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Abstract

Deep ConvNets have been shown to be effective for the
task of human pose estimation from single images. How-
ever, several challenging issues arise in the video-based
case such as self-occlusion, motion blur, and uncommon
poses with few or no examples in training data sets. Tem-
poral information can provide additional cues about the
location of body joints and help to alleviate these issues.
In this paper, we propose a deep structured model to esti-
mate a sequence of human poses in unconstrained videos.
This model can be efficiently trained in an end-to-end man-
ner and is capable of representing appearance of body
joints and their spatio-temporal relationships simultane-
ously. Domain knowledge about the human body is explic-
itly incorporated into the network providing effective priors
to regularize the skeletal structure and to enforce temporal
consistency. The proposed end-to-end architecture is eval-
uated on two widely used benchmarks (Penn Action dataset
and JHMDB dataset) for video-based pose estimation. Our
approach significantly outperforms the existing state-of-the-
art methods.

1. Introduction

Estimating human poses is one of the core problems
in computer vision and has many applications in the life-
sciences, computer animation and the growing fields of
robotics, augmented and virtual reality. Accurate pose es-
timates can also drastically improve the performance of
activity recognition and high-level analysis of videos(cf.
[14, 34, 36]). Recent pose estimation methods have ex-
ploited deep convolutional networks (ConvNets) for body-
part detection in single, fully unconstrained images [2, 17,
18, 22, 31, 32, 35]. While demonstrating the feasibility of
detection-based pose estimation from images taken under
general conditions, such methods still struggle with sev-
eral challenging aspects including the diversity of human
appearance and self-symmetries. Several methods [2, 37]
have explicitly incorporated geometric constraints among
body parts into such frameworks, ensuring spatial consis-
tency and penalizing physically impossible solutions (cf.

Figure 1. Our method incorporates spatio-temporal information
into a single end-to-end trainable network architecture, aiming to
deal with challenging problems such as (self-)occlusions, motion
blur, and uncommon poses. Taking fully unconstraind images as
input (a), we regress body-part locations with standard ConvNet
layers (b). Spatial inference helps in overcoming confusion due to
symmetric body parts (c). Our spatio-temporal inference layer (d)
can deal with extreme cases where spatial information only fails
(cf. 11 vs 12, 15 vs 16) and improves prediction accuracies for
unary terms due to repeating measurements by temporal propaga-
tion of joint position estimates (3 vs 4).

Figure 1, (c)).
In this paper we consider the comparatively less stud-

ied problem of human pose estimation from unconstrained
videos [11, 20, 39, 42]. While inheriting many properties
from image-based pose estimation, it also brings new chal-
lenges. In particular, unconstrained videos such as those
found in online portals, contain many frames with occlu-
sions, unusual poses, and motion blur (see Figure 1). These
issues continue to limit the accuracy of joint detection even
if taking priors about the spatial configuration of the human
skeleton into consideration, and often result in visible jitter
if such models are applied directly to video sequences.

To tackle these problems, we propose to incorporate
spatial and temporal modeling into deep learning architec-
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tures. The proposed model is based on a simple observation:
human motion exhibits high temporal consistency, which
could be captured by optical flow warping [20, 39, 42] and
spatio-temporal inference [34, 36]. Specifically, we lever-
age a spatio-temporal relational model into the ConvNet
framework and develop a new deep structured architecture,
called Thin-Slicing Network. Our deep structured model
allows for end-to-end training of body part regressors and
spatio-temporal relational models in a unified framework.
This enables improving generalization performance by reg-
ularizing the learning process both spatially and temporally
across adjacent frames. We deploy fully ConvNet for ini-
tial part detection. Furthermore, via a flow warping layer
which propagates joint prediction heat maps temporally and
a novel inference layer, message passing on arbitrary loopy
graphs along both spatial and temporal edges is performed.

