
A Matrix Splitting Method for Composite Function Minimization

Ganzhao Yuan∗, Wei-Shi Zheng†, Bernard Ghanem‡

Abstract

Composite function minimization captures a wide spec-
trum of applications in both computer vision and machine
learning. It includes bound constrained optimization and
cardinality regularized optimization as special cases. This
paper proposes and analyzes a new Matrix Splitting Method
(MSM) for minimizing composite functions. It can be
viewed as a generalization of the classical Gauss-Seidel
method and the Successive Over-Relaxation method for
solving linear systems in the literature. Incorporating a
new Gaussian elimination procedure, the matrix splitting
method achieves state-of-the-art performance. For convex
problems, we establish the global convergence, convergence
rate, and iteration complexity of MSM, while for non-convex
problems, we prove its global convergence. Finally, we vali-
date the performance of our matrix splitting method on two
particular applications: nonnegative matrix factorization
and cardinality regularized sparse coding. Extensive ex-
periments show that our method outperforms existing com-
posite function minimization techniques in term of both ef-
ficiency and efficacy.

1. Introduction
In this paper, we focus on the following composite func-

tion minimization problem:

min
x

f(x) , q(x) + h(x); q(x) = 1
2x

TAx + xTb (1)

where x ∈ Rn, b ∈ Rn, A ∈ Rn×n is a positive semidef-
inite matrix, h(x) is a piecewise separable function (i.e.
h(x) =

∑n
i=1 h(xi)) but not necessarily convex. Typical

examples of h(x) include the bound constrained function
and the `0 and `1 norm functions.

The optimization in (1) is flexible enough to model a
variety of applications of interest in both computer vision
and machine learning, including compressive sensing [8],
nonnegative matrix factorization [15, 17, 10], sparse coding
∗Sun Yat-sen University (SYSU), King Abdullah University of Science

& Technology (KAUST). Email: yuanganzhao@gmail.com.
†Sun Yat-sen University (SYSU). Email: wszheng@ieee.org.
‡King Abdullah University of Science & Technology (KAUST). Email:

bernard.ghanem@kaust.edu.sa.

[16, 1, 3, 25], support vector machine [12], logistic regres-
sion [34], subspace clustering [9], to name a few. Although
we only focus on the quadratic function q(·), our method
can be extended to handle general composite functions as
well, by considering a typical Newton approximation of the
objective [31, 36].

The most popular method for solving (1) is perhaps the
proximal gradient method [22, 4]. It considers a fixed-
point proximal iterative procedure xk+1 = proxγh(xk −
γOq(xk)) based on the current gradient Oq(xk). Here the
proximal operator proxh̃(a) = arg minx

1
2‖x−a‖22+ h̃(x)

can often be evaluated analytically, γ = 1/L is the step size
with L being the local (or global) Lipschitz constant. It is
guaranteed to decrease the objective at a rate of O(L/k),
where k is the iteration number. The accelerated proxi-
mal gradient method can further boost the rate toO(L/k2).
Tighter estimates of the local Lipschitz constant leads to
better convergence rate, but it scarifies additional compu-
tation overhead to compute L. Our method is also a fixed-
point iterative method, but it does not rely on a sparse eigen-
value solver or line search backtracking to compute such a
Lipschitz constant, and it can exploit the specified structure
of the quadratic Hessian matrix A.

The proposed method is essentially a generalization of
the classical Gauss-Seidel (GS) method and Successive
Over-Relaxation (SOR) method [7, 27]. In numerical lin-
ear algebra, the Gauss-Seidel method, also known as the
successive displacement method, is a fast iterative method
for solving a linear system of equations. It works by solv-
ing a sequence of triangular matrix equations. The method
of SOR is a variant of the GS method and it often leads to
faster convergence. Similar iterative methods for solving
linear systems include the Jacobi method and symmetric
SOR. Our proposed method can solve versatile composite
function minimization problems, while inheriting the effi-
ciency of modern linear algebra techniques.

Our method is closely related to coordinate gradient de-
scent and its variants such as randomized coordinate descent
[12], cyclic coordinate descent, block coordinate descent
[21], accelerated randomized coordinate descent [19] and
others [26, 18, 28, 38]. However, all these work are based
on gradient-descent type iterations and a constant Lipschitz
step size. They work by solving a first-order majoriza-

1

ar
X

iv
:1

61
2.

02
31

7v
1

 [
m

at
h.

O
C

]
 7

 D
ec

 2
01

6

(a) min
x≥0

1
2
‖Cx− d‖22 (b) min

x

1
2
‖Cx− d‖22 + ‖x‖0

Figure 1: Convergence behavior for solving (a) convex non-
negative least squares and (b) nonconvex `0 norm sparse
least squares. We generate C ∈ R200×1000 and d ∈ R200

from a (0-1) uniform distribution. All methods share the
same initial point. Our matrix splitting method significantly
outperforms existing popular proximal gradient methods
[4, 22] such as classical Proximal Gradient Method (PGM)
with constant step size, classical PGM with line search, ac-
celerated PGM with constant step size and accelerated PGM
with line search. Note that all the methods have the same
computational complexity for one iteration.

tion/surrogate function via closed form updates. Their al-
gorithm design and convergence result cannot be applied
here. In contrast, our proposed method does not rely on
computing the gradient descent direction or the Lipschicz
constant step size, yet it adopts a triangle matrix factoriza-
tion strategy, where the triangle subproblem can be solved
by an alternating cyclic coordinate strategy.
Contributions. (a) We propose a new Matrix Splitting
Method (MSM) for composite function minimization. (b)
For convex problems, we establish the global convergence,
convergence rate, and iteration complexity of MSM, while
for non-convex problems, we prove its global convergence
to a local optimum. (c) Our experiments on nonnegative
matrix factorization and sparse coding show that MSM out-
performs state-of-the-art approaches. Before proceeding,
we present a running example in Figure 1 to show the per-
formance of our proposed method, as compared with exist-
ing ones.
Notation. We use lowercase and uppercase boldfaced let-
ters to denote real vectors and matrices respectively. The
Euclidean inner product between x and y is denoted by
〈x,y〉 or xTy. We denote ‖x‖ = ‖x‖2 =

√
〈x,x〉, and

‖C‖ as the spectral norm (i.e. the largest singular value)
of C. We denote the ith element of vector x as xi and the
(i, j)th element of matrix C as Ci,j . diag(D) ∈ Rn is a col-
umn vector formed from the main diagonal of D ∈ Rn×n.
C � 0 indicates that the matrix C ∈ Rn×n is positive
semidefinite (not necessarily symmetric)1. Finally, we de-
note D as a diagonal matrix of A and L as a strictly lower
triangle matrix of A 2. Thus, we have A = L + D + LT .

1C � 0⇔ ∀x, xTCx ≥ 0⇔ ∀x, 1
2
xT (C+CT)x ≥ 0

2For example, when n = 3, D and L take the following form:

2. Proposed Matrix Splitting Method
In this section, we present our proposed matrix splitting

method for solving (1). Throughout this section, we assume
that h(x) is convex and postpone the discussion for noncon-
vex h(x) to Section 3.

