plicitly integrate the overall energy loss with text-specific
loss on external sentence data for maintaining the model’s
ability to address novel objects among sentences.

To solve the optimization according to overall loss ob-
jective in Eq.(10), we design a copying layer at the top of
LSTM with two textual embedding parameters for genera-
tive and copying mechanisms. During training, this copying

layer measures the output probability for each word consid-
ering both generative and copying mechanisms as defined in
Eq.(8), followed by a softmax normalization operation for
overall optimization.

In the testing stage for sentence generation, we choose
the word among the combination vocabulary ofWg andWc

with maximum probability at each time step and set its em-
bedded textual feature as LSTM input for the next time step
until the end sign word is outputted.

4. Experiments

We evaluate and compare our proposed LSTM-C with
state-of-the-art approaches by conducting novel object cap-
tioning task on two image datasets, i.e., the held-out Mi-
crosoft COCO Caption dataset (held-out MSCOCO) [8]
which is a subset of MSCOCO dataset [12] and ImageNet
[19], a large-scale object recognition dataset.

4.1. Datasets

Held-out MSCOCO. The held-out MSCOCO consists
of a subset of MSCOCO which excludes all the image-
sentence pairs that contain at least one of eight specific ob-
jects in MSCOCO. It is worth noting that following [8],
the eight specific objects are chosen through the clustering
over all the 80 objects in MSCOCO segmentation challenge
and each cluster excludes one object, resulting in the final
eight novel objects for evaluation: “bottle,” “bus,” “couch,”
“microwave,” “pizza,” “racket,” “suitcase,” and “zebra.” For
this subset, there are five human-annotated descriptions per
image. As the annotations of the official testing set are
not publicly available and thus following [8], we split the
MSCOCO validation set into two: 50% for validation and
the other 50% for testing. For the experiments on held-
out MSCOCO, the object classifiers for copying mecha-
nism are trained with all the MSCOCO training images in-
cluding the eight novel objects and the LSTM for sequence
modeling is pre-trained with all the sentences in MSCOCO
training set, while the entire CNN plus RNN system are
optimized with the paired image-sentence data only from
held-out MSCOCO training set. The testing set of held-
out MSCOCO is then utilized to evaluate the ability of our
LSTM-C model to describe the eight novel objects.

ImageNet. We also conduct our experiments on the large-
scale object recognition dataset, i.e., ImageNet, for evalua-
tion. Similar to [22], a subset from ImageNet with 634 dif-
ferent objects which are not present in the MSCOCO dataset
is adopted in our experiments. In particular, about 75% of
images in each class are exploited for training and the rest
are utilized for testing, resulting in the training and testing
set with 493,519 and 164,820 images, respectively. For the
experiments on ImageNet, we train the object classifiers for



copying mechanism purely on the ImageNet training set and
pre-train the LSTM part with all the sentences in MSCOCO
training set. In terms of the entire CNN plus RNN sys-
tem, it is optimized with the paired image-sentence data in
MSCOCO training set. Since none of the objects in this sub-
set of ImageNet is addressed in the paired image-sentence
data, we generate sentences for images in the testing set of
ImageNet and empirically evaluate the ability of our LSTM-
C model to describe the 634 novel objects.

4.2. Experimental Settings

Features and Parameter Settings. For image represen-
tations, we take the output of 4,096-way fc7 layer from 16-
layer VGG [20] pre-trained on Imagenet ILSVRC12 dataset
[19]. Each word in the sentence is represented as the com-
bined vector of embedded one-hot representation and Glove
[18] representation. For the paired image-sentence data
(e.g., MSCOCO), we select the 1,000 most common words
on MSCOCO as the objects and train the corresponding
object classifiers with MIL model [5] purely on the train-
ing data of MSCOCO. The MIL model is mainly designed
based on a Fully Convolutional Network (FCN) extended
from 16-layer VGG. For the unpaired object recognition
data (e.g., ImageNet), 634 object classifiers are trained by
directly fine-tuning the 16-layer VGG pre-trained on Im-
agenet ILSVRC12 dataset. The dimensionality of the in-
put and hidden layers in LSTM are both set to 1,024. The
tradeoff parameter λ leveraging both generative and copy-
ing mechanisms is empirically set to 0.2. The sensitivity of
λ will be discussed later.

Implementation Details. We mainly implement our im-
age captioning models based on Caffe [9], which is one of
widely adopted deep learning frameworks. In particular, the
initial learning rate and mini-batch size is set as 0.01 and
1,024, respectively. The entire CNN plus RNN system in
our LSTM-C is trained for 50 epoches on both datasets or
we stop the training until the performance has no longer im-
provement on the corresponding validation set.