In consequence, our approach can deal with many chal-
lenging situations arising in unconstrained video, and out-
perform both the original joint-position estimation meth-
ods and those incorporating spatial priors only. Figure 1
illustrates how our approach can accurately predict joint
positions in difficult situations of full occlusion (3rd row,
given visibility in adjacent frames) or severe motion blur
(4th row, by exploiting temporal consistency). Last but not
least, the model also improves predictions in relatively sim-
ple cases (see Figure 1, 1st and 2nd row). This can be ex-
plained by optimizing of several correlated but different
frames through the entire architecture jointly, which not
only learns weights of the inference layers, but also refines
the underlying ConvNet-based part regressors, resulting in
more accurate joint detections.

In summary our main contributions are: (i) A structured
model captures the inherent consistency of human poses in
video sequences based on a loopy spatio-temporal graph.
Our approach does not rely on explicit human motion priors
but leverages dense optical flow to exploit image evidence
from adjacent frames. (ii) An efficient and flexible infer-
ence layer performs message passing along the spatial and
temporal graph edges and significantly reduces joint posi-
tion uncertainty. (iii) The entire architecture well integrates
the ConvNet-based joint regressors and the high-level struc-
tured inference model in a unified framework, which could
be optimized in an end-to-end manner. (iv) Our method sig-
nificantly improves the state-of-the-art performance on two
widely used video based pose estimation benchmarks: the
Penn Action dataset [40], the JHMDB dataset [14].

2. Related work
Pose estimation from single images has benefitted

tremendously from leveraging structural models such as
tree-structured pictorial models [1] and part-based mod-
els [15, 21, 23, 38], encoding the relationships between
articulated joints. While capturing kinematic correlations,

such models are prone to errors such as double-counting
part evidence. More expressive loopy graph models, al-
lowing for cyclic joint dependencies have been proposed
to better capture symmetry and long-range correlation [5,
25, 28, 30]. Since exact inference in cyclic graphs is gen-
erally speaking intractable, approximate inference methods
like loopy belief propagation are typically used.

The above methods are based on hand-crafted features
and are sensitive to (the limits of) their representative power.
More recently, convolutional deep learning architectures
have been deployed to learn richer and more expressive fea-
tures directly from data [2, 18, 31, 22, 32], outperforming
prior work. Toshev et al. [32] directly regress the joint coor-
dinates from images. Follow-up work suggests that regress-
ing full image confidence maps as intermediate representa-
tion can be more effective [31, 2]. While multi-stage convo-
lutional operations can capture information in large recep-
tive fields, they still lack the ability to fully model skeletal
structure in their predictions.

Several approaches to refine confidence maps have been
proposed. First, additional convolutional layers taking joint
heat-maps as input can be added to learn implicit spatial
dependencies without requiring explicit articulated human
body priors [31, 35, 4]. Second, [22, 2] explicitly resort
to graphical models to post-process regressed confidence
maps. However, the parameters of part regression networks
and spatial inference are learned independently in [2, 22].
In [37] an end-to-end trainable framework, combining con-
volutional operations and spatial refinement is proposed.
Our work not only incorporates spatial information but also
models temporal dependencies.

Pose estimation in videos brings new challenges (illus-
trated in Figure 1) and requires the coupling of parts across
frames to ensure accurate and temporally stable predictions.
Early work initializes a temporal tracker from few pre-
dicted poses in the sequence’s initial frames [27] but suffers
from pose drift. Tracking-by-detection schemes have been
used to more robustly estimate poses in videos [8, 19, 24].
Researchers have also attempted to design spatio-temporal
graphs to capture motion in short video sequences [3, 7,
16, 26, 29, 33, 39, 34, 36]. However, modeling spatial
and temporal dependencies explicitly results in highly inter-
connected models (i.e., loopy graphs with large tree-width)
and exact inference becomes again intractable. One solu-
tion is to resort to approximate inference, for instance using
sampling based approaches [29, 33] or loopy belief prop-
agation [16, 7]. Alternatively, approximating the original
large loopy model into one or multiple simplified tree-based
models allows for efficient exact inference [3, 39].