Our solution algorithm is derived from a fixed-point it-
erative method based on the first-order optimal condition of
(1). It is not hard to validate that a solution x is the opti-
mal solution of (1) if and only if x satisfies the following
nonlinear equation (“,” means define):

0 ∈ ∂f(x) , Ax + b + ∂h(x) (2)

where ∂h(x) is the sub-gradient of h(·) in x. In numerical
analysis, a point x is called a fixed point if it satisfies the
equation x ∈ T (x), for some operator T (·). Converting the
transcendental equation 0 ∈ ∂f(x) algebraically into the
form x ∈ T (x), we obtain the following iterative scheme
with recursive relation:

xk+1 ∈ T (xk), k = 0, 1, 2, ... (3)

We now discuss how to adapt our algorithm into the iterative
scheme in (3). First, we split the matrix A in (2) using the
following strategy:

A = L + 1
ω (D + θI)︸ ︷︷ ︸

B

+LT + 1
ω ((ω − 1)D− θI)︸ ︷︷ ︸

C

(4)

Here, ω ∈ (0, 2) is a relaxation parameter and θ ∈ [0,∞) is
a parameter for strong convexity that enforces diag(B) >
0. These parameters are specified by the user beforehand.
Using these notations, we obtain the following optimality
condition which is equivalent to (2):

−Cx− b ∈ (B + ∂h)(x)

Then, we have the following equivalent fixed-point equa-
tion:

x ∈ T (x) , (B + ∂h)−1(−Cx− b) (5)

Here, we name T the triangle proximal operator, which is
novel in this paper3. Due to the triangle property of the
matrix B and the element-wise separable structure of h(·),
the triangle proximal operator T (x) in (5) can be computed
exactly and analytically, by a generalized Gaussian elimina-
tion procedure (discussed later in Section 2.1). Our matrix
splitting method iteratively applies xk+1 ⇐ T (xk) until
convergence. We summarize our algorithm in Algorithm 1.

In what follows, we show how to compute T (x) in (5) in
Section 2.1, and then we study the convergence properties
of Algorithm 1 in Section 2.2.

D =

A1,1 0 0
0 A2,2 0
0 0 A3,3

 , L =

 0 0 0
A2,1 0 0
A3,1 A3,2 0


3This is in contrast with Moreau’s proximal operator [24]: proxh(a) =

argminx
1
2
‖x − a‖22 + h(x) = (I + ∂h)−1(a), where the mapping

(I+ ∂h)−1 is called the resolvent of the subdifferential operator ∂h.

2.1. Computing the Triangle Proximal Operator

We now present how to compute the triangle proximal
operator in (5), which is based on a new generalized Gaus-
sian elimination procedure. Notice that (5) seeks a solution
z∗ , T (xk) that satisfies the following nonlinear system:

0 ∈ Bz∗ + u + ∂h(z∗), where u = b + Cxk (6)

By taking advantage of the triangular form of B and the
element-wise structure of h(·), the elements of z∗ can be
computed sequentially using forward substitution. Specifi-
cally, the above equation can be written as a system of non-
linear equations:

0 ∈


B1,1 0 0 0 0
B2,1 B2,2 0 0 0

...
...

. . . 0 0
Bn−1,1 Bn−1,2 · · · Bn−1,n−1 0
Bn,1 Bn,2 · · · Bn,n−1 Bn,n




z∗1
z∗2
...

z∗n−1
z∗n

+ u+ ∂h(z∗)

If z∗ satisfies the equations above, it must solve the follow-
ing one-dimensional subproblems:

0 ∈ Bj,jz
∗
j + wj + ∂h(z∗j), ∀j = 1, 2, ... , n,

wj = uj +
∑j−1
i=1 Bj,iz

∗
i

This is equivalent to solving the following one-dimensional
problem for all j = 1, 2, ..., n:

z∗j = t∗ , arg min
t

1
2Bj,jt

2 + wjt+ h(t) (7)

Note that the computation of z∗ uses only the elements of
z∗ that have already been computed and a successive dis-
placement strategy is applied to find z∗.

We remark that the one-dimensional subproblem in (7)
often admits a closed form solution for many problems
of interest. For example, when h(t) = I[lb,ub](t) with
I(·) denoting an indicator function on the box constraint
lb ≤ x ≤ ub, the optimal solution can be computed as:
t∗ = min(ub,max(lb,−wj/Bj,j)); when h(t) = λ|t|
(e.g. in the case of the `1 norm), the optimal solution can
be computed as: t∗ = −max (0, |wj/Bj,j | − λ/Bj,j) ·
sign (wj/Bj,j).

Our generalized Gaussian elimination procedure for
computing T (xk) is summarized in Algorithm 2. Note that
its computational complexity is O(n2), which is the same
as computing a matrix-vector product.

2.2. Convergence Analysis

In what follows, we present our convergence analysis for
Algorithm 1. We let x∗ be the optimal solution of (1). For
notation simplicity, we denote:

rk , xk − x∗, dk , xk+1 − xk

uk , f(xk)− f(x∗), fk , f(xk), f∗ , f(x∗)
(8)

The following lemma characterizes the optimality of T (y).

Algorithm 1 MSM: A Matrix Splitting Method for Solving
the Composite Function Minimization Problem in (1)

1: Choose ω ∈ (0, 2), θ ∈ [0,∞). Initialize x0, k = 0.
2: while not converge
3: xk+1 = T (xk) (Solve (6) by Algorithm 2)
4: k = k + 1

5: end while
6: Output xk+1

Algorithm 2 A Generalized Gaussian Elimination Proce-
dure for Computing the Triangle Proximal Operator T (xk).

1: Input xk

2: Initialization: compute u = b+Cxk

3: x1 = argmint
1
2B1,1t

2 + (u1)t+ h(t)

4: x2 = argmint
1
2B2,2t

2 + (u2 +B2,1x1)t+ h(t)

5: x3 = argmint
1
2B3,3t

2+(u3+B3,1x1+B3,2x2)t+h(t)

6: ...
7: xn = argmint

1
2Bn,nt

2 + (un +
∑n−1
i=1 Bn,ixi)t+ h(t)

8: Collect (x1,x2,x3, ...,xn)
T as xk+1 and Output xk+1

Lemma 1. For all x,y ∈ Rn, it holds that:

v ∈ ∂h(T (x)), ‖AT (x) + b + v‖ ≤ ‖C‖‖x− T (x)‖ (9)

f(T (y))− f(x) ≤ 〈T (y)− x,C(T (y)− y)

− 1
2 (x− T (y))TA(x− T (y))〉

(10)

Proof. (i) We now prove (9). By the optimality of T (x), we
have: ∀v ∈ ∂h(T (x)), 0 = BT (x) + CT (x) + v + b +
Cx − CT (x). Therefore, we obtain: AT (x) + b + v =
C(T (x)− x). Applying a norm inequality, we have (9).