Evaluation Metrics. For quantitative evaluation of our
proposed model on held-out MSCOCO, we adopt the most
common caption metric, i.e., METEOR [2], to evaluate de-
scription quality which computes unigram precision and
recall against all ground truth sentences with some pre-
processing on WordNet synonyms and stemmed tokens.
However, as pointed in [8], it is still possible to achieve
high METEOR scores without mentioning the novel ob-
jects. Hence, to fully validate the model’s ability of describ-
ing novel objects, F1-score is exploited as another evalua-
tion metric, which determines whether the specific novel
object is mentioned in the generated descriptions for the
images containing that novel object. All the metrics above

are computed by using the codes1 released by [8] for fair
comparison. To evaluate our model on ImageNet without
any ground truth sentences, we utilize another two metrics
for novel object captioning task: describing novel objects
(Novel) [22] and Accuracy [22] scores. The Novel score
measures the percentage of all the 634 novel objects men-
tioned in generated descriptions, i.e., for each novel object,
the model should incorporate it into at least one sentence
for the ImageNet image with this object. For the Accu-
racy score of each novel object, it represents the percent-
age of images belonging to this novel object which can be
described correctly by addressing that novel object in the
sentences. The Accuracy score is finally averaged over all
the 634 novel objects.

4.3. Compared Approaches

To empirically verify the merit of our LSTM-C model,
we compared the following state-of-the-art methods, in-
cluding both regular image captioning and novel object cap-
tioning approaches.

• Long-term Recurrent Convolutional Networks
(LRCN) [4]: LRCN is one of the basic RNN-based
image captioning models which inputs both visual
image and previous word into LSTM at each time step
for sentence generation. As a regular image caption-
ing model without any mechanism for considering
novel objects, LRCN is trained only on the paired
image-sentence data without any novel objects.

• Deep Compositional Captioner (DCC) [8]: DCC
firstly pre-trains lexical classifier and language model
with external unpaired data, and then integrates both
two parts to learn an improved caption model trained
with paired image-sentence data. Finally, DCC explic-
itly transfers the knowledge of semantically related ob-
jects to compose the descriptions with novel objects.

• Novel Object Captioner (NOC) [22]: Proposed most
recently, NOC extends DCC by jointly optimizing the
three parts: visual recognition network, LSTM-based
language model, and image captioning network in an
end-to-end manner. Please note that for fair compar-
ison with LRCN and DCC which utilize one hot vec-
tor as their word representations, we include two runs,
i.e., NOC (One hot) and NOC (One hot+Glove) which
are our implementations of NOC. The word represen-
tations in the latter one are the combination of the em-
bedded one hot vector and Glove vector.

• Long Short-Term Memory with Copying Mechanism
(LSTM-C): We design two runs, i.e., LSTM-C (One-
hot) and LSTM-C (One hot+Glove), for our proposed
end-to-end architecture for novel object captioning.

1https://github.com/LisaAnne/DCC

https://github.com/LisaAnne/DCC


Table 1. Per-object F1, averaged F1 and METEOR scores of our proposed model and other state-of-the-art methods on held-out MSCOCO
dataset for novel object captioning. All values are reported as percentage (%).

Model F1bottle F1bus F1couch F1microwave F1pizza F1racket F1suitcase F1zebra F1average METEOR
LRCN [4] 0 0 0 0 0 0 0 0 0 19.33
DCC [8] 4.63 29.79 45.87 28.09 64.59 52.24 13.16 79.88 39.78 21
NOC [22]
-(One hot) 16.52 68.63 42.57 32.16 67.07 61.22 31.18 88.39 50.97 20.7
-(One hot+Glove) 14.93 68.96 43.82 37.89 66.53 65.87 28.13 88.66 51.85 20.7

LSTM-C
-(One hot) 29.07 64.38 26.01 26.04 75.57 66.54 55.54 92.03 54.40 22
-(One hot+Glove) 29.68 74.42 38.77 27.81 68.17 70.27 44.76 91.4 55.66 23

4.4. Performance Comparison

We first conduct the experiment on held-out MSCOCO
to examine how our LSTM-C model work on describing the
eight novel objects. Then, to further verify the scalability of
our proposed model, the second experiment is performed on
ImageNet to describe hundreds of novel objects that outside
of the paired image-sentence data.