Some recent deep learning methods aide predictions in
the current frame with information from its neighbors [13].
Similar to our approach, [20] directly propagates joint po-
sition estimates from previous to the current frame via opti-



Figure 2. Schematic overview of Thin-Slicing Network architecture. Our model takes a small number of adjacent frames as input (a)
and fully convolutional layers (b) regress initial body joint position estimates (c). We compute dense optical flow between neighboring
frames to propagate joint position estimates through time. A flow based warping layer aligns joint heat-maps to the current frame (d). A
spatio-temporal inference layer performs iterative message passing along both spatial and temporal edges of the loopy pose configuration
graph (e) and computes final joint position estimates (f).

cal flow. Warped heatmaps from multiple nearby frames are
combined as weighted average. Chain models [11] can cap-
ture longer temporal dependencies but makes assumptions
about regular motion patterns. Our approach also incorpo-
rates spatio-temporal models into deep ConvNets but dif-
fers in that it (i) explicitly models the spatial configuration
of human poses; (ii) regularizes temporal joint positions us-
ing dense optical flow via (iii) a novel inference layer, per-
forming message passing on general loopy spatio-temporal
graphs; (iv) and is end-to-end trainable.

3. Thin-Slicing Networks
Figure 2 shows an overview of our proposed network

architecture, consisting of several interconnected layers.
Given a thin-slice of a video sequence (i.e., a small num-
ber of adjacent frames), a spatial fully ConvNet first re-
gresses joint confidence maps (heat-maps) of joint positions
for each input frame (Figure 2, (c)). These heat-maps are
sent into a flow warping layer and a spatio-temporal infer-
ence layer. The flow warping layer (Figure 2, (d)) warps the
body part heat-maps by pixel-wise dense optical flow tracks
so that they align with its neighboring frame. Finally, both
the warped heat-maps and the part heat-maps of the cur-
rent frame pass through the spatio-temporal inference layer
(Figure 2, (e)). This layer conducts inference between body
parts spatially and temporally, producing the final joint po-
sition estimates (Figure 2, (f)).

3.1. Fully convolutional joint regression layer

Several recent works regress heat-maps of body joints
via ConvNets [2, 18, 22, 31, 35, 17]. Such models are
usually consist entirely of convolutional operations com-
bined with spatial pooling layers. We leverage such a Conv-
Net [35] as basis for our architecture. More specifically as

joint detection layers shown in Figure 2, (b). Such models
have already demonstrated the ability to capture local ap-
pearance properties and outperform hand-designed shallow
features by large margins, but occlusions, (self-)symmetries
and motion blur still pose significant challenges (cf. Fig-
ure 1). In order to alleviate these problems, a novel spatio-
temporal message passing layer (Sec. 3.3) is proposed and
incorporated into the network for end-to-end training.

3.2. Flow warping layer

While our goal is to improve temporal stability of joint
predictions, we do not incorporate an explicit motion pat-
tern (since human motion tends to be too unpredictable)
but instead rely on dense optical flow to propagate informa-
tion temporally. The joint detection heat-maps, produced by
fully convolutional layers, is passed through the flow warp-
ing layer to align heat-maps from one frame to the targeted
neighbor (Figure 2, (d)). Pixel-wise flow vectors are used
to align confidence estimates in neighboring frames to the
target frame by shifting confidence values along the track
directions. Next, these warped heat-maps serve as input to
the spatio-temporal inference layer.

3.3. Spatio-temporal inference layer

Incorporating domain specific knowledge into deep net-
works has been proven to be effective in many vision
tasks such as object detection [10] and semantic segmenta-
tion [41]. In this work, we propose to explicitly incorporate
spatio-temporal dependencies into an end-to-end trainable
framework.