(ii) We now prove (10). For simplicity, we denote z∗ ,
T (y). Thus, we obtain: 0 ∈ Bz∗ + b + Cy + ∂h(z∗)⇒
0 ∈ 〈x− z∗,Bz∗ + b + Cy + ∂h(z∗)〉, ∀x. Since h(·) is
convex, we have:

〈x− z∗, ∂h(z∗)〉 ≤ h(x)− h(z∗) (11)

Then we have this inequality: ∀x : h(x) − h(z∗) + 〈x −
z∗,Bz∗+b+Cy〉 ≥ 0. We naturally derive the following
results: f(z∗) − f(x) = h(z∗) − h(x) + q(z∗) − q(x) ≤
〈x−z∗,Bz∗+b+Cy〉+ q(z∗)− q(x) = 〈x−z∗,Bz∗+
Cy〉+ 1

2z
∗TAz∗− 1

2x
TAx = 〈x−z∗, (B−A)z∗+Cy〉−

1
2 (x − z∗)TA(x − z∗) = 〈x − z∗,C(y − z∗)〉 − 1

2 (x −
z∗)TA(x− z∗).

Theorem 1. (Proof of Global Convergence) We define δ ,
2θ
ω + 2−ω

ω min(diag(D)). Assume that ω and θ are chosen
such that δ ∈ (0,∞), Algorithm 1 is globally convergent.

Proof. (i) First, the following results hold for all z ∈ Rn:

zT (A− 2C)z = zT (L− LT + 2−ω
ω D + 2θ

ω I)z

= zT (2θ
ω I + 2−ω

ω D)z ≥ δ‖z‖22
(12)

where we have used the definition of A and C, and the fact
that zTLz = zTLT z, ∀z.

We invoke (10) in Lemma 1 with x = xk, y = xk and
combine the inequality in (12) to obtain:

fk+1 − fk ≤ − 1
2 〈d

k, (A− 2C)dk〉 ≤ − δ2‖d
k‖22 (13)

(ii) Second, we invoke (9) in Lemma 1 with x = xk and ob-
tain: v ∈ ∂h(xk+1), 1

‖C‖‖Axk+1+b+v‖ ≤ ‖xk−xk+1‖.
Combining with (13), we have: δ

2‖C‖ · ‖∂f(xk+1)‖22 ≤
fk − fk+1, where ∂f(xk) is defined in (2). Summing
this inequality over i = 0, ..., k − 1, we have: δ

2‖C‖ ·∑k−1
i=0 ‖∂f(xi)‖22 ≤ f0 − fk ≤ f0 − f∗, where we use

f∗ ≤ fk. As k →∞, we have ∂f(xk)→ 0, which implies
the convergence of the algorithm.

Note that guaranteeing δ ∈ (0,∞) can be achieved by
simply choosing ω ∈ (0, 2) and setting θ to a small number.

We now prove the convergence rate of Algorithm 1. The
following lemma characterizes the relations between T (x)
and the optimal solution x∗ for any x. This is similar to the
classical local proximal error bound in the literature [20, 31,
30, 37].

Lemma 2. Assume x is bounded. If x is not the optimum of
(1), there exists a constant η ∈ (0,∞) such that ‖x−x∗‖ ≤
η‖x− T (x)‖.

Proof. First, we prove that x 6= T (x). This can be achieved
by contradiction. According to the optimal condition of
T (x) in (9), we obtain ‖AT (x)+b+v‖ ≤ ‖C‖‖x−T (x)‖
with v ∈ ∂h(T (x)). Assuming that x = T (x), we obtain:
Ax + b ∈ ∂h(x), which contradicts with the condition
that x is not the optimal solution (refer to the optimality
condition in (1)). Therefore, it holds that x 6= T (x). Sec-
ond, by the boundedness of x and x∗, there exists a suffi-
ciently large constant η ∈ (0,∞) such that ‖x − x∗‖ ≤
η‖x− T (x)‖.

We now prove the convergence rate of Algorithm 1.

Theorem 2. (Proof of Convergence Rate) We define δ ,
2θ
ω + 2−ω

ω min(diag(D)). Assume that ω and θ are chosen
such that δ ∈ (0,∞) and xk is bound for all k, we have:

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ C1

1 + C1

(14)

where C1 = ((3 + η2‖C‖ + (2η2 + 2)‖A‖)/δ. In other
words, Algorithm 1 converges to the optimal solution Q-
linearly.

Proof. Invoking Lemma 2 with x = xk, we obtain:

‖xk − x∗‖ ≤ η‖xk − T (xk)‖ ⇒ ‖rk‖ ≤ η‖dk‖ (15)

Invoking (9) in Lemma 1 with x = x∗, y = xk, we derive
the following inequalities:

fk+1 − f∗

≤ 〈rk+1,Cdk〉 − 1
2 〈r

k+1,Ark+1〉
= 〈rk + dk,Cdk〉 − 1

2 〈r
k + dk,A(rk + dk)〉

≤ ‖C‖(‖dk‖‖rk‖+ ‖dk‖22) + 1
2‖A‖‖r

k + dk‖22
≤ ‖C‖(3

2‖d
k‖22 + 1

2‖r
k‖22) + ‖A‖(‖rk‖22 + ‖dk‖22)

≤ ‖C‖ 3+η
2

2 ‖d
k‖22 + ‖A‖(η2 + 1)‖dk‖22

≤ ((3 + η2‖C‖+ (2η2 + 2)‖A‖) · (fk − fk+1)/δ

= C1(fk − fk+1)

= C1(fk − f∗)− C1(fk+1 − f∗)

(16)

where the second step uses the fact that rk+1 = rk + dk;
the third step uses the Cauchy-Schwarz inequality 〈x,y〉 ≤
‖x‖‖y‖, ∀x,y ∈ Rn and the norm inequality ‖Ax‖ ≤
‖A‖‖x‖, ∀x ∈ Rn; the fourth step uses the fact that 1/2 ·
‖x + y‖22 ≤ ‖x‖22 + ‖y‖22, ∀x,y ∈ Rn and ab ≤ 1/2 ·
a2 + 1/2 · b2, ∀a, b ∈ R; the fifth step uses (15); the sixth
step uses the descent condition in (13). Rearranging the last
inequality in (16), we have (1 + C1)f(xk+1) − f(x∗) ≤
C1(f(xk)− f(x∗)) and obtain the inequality in (14). Since
C1

1+C1
< 1, the sequence {f(xk)}∞k=0 converges to f(x∗)

linearly in the quotient sense.

The following lemma is useful in our proof of iteration
complexity.

Lemma 3. Suppose a nonnegative sequence {uk}∞k=0 satis-

fies uk+1 ≤ −2C + 2C
√

1 + uk

C for some constant C ≥ 0.

It holds that: uk ≤ C2

k , where C2 = max(8C, 2
√
Cu0).

Proof. The proof of this lemma can be obtained by mathe-
matical induction. (i) When k = 1, we have u1 ≤ −2C +

2C
√

1 + 1
Cu

0 ≤ −2C + 2C(1 +
√

u0

C) = 2
√
Cu0 ≤ C2

k .
(ii) When k ≥ 2, we assume this result of this lemma is true.
We derive the following results: k+1

k ≤ 2 ⇒ 4C k+1
k ≤

8C ≤ C2⇒ 4C
k(k+1) ≤

C2

(k+1)2⇒ 4C
(

1
k −

1
k+1

)
≤

C2

(k+1)2⇒
4C
k ≤

4C
k+1 + C2

(k+1)2⇒
4CC2

k ≤ 4CC2

k+1 +
C2

2

(k+1)2⇒

4C2
(
1 + C2

kC

)
≤ 4C2 + 4CC2

k+1 +
C2

2

(k+1)2⇒ 2C
√

1 + C2

Ck ≤

2C + C2

k+1⇒ −2C + 2C
√

1 + C2

Ck ≤
C2

k+1⇒ uk+1 ≤
C2

k+1 .