Evaluation on held-out MSCOCO. Table 1 shows
the performances of compared six models on held-out
MSCOCO dataset. Overall, the results across two general
evaluation metrics (averaged F1 and METEOR scores) con-
sistently indicate that our proposed LSTM-C exhibits bet-
ter performance than all the state-of-the-art techniques in-
cluding regular image captioning model (LRCN) and two
novel object captioning systems (DCC and NOC). In par-
ticular, by additionally utilizing external unpaired data for
training, all the latter five novel object captioning models
outperform the regular image captioning model LRCN on
both description quality and novelty. There is a significant
performance gap between DCC and LSTM-C (One hot).
Although both runs involve the utilization of external im-
age data, they are fundamentally different in the way that
DCC leverages explicit transfer mechanism for recognizing
novel objects and cannot be trained end-to-end, and LSTM-
C (One hot) implicitly addresses the novel objects for sen-
tence generation with copying mechanism in an end-to-end
manner. Moreover, by incorporating copying mechanism to
standard word-by-word sentence generation model, LSTM-
C (One hot) leads to a performance boost against NOC (One
hot), indicating that the generative mechanism and copying
mechanism are complementary and thus have mutual rein-
forcement for novel object captioning. Another observa-
tion is that when combining the word representations from
embedded one hot vector and Glove vector, LSTM-C (One
hot+Glove) further increases the performance.

Table 1 also details the F1 scores for all the eight novel
objects. Among all the novel objects, our proposed LSTM-
C achieves the best performance for describing six novel
objects, followed by DCC and NOC for one object, respec-
tively. The improvements can be generally expected by
additionally incorporating copying mechanism in sequence

Table 2. Novel, F1 and Accuracy scores of our proposed model and
other state-of-the-art methods on ImageNet dataset. All values are
reported as percentage (%).

Model Novel F1 Accuracy
NOC (One hot+Glove) [22]

-MSCOCO 69.08 15.63 10.04
-BNC&Wiki 87.69 31.23 21.96

LSTM-C (One hot+Glove)
-MSCOCO 72.08 16.39 11.83
-BNC&Wiki 89.11 33.64 31.11

learning except “couch” and “microwave” objects. This is
not surprise because such novel objects always have high
visual similarity with other objects (e.g., “bed” for “couch”
and “oven” for “microwave”) and thus are not easy to be de-
tected precisely, making LSTM-C fail to copy them to the
output sentences.

Evaluation on ImageNet. Table 2 summarizes the ex-
perimental results on ImageNet dataset. By only adopting
the MSCOCO as the training data for the CNN plus RNN
system, our LSTM-C (One hot+Glove) makes the relative
improvement over NOC (One hot+Glove) by 4.3%, 4.9%
and 17.8% in Novel, F1 and Accuracy, respectively. The
results basically indicate the advantage of exploiting both
generative and copying mechanisms in the CNN plus RNN
system for novel object captioning, even when scaling into
ImageNet images with hundreds of novel objects. More-
over, following [22], we also include the external unpaired
text data (i.e., British National Corpus and Wikipedia) in
our LSTM-C (One hot+Glove) and performance improve-
ments are further observed.

Qualitative analysis. Figure 3 and Figure 5 shows a few
sentence examples generated by different methods, the de-
tected objects and human-annotated ground truth on held-
out MSCOCO and ImageNet dataset, respectively. From
these exemplar results, it is easy to see that all of these cap-
tioning models can generate somewhat relevant sentences
on both datasets, while our proposed LSTM-C can predict
the novel objects by incorporating copying mechanism for
image captioning. For example, compared to object term
“hydrant” in the sentence generated by LRCN, “bus” in
our LSTM-C is more precise to describe the image content



Detected Objects:
cat: 1, suitcase: 0.96, bag: 0.89, luggage: 0.65, black: 0.63

LRCN: a cat sitting on top of a red chair
LSTM-C: a cat laying on a suitcase

GT: black and white cat in a red suitcase

Detected Objects:
tennis: 1, court: 1, racket: 0.94, woman: 0.92, match: 0.88

LRCN: a man is playing tennis on a tennis court
LSTM-C: a woman holding a racket in a tennis match

GT: a person with a racket stands on a court

Detected Objects:
boy: 0.94, pizza: 0.88, young: 0.77, eating: 0.65, table: 0.64

LRCN: a young boy is eating a plate of food
LSTM-C: a person sitting at a table with a pizza