Modeling
Let G = (V,E) represent a graph as shown in Figure 2
(e), with vertices V and edges E ⊆ V × V denoting the



spatio-temporal structure of a human pose. K = |V | is the
number of body parts, and i ∈ {1, ...,K} is the ith part.
Each vertex corresponds to one of the body parts (i.e., head,
shoulders), and each edge represents a connection between
two of these parts spatially (blue arrows in Figure 2, (e))
or between the same part but distributed temporally (yellow
arrows in Figure 2, (e)). We denote these edges as Es and
Ef respectively. Given an image I , a pose p with respect
to this graph G is defined as a set of 2D coordinates in the
image space representing the positions of the different body
parts: p = {pi = (xi, yi) ∈ R2 : ∀i ∈ V }. The single-
image pose estimation problem then can be formulated as
the maximization of the following score S(I, p) for a pose
p given an image I:

S(I, p) =
∑
i∈V

φi(pi|I) +
∑

(i,j)∈Es

ψi,j(pi, pj), (1)

where φi(pi|I) is the unary term for the body part i at
the position pi in image I and ψi,j(pi, pj) is the pairwise
term modeling the spatial compatibility of two neighbor-
ing parts i and j. The unary term provides confidence val-
ues of part i based on the local appearance and it is mod-
eled by the fully ConvNet (Sec. 3.1). For pairwise term
we use a spring energy model to measure the deformation
cost, where ψi,j(pi, pj) is defined as wi,j · d(pi− pj). With
standard quadratic deformation constraints d(pi − pj) =
[∆x ∆x2 ∆y ∆y2]T , where ∆x = xi−xj and ∆y =
yi−yj are the relative positions of part iwith respect to part
j. The parameter wi,j encodes rest location and rigidity of
each spring, which can be learned together with the whole
network.

Given a slice of a video sequence I = (I1, I2, ..., IT ) as
shown in Figure 2 (a), the temporal links (yellow arrows in
Figure 2, (e)) are introduced among neighboring frames in
order to impose temporal consistency for estimating poses
P = (p1, p2, ..., pT ). The objective score function of the
entire slice with temporal constrains is then given by:

S(I,P)slice =

T∑
t=1

S(It, pt) +
∑

(i,i∗)∈Ef

ψi,i∗(pi, p
′
i∗).

(2)
Here S(It, pt) is the score function for each frame as

defined in Eq. (1). The pairwise term ψi,i∗(pi, p
′
i∗) regular-

izes the temporal consistency of the part i in neighboring
frames. Specifically, here p′i∗ = pi∗ + fi∗,i(pi∗) and
fi∗,i(pi∗) is the optical flow evaluated at pi∗ . This is the
flow warping process in which pixel-wise flow tracks are
applied to align confidence values in neighboring frames to
the target frame. We use the same quadratic spring model
to penalize the estimation drift between these neighboring
frames.

Inference
Inference corresponds to maximizing Sslice defined

in Eq. (2) over p for the image sequence slice. When the
relational graph G = (V,E) is a tree-structured graph, ex-
act belief propagation can be applied efficiently by one pass
of dynamic programming in polynomial time. However, for
cases in which the factor graph is not tree-structured but
contains cycles, the belief propagation algorithm is not ap-
plicable as no leaf-to-root order can be established. How-
ever, loopy belief propagation algorithms such as the Max-
Sum algorithm make approximate inference possible in in-
tractable loopy models [9]. Empirical performance has con-
sistently been reported to be excellent across various prob-
lems [37, 28]. More precisely, in our case at each iteration
a part i sends a message to its neighbors and also receives
reciprocal messages along the edges in G:

scorei(pi)← φi(pi|I) +
∑

k∈child(i)

mki(pi), (3)

where child(i) is defined as the set of children of part i. The
local scorei(pi) is the sum of the unary terms φi(pi|I) and
the messages collected from its all children. The messages
mki(pi) sent from body part k to part i are given by:

mki(pi)← max
pk

(scorek(pk) + ψk,i(pk, pi)) (4)

Eq. (4) computes for every location of part i the best
scoring location of its child k, based on the score of
part k and the spring model between i and k. This cost
maximization process can be efficiently solved via the
generalized distance transforms [6], reducing the compu-
tational complexity to be linear in the number of possible
part locations, which is the size of the regressed heat-map
from the fully ConvNet (Sec. 3.1). This inference pro-
cess could be operated by several iterations till convergence.