We now prove the iteration complexity of Algorithm 1.

Theorem 3. (Proof of Iteration Complexity) We define δ ,
2θ
ω + 2−ω

ω min(diag(D)). Assume that ω and θ are chosen

such that δ ∈ (0,∞) and ‖xk‖ ≤ R, ∀k, we have:

uk ≤

{
u0(2C4

2C4+1)k, if
√
fk − fk+1 ≥ C3/C4, ∀k ≤ k̄

C5

k , if
√
fk − fk+1 < C3/C4, ∀k ≥ 0

where C3 = 2R‖C‖(δ2)1/2, C4 = δ
2 (‖C‖+ ‖A‖(η + 1)),

C5 = max(8C2
3 , 2C3

√
u0), and k̄ is some unknown itera-

tion index.

Proof. Using similar strategies used in deriving (16), we
have the following results:

uk+1

≤ 〈rk+1,Cdk〉 − 1
2 〈r

k+1,Ark+1〉
= 〈rk + dk,Cdk〉 − 1

2 〈r
k + dk,A(rk + dk)〉

≤ ‖C‖(‖rk‖‖dk‖+ ‖dk‖22) + ‖A‖
2 ‖r

k + dk‖22
≤ ‖C‖(‖rk‖‖dk‖+ ‖dk‖22) + ‖A‖(‖rk‖22 + ‖dk‖22)

≤ ‖C‖(2R‖dk‖+ ‖dk‖22) + ‖A‖(η‖dk‖22 + ‖dk‖22)

≤ C3

√
uk − uk+1 + C4(uk − uk+1)

(17)

Now we consider the two cases for the recursion formula
in (17): (i)

√
uk − uk+1 ≥ C3

C4
for some k ≤ k̄ (ii)√

uk − uk+1 ≤ C3

C4
for all k ≥ 0. In case (i), (17) im-

plies that we have uk+1 ≤ 2C4(uk − uk+1) and rear-
ranging terms gives: uk+1 ≤ 2C4

2C4+1u
k. Thus, we have:

uk+1 ≤ (2C4

2C4+1)k+1u0. We now focus on case (ii). When√
uk − uk+1 ≤ C3

C4
, (17) implies that we have uk+1 ≤

2C3

√
uk − uk+1 and rearranging terms yields: (u

k+1)2

4C2
3

+

uk+1 ≤ uk. Solving this quadratic inequality, we have:
uk+1 ≤ −2C2

3 + 2C2
3

√
1 + 1

C2
3
uk; solving this recursive

formulation by Lemma 3, we obtain uk+1 ≤ C5

k+1 .

Based on the discussions above, we have a few com-
ments on Algorithm 1. (1) When h(·) is empty and θ = 0,
it reduces to the classical Gauss-Seidel method (ω = 1) and
Successive Over-Relaxation method (ω 6= 1). (2) When A
contains zeros in its diagonal entries, one needs to set θ to a
strictly positive number. This is to guarantee the strong con-
vexity of the one dimensional subproblem and a bounded
solution for any h(·). We remark that the introduction of
the parameter θ is novel in this paper and it removes the
assumption that A is strictly positive-definite or strictly di-
agonally dominant, which is used in the classical result of
GS and SOC method [27, 7].

3. Extensions
This section discusses several extensions of our proposed

matrix splitting method for solving (1).

3.1. When h is Nonconvex

When h(x) is nonconvex, our theoretical analysis breaks
down in (11) and the exact solution to the triangle proximal
operator T (xk) in (6) cannot be guaranteed. However, our
Gaussian elimination procedure in Algorithm 2 can still be
applied. What one needs is to solve a one-dimensional non-
convex subproblem in (7). For example, when h(t) = λ|t|0
(e.g. in the case of the `0 norm), it has an analytical solu-
tion: t∗ =

{
−wj/Bj,j , w2

j > 2λBj,j

0, w2
j ≤ 2λBj,j

; when h(t) = λ|t|p

and p < 1, it admits a closed form solution for some special
values [32], such as p = 1

2 or 2
3 .

Our matrix splitting method is guaranteed to converge
even when h(·) is nonconvex. Specifically, we present the
following theorem.

Theorem 4. (Proof of Global Convergence when h(·) is
Nonconvex) Assume the nonconvex one-dimensional sub-
problem in (7) can be solved globally and analytically.
We define δ , min (θ/ω + (1− ω)/ω · diag(D)). If we
choose ω and θ such that δ ∈ (0,∞), we have: (i)

f(xk+1)− f(xk) ≤ − δ2‖x
k+1 − xk‖22 ≤ 0 (18)

(ii) Algorithm 1 is globally convergent.

Proof. (i) Due to the optimality of the one-dimensional sub-
problem in (7), for all j = 1, 2, ..., n, we have:

1
2Bj,j(x

k+1
j)2 + (uj +

∑j−1
i=1 Bj,ix

k+1
i)xk+1

j + h(xk+1
j)

≤ 1
2Bj,jt

2
j + (uj +

∑j−1
i=1 Bj,ix

k+1
i)tj + h(tj), ∀tj

Letting t1 = xk1 , t2 = xk2 , ... , tn = xkn, we obtain:

1
2

∑n
i Bi,i(x

k+1)2 + 〈u + Lxk+1,xk+1〉+ h(xk+1)

≤ 1
2

∑n
i Bi,i(x

k)2 + 〈u + Lxk+1,xk〉+ h(xk)

Since u = b + Cxk, we obtain the following inequality:

fk+1 + 1
2 〈x

k+1, (1
ω (D + θI) + 2L−A)xk+1 + 2Cxk〉

≤ fk + 1
2 〈x

k, (1
ω (D + θI) + 2C−A)xk + 2Lxk+1〉

By denoting S , L−LT and T , ((ω−1)D− θI)/ω, we
have: 1

ω (D+ θI) + 2L−A = T−S, 1
ω (D+ θI) + 2C−

A = S − T, and L −CT = −T. Therefore, we have the
following inequalities:

fk+1 − fk ≤ 1
2 〈x

k+1, (T− S)xk+1〉 − 〈xk,Txk+1)