GT: a kid is taking a bite out of a pizza

Detected Objects:
room: 1, living: 0.94, television: 0.77, tv: 0.7, couch: 0.62

LRCN: a living room with a laptop computer and a desk
LSTM-C: a living room with a couch and a television

GT: the living room has a leather couch near a dining table

Detected Objects:
cat: 1, bottle: 0.98, wine: 0.84, black: 0.58, standing: 0.58

LRCN: a cat sitting on a desk next to a window
LSTM-C: a cat sitting on a table next to a bottle of wine

GT: a black cat and a bottle of wine

Detected Objects:
city: 0.94, bus: 0.91, street: 0.89, driving: 0.75, tall: 0.72

LRCN: a red fire hydrant is parked in the middle of a city
LSTM-C: a bus driving down a street next to a building

GT: a bus on a city street by tall buildings

Figure 3. Objects and sentence generation results on held-out
MSCOCO. The detected objects are predicted by MIL model in
[5], and the output sentences are generated by 1) Ground Truth
(GT): one ground truth sentence, 2) LRCN and 3) our LSTM-C.
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Figure 4. The effect of the tradeoff parameter λ in our LSTM-C
(One hot+Glove) framework on held-out MSCOCO.

in the first image on held-out MSCOCO dataset, since the
novel object “bus” is among the top object candidates and
directly copied to the output sentence at the decoding stage.

4.5. Analysis of the Tradeoff Parameter λ

To clarify the effect of the tradeoff parameter λ in Eq.(8),
we illustrate the performance curves with different tradeoff
parameters in Figure 4. As shown in the figure, we can see
that the performance curves of F1 and METEOR scores are
both relatively smooth when λ varies in a range from 0 to

Detected Objects:
toucan: 0.99, bird: 0.97, tree: 0.96, branch: 0.54, long: 0.47

LRCN: a bird is perched on a branch of a tree
LSTM-C: a toucan is perched on a tree branch

GT: toucan

Detected Objects:
snow: 1, snowdrift: 0.69, snowy: 0.69, covered: 0.57, snowshoe: 0.42

LRCN: a woman is standing in the snow with a snowboard
LSTM-C: a woman standing next to a snowdrift on a snowy street

GT: snowdrift

Detected Objects:
water: 0.99, gator: 0.96, lake: 0.85, pond: 0.61, body: 0.52

LRCN: a bird is standing in the water near a lake
LSTM-C: a gator standing in the grass near a pond

GT: gator

Detected Objects:
wallaby: 0.91, ground: 0.72, grass: 0.58, baby: 0.55, small: 0.47

LRCN: a small bird standing in a field with a tree
LSTM-C: a wallaby in a field is eating grass

GT: wallaby

Detected Objects:
orca: 1, surfboard: 0.96, ocean: 0.9, water: 0.89, wave: 0.85

LRCN: a surfer is riding a wave in the ocean
LSTM-C: a orca is riding a wave on the ocean

GT: orca

Detected Objects:
otter: 0.98, water: 0.98, bears: 0.64, body: 0.49, swimming: 0.39

LRCN: a bear is swimming in the water
LSTM-C: a otter is swimming in the water

GT: otter

Figure 5. Objects and sentence generation results on ImageNet.
GT denotes the ground truth object. The detected objects are pre-
dicted by the standard CNN architecture [20], and the output sen-
tences are generated by 1) LRCN and 2) our LSTM-C.

0.6. Specifically, the best performance is achieved when
λ is about 0.2. Furthermore, when the λ increases more
than 0.6, the F1 score begins to drop significantly, again
demonstrating the importance of copying mechanism in our
LSTM-C for describing novel objects.

5. Discussions and Conclusions
We have presented Long Short-Term Memory with

Copying Mechanism (LSTM-C) framework which lever-
ages external visual recognition for image captioning. Par-
ticulary, we study the problem of predicting novel objects in
image caption by integrating the detected objects with copy-
ing mechanism. To verify our claim, we have devised an
end-to-end architecture to accommodate the standard word-
by-word sentence generation by LSTM and the mechanism
of copying from detected objects. Experiments conducted
on MSCOCO image captioning and ImageNet datasets vali-
date our proposal and analysis. Performance improvements
are clearly observed when comparing to other novel object
captioning techniques.

Our future works are as follows. First, more objects will
be learnt on large-scale image benchmarks, e.g., YFCC-
100M dataset, and integrated into our LSTM-C architecture.
We will further analyze the impact of different sources in-
volved. Second, how to apply our proposal to video domain
is also worth trying.
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