Implementation details
In our implementation of the spatio-temporal message pass-
ing layer, for the first iteration, the local score for each part
is initialized by its corresponding unary term obtained from
the regressor layers( Figure 2,(c)). The inference process is
illustrated in Figure 2,(e). The children of one node could
be either adjacent parts in the same frame or the same part in
the neighboring frames. For the first case, the heat-maps of
other parts are directly taken as input to the generalized dis-
tance transform, while for the second case the scorek(pk) is
the heat-map after flow warping (Figure 2,(d)). We imple-
ment message passing in a broadcasting style where mes-
sages are passed simultaneously across every edge in both
directions.

Specifically, for each part i, Eq. (4) computes the best
score from its child k. The forward of this maximization
process is efficiently solved via the generalized distance



transform. The resulting Max location p∗ for each pixel is
stored. Similar to the Max Pooling operation, the backprop-
agation of Eq. (4) is achieved through sub-gradient decent:

∂mki(pi)

∂scorek(pk)
=

{
1 if pk = p∗,
0 otherwise.

∂mki(pi)

∂ψk,i(pk, pi)
=

{
1 if pk = p∗,
0 otherwise.

The gradient for the parameter of the spring model wki is
calculated by ∂mki(pi)

∂wki
= ∂mki(pi)

∂ψk,i(pk,pi)
d(pk − pi), where

d(pk − pi) is the quadratic displacement.

4. Learning
The learning of Thin-Slicing Network is decomposed

into two stages: (1) Training fully convolutional layers and
(2) Joint training with flow warping and inference layers.

Training fully convolutional layers As discussed in
Sec. 3.1, we deploy fully convolutional layers as the basic
regressor to produce the belief maps for all the body parts
in the sequence. As shown in Figure 2,(c), every pixel posi-
tion has a confidence value for each joint. The ground truth
heat-map for a part i is written as bi∗(Yi = p), which is cre-
ated by placing a Gaussian peak at the center location of the
part. In our implementation, we set peak values as 1 and
the background as 0. We aim to minimize the l2 distance
between the predicted and ideal belief maps for each part,
yielding the loss function:

f =

K∑
i=1

∑
p

∥∥bi(p)− bi∗(p)∥∥2 . (5)

We use the stochastic gradient descent algorithm to train
these fully convolutional layers with dropouts.

Joint training with flow warping and inference layers
For the second stage of training, the unified end-to-end
model (Figure 2) is jointly trained by initializing the weights
of the fully convolutional layers with the pre-trained param-
eters. In this training stage, instead of using l2 distance loss,
we use the hinge loss during optimization. The final loss is
defined in Eq. (6), Ii(p) is an indicator which is equal to 1
if the pixel lies within a circle of radius r centered on the
ground truth joint position, otherwise it is equal to -1:

f =

K∑
i=1

∑
p

max(0, 1− bi(p) · Ii(p)). (6)

The parameters in the inference layer are differentiable so
they can be end-to-end trained alongside the other weights
in the network by stochastic gradient descent.

5. Experiments

In this section we present results from our experimental
evaluation of the proposed architecture performed on stan-
dard datasets. First we introduce the datasets and the im-
plementation details as used during our experiments. Fur-
thermore, we compare performance of our method with
two separate baselines: a fully convolutional network and
a ConvNet with spatial inference only. Finally, we compare
our results with other state-of-the-art approaches across
datasets.