+ 1
2 〈x

k, (T− S)xk〉 = 1
2 〈x

k − xk+1,T(xk − xk+1)〉
≤ − δ2‖x

k+1 − xk‖22

where the first equality uses 〈x,Sx〉 = 0 ∀x, since S is a
Skew-Hermitian matrix. The last step uses T + δI � 0,

data n [17] [14] [14] [10] [13] ours
PG AS BPP APG CGD MSM

time limit=20
20news 20 5.001e+06 2.762e+07 8.415e+06 4.528e+06 4.515e+06 4.506e+06
20news 50 5.059e+06 2.762e+07 4.230e+07 3.775e+06 3.544e+06 3.467e+06
20news 100 6.955e+06 5.779e+06 4.453e+07 3.658e+06 3.971e+06 2.902e+06
20news 200 7.675e+06 3.036e+06 1.023e+08 4.431e+06 3.573e+07 2.819e+06
20news 300 1.997e+07 2.762e+07 1.956e+08 4.519e+06 4.621e+07 3.202e+06
COIL 20 2.004e+09 5.480e+09 2.031e+09 1.974e+09 1.976e+09 1.975e+09
COIL 50 1.412e+09 1.516e+10 6.962e+09 1.291e+09 1.256e+09 1.252e+09
COIL 100 2.960e+09 2.834e+10 3.222e+10 9.919e+08 8.745e+08 8.510e+08
COIL 200 3.371e+09 2.834e+10 5.229e+10 8.495e+08 5.959e+08 5.600e+08
COIL 300 3.996e+09 2.834e+10 1.017e+11 8.493e+08 5.002e+08 4.956e+08
TDT2 20 1.597e+06 2.211e+06 1.688e+06 1.591e+06 1.595e+06 1.592e+06
TDT2 50 1.408e+06 2.211e+06 2.895e+06 1.393e+06 1.390e+06 1.385e+06
TDT2 100 1.300e+06 2.211e+06 6.187e+06 1.222e+06 1.224e+06 1.214e+06
TDT2 200 1.628e+06 2.211e+06 1.791e+07 1.119e+06 1.227e+06 1.079e+06
TDT2 300 1.915e+06 1.854e+06 3.412e+07 1.172e+06 7.902e+06 1.066e+06

time limit=30
20news 20 4.716e+06 2.762e+07 7.471e+06 4.510e+06 4.503e+06 4.500e+06
20news 50 4.569e+06 2.762e+07 5.034e+07 3.628e+06 3.495e+06 3.446e+06
20news 100 6.639e+06 2.762e+07 4.316e+07 3.293e+06 3.223e+06 2.817e+06
20news 200 6.991e+06 2.762e+07 1.015e+08 3.609e+06 7.676e+06 2.507e+06
20news 300 1.354e+07 2.762e+07 1.942e+08 4.519e+06 4.621e+07 3.097e+06
COIL 20 1.992e+09 4.405e+09 2.014e+09 1.974e+09 1.975e+09 1.975e+09
COIL 50 1.335e+09 2.420e+10 5.772e+09 1.272e+09 1.252e+09 1.250e+09
COIL 100 2.936e+09 2.834e+10 1.814e+10 9.422e+08 8.623e+08 8.458e+08
COIL 200 3.362e+09 2.834e+10 4.627e+10 7.614e+08 5.720e+08 5.392e+08
COIL 300 3.946e+09 2.834e+10 7.417e+10 6.734e+08 4.609e+08 4.544e+08
TDT2 20 1.595e+06 2.211e+06 1.667e+06 1.591e+06 1.594e+06 1.592e+06
TDT2 50 1.397e+06 2.211e+06 2.285e+06 1.393e+06 1.389e+06 1.385e+06
TDT2 100 1.241e+06 2.211e+06 5.702e+06 1.216e+06 1.219e+06 1.212e+06
TDT2 200 1.484e+06 1.878e+06 1.753e+07 1.063e+06 1.104e+06 1.049e+06
TDT2 300 1.879e+06 2.211e+06 3.398e+07 1.060e+06 1.669e+06 1.007e+06

data n [17] [14] [14] [10] [13] ours
PG AS BPP APG CGD MSM

time limit=40
20news 20 4.622e+06 2.762e+07 7.547e+06 4.495e+06 4.500e+06 4.496e+06
20news 50 4.386e+06 2.762e+07 1.562e+07 3.564e+06 3.478e+06 3.438e+06
20news 100 6.486e+06 2.762e+07 4.223e+07 3.128e+06 2.988e+06 2.783e+06
20news 200 6.731e+06 1.934e+07 1.003e+08 3.304e+06 5.744e+06 2.407e+06
20news 300 1.041e+07 2.762e+07 1.932e+08 3.621e+06 4.621e+07 2.543e+06
COIL 20 1.987e+09 5.141e+09 2.010e+09 1.974e+09 1.975e+09 1.975e+09
COIL 50 1.308e+09 2.403e+10 5.032e+09 1.262e+09 1.250e+09 1.248e+09
COIL 100 2.922e+09 2.834e+10 2.086e+10 9.161e+08 8.555e+08 8.430e+08
COIL 200 3.361e+09 2.834e+10 4.116e+10 7.075e+08 5.584e+08 5.289e+08
COIL 300 3.920e+09 2.834e+10 7.040e+10 6.221e+08 4.384e+08 4.294e+08
TDT2 20 1.595e+06 2.211e+06 1.643e+06 1.591e+06 1.594e+06 1.592e+06
TDT2 50 1.394e+06 2.211e+06 1.933e+06 1.392e+06 1.388e+06 1.384e+06
TDT2 100 1.229e+06 2.211e+06 5.259e+06 1.213e+06 1.216e+06 1.211e+06
TDT2 200 1.389e+06 1.547e+06 1.716e+07 1.046e+06 1.070e+06 1.041e+06
TDT2 300 1.949e+06 1.836e+06 3.369e+07 1.008e+06 1.155e+06 9.776e+05

time limit=50
20news 20 4.565e+06 2.762e+07 6.939e+06 4.488e+06 4.498e+06 4.494e+06
20news 50 4.343e+06 2.762e+07 1.813e+07 3.525e+06 3.469e+06 3.432e+06
20news 100 6.404e+06 2.762e+07 3.955e+07 3.046e+06 2.878e+06 2.765e+06
20news 200 5.939e+06 2.762e+07 9.925e+07 3.121e+06 4.538e+06 2.359e+06
20news 300 9.258e+06 2.762e+07 1.912e+08 3.621e+06 2.323e+07 2.331e+06
COIL 20 1.982e+09 7.136e+09 2.033e+09 1.974e+09 1.975e+09 1.975e+09
COIL 50 1.298e+09 2.834e+10 4.365e+09 1.258e+09 1.248e+09 1.248e+09
COIL 100 1.945e+09 2.834e+10 1.428e+10 9.014e+08 8.516e+08 8.414e+08
COIL 200 3.362e+09 2.834e+10 3.760e+10 6.771e+08 5.491e+08 5.231e+08
COIL 300 3.905e+09 2.834e+10 6.741e+10 5.805e+08 4.226e+08 4.127e+08
TDT2 20 1.595e+06 2.211e+06 1.622e+06 1.591e+06 1.594e+06 1.592e+06
TDT2 50 1.393e+06 2.211e+06 1.875e+06 1.392e+06 1.386e+06 1.384e+06
TDT2 100 1.223e+06 2.211e+06 4.831e+06 1.212e+06 1.214e+06 1.210e+06
TDT2 200 1.267e+06 2.211e+06 1.671e+07 1.040e+06 1.054e+06 1.036e+06
TDT2 300 1.903e+06 2.211e+06 3.328e+07 9.775e+05 1.045e+06 9.606e+05

Table 1: Comparisons of objective values for non-negative matrix factorization for all the compared methods. The 1st, 2nd,
and 3rd best results are colored with red, blue and green, respectively.

since x + min(−x) ≤ 0 ∀x. Thus, we obtain the sufficient
decrease inequality in (18).