5.1. Datasets

We conduct experiments on the Penn Action [40] and
JHMDB [14] datasets, both standard datasets to evaluate
video-based pose estimation.

Penn Action dataset the Penn Action dataset [40] is one
of the largest datasets with full annotations of human joints
in videos,containing 2326 unconstrained videos depicting
15 different action categories and the annotations include
13 human joints for each image. An additional occlusion
label for each joint is also provided. We follow the original
paper [40] to split the data into training and testing subsets
in a roughly half-half manner. In total there are around 90k
images for training and 80k images for testing.

JHMDB dataset The JHMDB dataset [14] contains 928
videos and 21 action classes. The dataset provides three
different splits of training and testing, and we report the
average performance over these three splits for all evalua-
tions on this dataset. The experiments on a subset of this
dataset (sub-JHMDB dataset) are also conducted to com-
pare with other state-of-the-art methods. This subset con-
tains 316 clips with 12 action categories. In this subset the
whole human body is inside the image so all joints are an-
notated with ground truth positions.

5.2. Implementation Details

Data augmentation to introduce more variation in the
training data and thus reducing overfitting, we augment the
data by rotating images between -90 to 90 degrees chosen
randomly and by scaling by a random factor between 0.5
to 2. When pre-training the fully convolutional layers, the
inputs to the network are the cropped image patch around
the center of persons with random shifts. For end-to-end
training with the flow warping and spatio-temporal mes-
sage passing layer, the input patches for the sequence are
controlled to have the same pre-processing.

Network parameter settings for the fully convolutional
layers, we deploy the network structure based on [35]. This
model has a multiple-stage structure which is designed to



alleviate the problem of vanishing gradients. We use an in-
put size of 368× 368 px in order to cover sufficient context.
The batch size is set to 20 for pre-training the convolutional
layers and 6 for jointly training the unified network respec-
tively when the thin-slicing is 5 frames. The learning rates
are initialized as 0.0005 for the first stage of training and
dropped by a factor of 3 every 20k iterations. For end-to-
end training, the learning rate is set to be lower (0.0001)
and is dropped every 5k iterations also by a factor of 3. The
dropout rate is set to 0.5 for the first stage and increased
to 0.7 for the second stage with flow warping and message
passing layers to reduce potential effects of overfitting. The
fully ConvNet is trained for 10 epochs for initialization.
The unified end-to-end model typically converges after 3-
4 epochs. The flow warping layer takes resized optical flow
images of the same size as the heat-maps as input with their
values rescaled by the same scaling factor.

For the spatio-temporal message passing layer, we
initialize the weight of the quadratic term to 0.01 and the
first-order term to 0 for the generalized distance transform
algorithm [6]. Please note that setting the normalization
terms when collecting messages sent from children can
help stabilize the training process. A similar observation
is also reported in [37]. We find that three iterations of
approximate inference already provides satisfactory results
and if not specified otherwise message passing is stopped
after three iterations in our experiments.

Edge connections in the graph The spatio-temporal loopy
structure used in this implementation is visualized in Fig-
ure 2, (e). Spatially, the structured model has edges coin-
ciding with body limbs and it additionally connects sym-
metric body parts (e.g., left wrist and right wrist, left knee
and right knee) to alleviate the double counting issue. Tem-
poral edges connect the same body parts across two adja-
cent frames. However, our implementation of the inference
layer is flexible and can perform approximate inference on
arbitrary loopy graph configurations.

5.3. Evaluation Protocol

For consistent comparison with prior work on both the
Penn Action dataset and the JHMDB dataset [11, 36, 19],
we use a metric referred to as PCK, introduced in [38].
A candidate keypoint prediction is considered to be correct
if it falls within α · max(h,w) pixels of the ground-truth
keypoint, where h and w are the height and width of the
bounding box of the instance in question, and α controls
the relative threshold for considering correctness. We report
results from different settings of α. We also report results
that plot accuracy vs normalized distance from ground truth
in pixels, where a joint is deemed correctly located if it is
within a set distance of d pixels from a ground-truth joint
center, where d is normalized by the size of the instance.