(ii) Based on the sufficient decrease inequality in (18),
we have: f(xk) is a non-increasing sequence, ‖xk −
xk+1‖ → 0, and f(xk+1) < f(xk) if xk 6= xk+1. We note
that (9) can be still applied even h(·) is nonconvex. Using
the same methodology as in the second part of Theorem 1,
we obtain that ∂f(xk)→ 0, which implies the convergence
of the algorithm.

Note that guaranteeing δ ∈ (0,∞) can be achieved by
simply choosing ω ∈ (0, 1) and setting θ to a small number.

3.2. When x is a Matrix

In many applications (e.g. nonegative matrix factoriza-
tion and sparse coding), the solutions exist in the matrix
form as follows: minX∈Rn×r

1
2 tr(X

TAX) + tr(XTR) +
h(X), where R ∈ Rn×r. Our matrix splitting algorithm
can still be applied in this case. Using the same tech-
nique to decompose A as in (4): A = B + C, one needs
to replace (6) to solve the following nonlinear equation:
BZ∗ + U + ∂h(Z∗) ∈ 0, where U = R + CXk. It can
be decomposed into r independent components. By updat-
ing every column of X, the proposed algorithm can be used
to solve the matrix problem above. Thus, our algorithm
can also make good use of existing parallel architectures to
solve the matrix optimization problem.

3.3. When q is not Quadratic

Following previous work [31, 36], one can approximate
the objective around the current solution xk by the second-
order Taylor expansion of q(·): Q(y,xk) , q(xk) +
〈∇q(xk),y−xk〉+ 1

2 (y−xk)T∇2q(xk)(y−xk)+h(y),
where ∇q(xk) and ∇2q(xk) denote the gradient and Hes-
sian of q(x) at xk, respectively. In order to generate
the next solution that decreases the objective, one can
minimize the quadratic model above by solving: x̄k =
arg miny Q(y,xk). The new estimate is obtained by the
update: xk+1 = xk + β(x̄k − xk), where β ∈ (0, 1) is the
step-size selected by backtracking line search.

4. Experiments

This section demonstrates the efficiency and efficacy of
the proposed Matrix Splitting Method (MSM) by consider-
ing two important applications: nonnegative matrix factor-
ization (NMF) [15, 17] and cardinality regularized sparse
coding [23, 25, 16]. We implement our method in MAT-
LAB on an Intel 2.6 GHz CPU with 8 GB RAM. Only our
generalized Gaussian elimination procedure is developed in
C and wrapped into the MATLAB code, since it requires
an elementwise loop that is quite inefficient in native MAT-
LAB. We report our results with the choice θ = 0.01 and
ω = 1 in all our experiments.

(a) λ = 5 (b) λ = 50 (c) λ = 500 (d) λ = 5000 (e) λ = 50000

(f) λ = 5 (g) λ = 50 (h) λ = 500 (i) λ = 5000 (j) λ = 50000

(k) λ = 5 (l) λ = 50 (m) λ = 500 (n) λ = 5000 (o) λ = 50000

(p) λ = 5 (q) λ = 50 (r) λ = 500 (s) λ = 5000 (t) λ = 50000

Figure 2: Convergence behavior for solving (20) with fixing W for different λ and initializations. Denoting Õ as an arbitrary
standard Gaussian random matrix of suitable size, we consider the following four initializations for H. First row: H =
0.1× Õ. Second row: H = 1× Õ. Third row: H = 10× Õ. Fourth row: H is set to the output of the orthogonal matching
pursuit.

4.1. Nonnegative Matrix Factorization (NMF)

Nonnegative matrix factorization [15] is a very useful
tool for feature extraction and identification in the fields of
text mining and image understanding. It is formulated as
the following optimization problem:

min
W,H

1
2‖Y −WH‖2F , s.t. W ≥ 0, H ≥ 0 (19)

where W ∈ Rm×n and H ∈ Rn×d. Following previous
work [14, 10, 17, 13], we alternatively minimize the ob-
jective while keeping one of the two variables fixed. In
each alternating subproblem, we solve a convex nonneg-
ative least squares problem, where our MSM method is
used. We conduct experiments on three datasets 4 20news,
COIL, and TDT2. The size of the datasets are 18774 ×
61188, 7200×1024, 9394×36771, respectively. We com-
pare MSM against the following state-of-the-art methods:
(1) Projective Gradient (PG) [17, 5] that updates the current
solution via steep gradient descent and then maps a point

4http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

back to the bounded feasible region 5; (2) Active Set (AS)
method [14]; (3) Block Principal Pivoting (BPP) method
[14] 6 that iteratively identifies an active and passive set by
a principal pivoting procedure and solves a reduced linear
system; (4) Accelerated Proximal Gradient (APG) [10] 7

that applies Nesterov’s momentum strategy with a constant
step size to solve the convex sub-problems; (5) Coordinate
Gradient Descent (CGD) [13] 8 that greedily selects one
coordinate by measuring the objective reduction and opti-
mizes for a single variable via closed-form update. Similar
to our method, the core procedure of CGD is developed in C
and wrapped into the MATLAB code, while all other meth-
ods are implemented using builtin MATLAB functions.

We use the same settings as in [17]. We compare objec-
tive values after running t seconds with t varying from 20
to 50. Table 1 presents average results of using 10 random
initial points, which are generated from a standard normal
distribution. While the other methods may quickly lower

5https://www.csie.ntu.edu.tw/∼cjlin/libmf/
6http://www.cc.gatech.edu/∼hpark/nmfsoftware.php
7https://sites.google.com/site/nmfsolvers/
8http://www.cs.utexas.edu/∼cjhsieh/nmf/

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
https://www.csie.ntu.edu.tw/~cjlin/libmf/
http://www.cc.gatech.edu/~hpark/nmfsoftware.php
https://sites.google.com/site/nmfsolvers/
http://www.cs.utexas.edu/~cjhsieh/nmf/

objective values when n is small (n = 20), MSM catches
up very quickly and achieves a faster convergence speed
when n is large. It generally achieves the best performance
in terms of objective value among all the methods.

4.2. Cardinality Regularized Sparse Coding

Sparse coding is a popular unsupervised feature learn-
ing technique for data representation that is widely used in
computer vision and medical imaging. Motivated by recent
success in `0 norm modeling [35, 3, 33], we consider the
following cardinality regularized (i.e. `0 norm) sparse cod-
ing problem:

min
W,H

1
2‖Y −WH‖2F + λ‖H‖0, s.t. ‖W(:, i)‖2 = 1 ∀i (20)

with W ∈ Rm×n and H ∈ Rn×d. Existing solutions
for this problem are mostly based on the family of proxi-
mal point methods [22, 22, 3]. We compare MSM with the
following methods: (1) Proximal Gradient Method (PGM)
with constant step size, (2) PGM with line search, (3) ac-
celerated PGM with constant step size, and (4) accelerated
PGM with line search.

We evaluate all the methods for the application of im-
age denoising. Following [2, 3], we set the dimension
of the dictionary to n = 256. The dictionary is learned
from m = 1000 image patches randomly chosen from
the noisy input image. The patch size is 8 × 8, leading
to d = 64. The experiments are conducted on 16 con-
ventional test images with different noise standard devia-
tions σ. For the regulization parameter λ, we sweep over
{1, 3, 5, 7, 9, ..., 10000, 30000, 50000, 70000, 90000}.

First, we compare the objective values for all methods by
fixing the variable W to an over-complete DCT dictionary
[2] and only optimizing over H. We compare all methods
with varying regularization parameter λ and different initial
points that are either generated by random Gaussian sam-
pling or the Orthogonal Matching Pursuit (OMP) method
[29]. In Figure 2, we observe that MSM converges rapidly
in 10 iterations. Moreover, it often generates much better
local optimal solutions than the compared methods.

Second, we evaluate the methods according to Signal-
to-Noise Ratio (SNR) value wrt the groundtruth denoised
image. In this case, we minimize over W and H alter-
natingly with different initial points (OMP initialization or
standard normal random initialization). For updating W,
we use the same proximal gradient method as in [3]. For up-
dating H, since the accelerated PGM does not necessarily
present better performance than canonical PGM and since
the line search strategy does not present better performance
than the simple constant step size, we only compare with
PGM, which has been implemented in [3] 9 and KSVD [2]
10. In our experiments, we find that MSM achieves lower

9Code: http://www.math.nus.edu.sg/∼matjh/research/research.htm
10Code: http://www.cs.technion.ac.il/∼elad/software/

objectives than PGM in all cases. We do not report the ob-
jective values here but only the best SNR value, since (i)
the best SNR result does not correspond to the same λ for
PGM and MSM, and (ii) KSVD does not solve exactly the
same problem in (20)11. We observe that MSM is generally
4-8 times faster than KSVD. This is not surprising, since
KSVD needs to call OMP to update the dictionary H, which
involves high computational complexity while our method
only needs to call a generalized Gaussian elimination pro-
cedure in each iteration. In Table 2, we summarize the re-
sults, from which we make two conclusions. (i) The two ini-
tialization strategies generally lead to similar SNR results.
(ii) Our MSM method generally leads to a larger SNR than
PGM and a comparable SNR as KSVD, but in less time.

5. Conclusions and Future Work
This paper presents a matrix splitting method for com-

posite function minimization. We rigorously analyze its
convergence behavior both in convex and non-convex set-
tings. Experimental results on nonnegative matrix factoriza-
tion and cardinality regularized sparse coding demonstrate
that our methods achieve state-of-the-art performance.

Our future work focuses on several directions. (i) We
will investigate the possibility of further accelerating the
matrix splitting method by Nesterov’s momentum strategy
[22] or Richardson’s extrapolation strategy. (ii) It is inter-
esting to extend the classical sparse Gaussian elimination
[27] technique to compute the triangle proximal operator in
our method, which is expected to be more efficient when the
matrix A is sparse. (iii) We are interested in incorporating
the proposed algorithms into alternating direction method
of multipliers [11, 6] as an alternative solution to the exist-
ing proximal/linearized method.

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An

algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Transactions on Signal
Processing, 54(11):4311, 2006. 1

[2] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An
algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Transactions on Signal
Processing, 54(11):4311–4322, 2006. 8

[3] C. Bao, H. Ji, Y. Quan, and Z. Shen. Dictionary
learning for sparse coding: Algorithms and conver-
gence analysis. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 38(7):1356–
1369, 2016. 1, 8

11In fact, it solves an `0 norm constrained problem using a greedy pur-
suit algorithm and performs a codebook update using SVD. It may not nec-
essarily converge, which motivates the use of the alternating minimization
algorithm in [3].

http://www.math.nus.edu.sg/~matjh/research/research.htm
http://www.cs.technion.ac.il/~elad/software/

OMP init random init
img + σ KSVD PGM MSM PGM MSM
walkbridge + 5 35.70 35.71 35.71 35.72 35.75
walkbridge + 10 31.07 31.07 31.17 31.07 31.17
walkbridge + 20 27.01 27.11 27.21 27.07 27.23
walkbridge + 30 24.93 25.08 25.21 25.09 25.19
walkbridge + 40 23.71 23.85 23.87 23.84 23.90
mandrill + 5 35.18 35.21 35.20 35.22 35.21
mandrill + 10 30.36 30.38 30.47 30.38 30.47
mandrill + 20 26.02 26.15 26.31 26.12 26.33
mandrill + 30 23.75 23.96 24.19 23.96 24.18
mandrill + 40 22.37 22.61 22.78 22.57 22.81
cameraman + 5 40.17 40.38 40.78 40.43 40.72
cameraman + 10 36.04 36.07 36.52 36.10 36.50
cameraman + 20 32.03 31.77 32.11 31.68 32.13
cameraman + 30 29.91 29.30 29.56 29.18 29.63
cameraman + 40 28.39 27.55 27.80 27.56 27.78
livingroom + 5 37.00 36.97 37.10 36.94 37.07
livingroom + 10 32.98 33.02 33.19 32.92 33.27
livingroom + 20 29.22 29.16 29.55 29.23 29.57
livingroom + 30 27.04 27.04 27.43 27.06 27.45
livingroom + 40 25.62 25.55 25.78 25.59 25.81

OMP init random init
img + σ KSVD PGM MSM PGM MSM
lake + 5 36.77 36.74 36.77 36.73 36.75
lake + 10 32.84 32.75 32.86 32.77 32.90
lake + 20 29.32 29.19 29.36 29.23 29.38
lake + 30 27.32 27.04 27.30 27.10 27.33
lake + 40 25.94 25.66 25.80 25.59 25.80
lena + 5 38.30 38.22 38.31 38.22 38.29
lena + 10 34.81 34.79 34.97 34.83 34.91
lena + 20 31.48 31.16 31.30 31.18 31.34
lena + 30 29.50 28.96 29.24 28.91 29.11
lena + 40 28.07 27.35 27.52 27.43 27.57
blonde + 5 36.98 37.00 37.06 37.00 37.08
blonde + 10 33.23 33.31 33.37 33.27 33.43
blonde + 20 29.83 29.78 29.99 29.75 30.00
blonde + 30 28.00 27.77 28.04 27.73 27.95
blonde + 40 26.82 26.33 26.41 26.31 26.63
barbara + 5 37.50 37.46 37.74 37.42 37.71
barbara + 10 33.36 33.37 33.65 33.33 33.67
barbara + 20 29.19 29.22 29.70 29.30 29.63
barbara + 30 26.79 26.84 27.30 26.92 27.36
barbara + 40 25.11 25.02 25.71 25.16 25.83