Method Head Shou Elbo Wris Hip Knee Ankl Mean
[19] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3
[36] 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0
[12] 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1
[11] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8
baseline 97.9 94.9 76.8 72.0 95.9 88.8 85.1 87.0
S-infer 98.0 90.3 85.2 86.7 93.7 93.5 93.6 91.4
ST-infer 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5
ST-infer(?) 97.9 91.1 91.3 90.9 92.5 94.4 94.5 92.8
ST-infer(∗) 97.9 89.7 84.4 86.5 93.4 93.7 93.8 91.0
ST-infer(2) 97.6 96.8 95.2 95.1 97.0 96.8 96.9 96.4

Table 1. Comparison of PCK@0.2 on Penn Action dataset. We
compare our proposed model with baseline model, baseline model
with spatial inference and other state-of-the-art methods. We also
investigate the performance of independent training (?), the base-
line ConvNet after end-to-end training (∗) and temporal connec-
tion across 2 frames (2).

5.4. Result Analysis for Penn Action Dataset

Baseline comparison: Table 1 shows the relative perfor-
mance on the Penn Action test set. For consistent compar-
ison with previous work [36, 11, 19], the metric PCK@0.2
is used, which means a prediction is considered correct if it
lies within (α = 0.2)×max(sh, sw). We first compare the
results from the pure ConvNet baseline model, the spatial-
only model and finally our spatio-temporal inference model.
The baseline model corresponds to the pure fully ConvNet
as described in Sec. 3.1 and is trained with loss Eq. (5). We
also report the result after only applying spatial inference
on top of the heat-maps obtained from the ConvNet, core-
sponding to only the blue arrows in Figure 2,(e). Please note
that these two settings essentially treat video-based pose es-
timation as pure concatenation of single image predictions.
Finally, we report the performance of our proposed end-to-
end trainable network with full spatio-temporal inference.
Our baseline setting achieves 87.0% average accuracy for

all 13 body parts. Spatial inference with geometric con-
straints among human body parts in individual images in-
creases the overall result by 4.4%. By incorporating tem-
poral consistency across frames, we observe an additional
accuracy gain of 5.1% over spatial inference only.
Body parts like head and shoulders are usually visible and

less flexible, so even with the baseline model very high de-
tection accuracies can be achieved. However, parts such as
elbows and wrists are the most flexible joints of our body.
This flexibility can yield configurations with very large vari-
ation and these joints are also prone to be occluded by
other parts of the body. This is shown by the low detection
rates from the baseline part-regression model. With spatial
message passing, the accuracy increases, and our proposed
model boosts this again by roughly 10%. Note that predic-
tions for shoulders can be negatively influenced by sending
or receiving messages from elbows through spatial infer-
ence only. However, deploying temporal information helps
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Figure 3. PCK curve for Penn Action dataset. We compare our proposed model with two baselines – ConvNet-only and spatial inference-
only. Ours yields consistent accuracy improvements across the entire range of strictness.

in recovering from such errors.

Analysis of normalized distance curves Figure 3 plots the
normalized distance to the ground truth annotations. Gen-
erally, our proposed model outperforms the baseline model
and the one with spatial inference over all levels of the eval-
uation and across all joints. Interestingly, even for stable
(and hence easy to predict) joints like the head, we can
still see improvements. In particular when the metric gets
more strict (i.e., smaller d). In the cases of more flexible
pody parts such as elbows, wrists and knees, a constant im-
provement for both loose and strict metric can be observed.
Especially over the 0.05 to 0.1 region, we can clearly ob-
serve more accurate predictions. This further suggests that
back-propagating the error from several frames through our
spatio-temporal network architecture benefits both unary
and pairwise terms.