OMP init random init
img + σ KSVD PGM MSM PGM MSM
boat + 5 36.94 36.94 36.98 36.93 37.01
boat + 10 33.10 33.02 33.24 33.05 33.31
boat + 20 29.47 29.40 29.66 29.52 29.65
boat + 30 27.50 27.27 27.50 27.29 27.52
boat + 40 26.16 25.84 26.13 25.86 26.03
pirate + 5 36.49 36.43 36.54 36.42 36.50
pirate + 10 32.19 32.09 32.25 32.10 32.29
pirate + 20 28.33 28.23 28.42 28.24 28.44
pirate + 30 26.31 26.12 26.28 26.13 26.33
pirate + 40 24.94 24.71 24.86 24.72 24.86
house + 5 38.78 38.76 38.91 38.81 38.87
house + 10 34.99 34.97 35.07 35.05 35.10
house + 20 31.83 31.36 31.53 31.34 31.53
house + 30 29.79 29.22 29.27 29.04 29.31
house + 40 28.16 27.40 27.63 27.37 27.46
jetplane + 5 38.84 38.87 39.06 38.93 39.05
jetplane + 10 34.98 34.99 35.17 35.01 35.22
jetplane + 20 31.30 31.04 31.28 31.01 31.30
jetplane + 30 29.11 28.64 28.87 28.68 28.95
jetplane + 40 27.57 27.05 27.19 26.97 27.26

Table 2: Comparisons of SNR values for the sparse coding based image denoising problem with OMP initialization and
random initialization. The 1st, 2nd, and 3rd best results are colored with red, blue and green, respectively.

[4] A. Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences (SI-
IMS), 2(1):183–202, 2009. 1, 2

[5] D. P. Bertsekas. Nonlinear programming. Athena sci-
entific Belmont, 1999. 7

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends R© in Machine Learning,
3(1):1–122, 2011. 8

[7] J. W. Demmel. Applied numerical linear algebra.
SIAM, 1997. 1, 5

[8] D. L. Donoho. Compressed sensing. IEEE Transac-
tions on Information Theory, 52(4):1289–1306, 2006.
1

[9] E. Elhamifar and R. Vidal. Sparse subspace cluster-
ing: Algorithm, theory, and applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI), 35(11):2765–2781, 2013. 1

[10] N. Guan, D. Tao, Z. Luo, and B. Yuan. Nenmf: an
optimal gradient method for nonnegative matrix fac-
torization. IEEE Transactions on Signal Processing,
60(6):2882–2898, 2012. 1, 6, 7

[11] B. He and X. Yuan. On the O(1/n) conver-
gence rate of the douglas-rachford alternating direc-
tion method. SIAM Journal on Numerical Analysis
(SINUM), 50(2):700–709, Apr. 2012. 8

[12] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for
large-scale linear svm. In International Conference on
Machine Learning (ICML), pages 408–415, 2008. 1

[13] C.-J. Hsieh and I. S. Dhillon. Fast coordinate de-
scent methods with variable selection for non-negative
matrix factorization. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 1064–1072, 2011. 6, 7

[14] J. Kim and H. Park. Fast nonnegative matrix fac-
torization: An active-set-like method and compar-
isons. SIAM Journal on Scientific Computing (SISC),
33(6):3261–3281, 2011. 6, 7

[15] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999. 1, 6, 7

[16] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient
sparse coding algorithms. In Advances in Neural In-
formation Processing Systems (NIPS), pages 801–808,
2006. 1, 6

[17] C.-J. Lin. Projected gradient methods for non-
negative matrix factorization. Neural Computation,
19(10):2756–2779, 2007. 1, 6, 7

[18] J. Liu and S. J. Wright. Asynchronous stochas-
tic coordinate descent: Parallelism and convergence
properties. SIAM Journal on Optimization (SIOPT),
25(1):351–376, 2015. 1

[19] Z. Lu and L. Xiao. Randomized block coordinate
non-monotone gradient method for a class of nonlin-
ear programming. arXiv preprint, 2013. 1

[20] Z.-Q. Luo and P. Tseng. Error bounds and conver-
gence analysis of feasible descent methods: a general
approach. Annals of Operations Research, 46(1):157–
178, 1993. 4

[21] Y. Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal
on Optimization (SIOPT), 22(2):341–362, 2012. 1

[22] Y. Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013. 1, 2, 8

[23] B. A. Olshausen et al. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996. 6

[24] N. Parikh, S. P. Boyd, et al. Proximal algorithms.
Foundations and Trends in optimization, 1(3):127–
239, 2014. 2

[25] Y. Quan, Y. Xu, Y. Sun, Y. Huang, and H. Ji. Sparse
coding for classification via discrimination ensemble.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 1, 6

[26] P. Richtárik and M. Takáč. Iteration complexity of ran-
domized block-coordinate descent methods for mini-
mizing a composite function. Mathematical Program-
ming, 144(1-2):1–38, 2014. 1

[27] Y. Saad. Iterative Methods for Sparse Linear Sys-
tems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003. 1, 5, 8

[28] R. Sun and M. Hong. Improved iteration complexity
bounds of cyclic block coordinate descent for convex
problems. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1306–1314, 2015. 1

[29] J. A. Tropp and A. C. Gilbert. Signal recovery
from random measurements via orthogonal matching
pursuit. IEEE Transactions on Information Theory,
53(12):4655–4666, 2007. 8

[30] P. Tseng. Approximation accuracy, gradient methods,
and error bound for structured convex optimization.
Mathematical Programming, 125(2):263–295, 2010.
4

[31] P. Tseng and S. Yun. A coordinate gradient descent
method for nonsmooth separable minimization. Math-
ematical Programming, 117(1-2):387–423, 2009. 1, 4,
6

[32] Z. Xu, X. Chang, F. Xu, and H. Zhang. L1/2 regu-
larization: A thresholding representation theory and
a fast solver. IEEE Transactions on Neural Net-
works and Learning Systems (TNNLS), 23(7):1013–
1027, 2012. 5

[33] Y. Yang, J. Feng, N. Jojic, J. Yang, and T. S. Huang.
`0-sparse subspace clustering. European Conference
on Computer Vision (ECCV), 2016. 8

[34] H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate
descent methods for logistic regression and maximum
entropy models. Machine Learning, 85(1-2):41–75,
2011. 1

[35] G. Yuan and B. Ghanem. `0tv: A new method for
image restoration in the presence of impulse noise.

In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5369–5377, 2015. 8

[36] X.-T. Yuan and Q. Liu. Newton greedy pur-
suit: A quadratic approximation method for sparsity-
constrained optimization. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4122–4129, 2014. 1, 6

[37] S. Yun, P. Tseng, and K.-C. Toh. A block coordinate
gradient descent method for regularized convex sepa-
rable optimization and covariance selection. Mathe-
matical Programming, 129(2):331–355, 2011. 4

[38] J. Zeng, Z. Peng, and S. Lin. A gauss-seidel iterative
thresholding algorithm for lq regularized least squares
regression. arXiv preprint, 2015. 1

	1 . Introduction
	2 . Proposed Matrix Splitting Method
	2.1 . Computing the Triangle Proximal Operator
	2.2 . Convergence Analysis

	3 . Extensions
	3.1 . When h is Nonconvex
	3.2 . When x is a Matrix
	3.3 . When q is not Quadratic

	4 . Experiments
	4.1 . Nonnegative Matrix Factorization (NMF)
	4.2 . Cardinality Regularized Sparse Coding

	5 . Conclusions and Future Work