Further evaluations We also test the effectiveness of
joint training of convolutional layers with message passing.
Keeping the weights of convolutional layers fixed, we just
train the parameters in the spatio-temporal inference layer.
The overall performance is 92.8% (Table 1, row annotated
by (?)). It improves over the baseline model by 5.8% but
could not reach the performance of joint training. As men-
tioned previously, the end-to-end training helps the fully
convolutional layers to capture appearance features better.
To validate this claim we conduct the same evaluation using
the convolutional layers from the end-to-end trained model
(removing the spatio-temporal inference layers) and com-
pare the result with the baseline model (trained standalone).
An overall 4% performance increase (Table 1, row anno-
tated by (∗)) can be observed. We also perform the exper-
iment with temporal edges across not only 1 frame but 2

Method Head Shou Elbo Wris Hip Knee Ankl Mean
baseline 93.2 72.4 57.3 61.9 88.4 63.6 48.6 70.9
S-infer 93.6 85.1 72.9 70.1 87.2 66.2 52.2 76.5
ST-infer 93.6 94.7 84.8 80.2 87.7 68.8 55.2 81.6
baseline(∗) 86.2 50.2 42.9 47.4 61.4 43.4 34.1 54.5
S-infer(∗) 86.1 62.8 55.2 51.9 68.3 48.1 36.7 60.2
ST-infer(∗) 85.4 77.6 69.4 62.6 76.9 57.4 42.9 68.7

Table 2. Results on full JHMDB dataset. The first three rows are
based on PCK@0.2 while the results with (∗) are with PCK@0.1.

frames (Table 1, row annotated by (2)). However, here we
do not observe a significant increase of mean accuracy.
Comparison with state-of-the-art Table 1 also lists the
comparison between the results of previous methods and
ours. We first compare with shallow hand-crafted features
based works [36, 19]. [19] is based on N-best algorithm
and [36] employs different action specific models. We use
the figures reported in [36] for comparison. We outperform
them by a large margin for all body parts. [11] incorpo-
rates deep features with a recurrent structure to model long-
term dependency between frames. While only propagating
information over short periods of time (thin-slices of the
sequence), we still attain an overall performance boost of
4.7% on this dataset. Please note that ours consistently lo-
calizes all joints better than prior work.

5.5. Result Analysis for JHMDB dataset

We also conduct a systematic evaluation on the JHMDB
dataset [14]. The average result of three splits on this dataset
is illustrated in Table 2. The first three rows summarize the
performance under the PCK@0.2 metric. The same three
models and settings as previously are evaluated and we ob-
serve results consistent with the experiments conducted on



Figure 4. Qualitative results on Penn Action dataset. We visualize connections among challenging limbs (arms and legs). Some failure
cases are listed. Our method may miss limbs due to significant occlusions and heavy blur (last row).

the Penn Action dataset. The proposed end-to-end model
boosts the overall performance by a relatively large margin.
We also provide results for PCK@0.1 (Table 2, row marked
with ∗). To consistently compare with other state-of-the-art

Method Head Shou Elbo Wris Hip Knee Ankl Mean
[19] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5
[36] 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7
[12] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8
baseline 97.2 82.2 65.2 66.5 96.3 84.4 76.8 82.3
S-infer 97.0 87.3 74.9 71.1 97.5 89.4 86.0 86.9
ST-infer 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

Table 3. PCK@0.2 results on sub-JHMDB dataset. We compare
with other previous methods and our own baselines.

results, we perform further experiments on a subset of the
JHMDB dataset. These subsets remove sequences with in-
complete bodies. The comparison is listed in Table 3. We
outperform shallow feature based methods by a large gap
[19, 36]. In [12], features are taken from the deep ConvNet
and a graphical model based inference is conducted inde-
pendently to refine the result. Our proposed method also
provides better performance across all body parts.

5.6. Qualitative results

Figure 4 illustrates results from representative sequences
taken from our experiments. Our method can capture articu-
lated poses with strong pose changes across several frames.
Cases with cluttered background, occlusion, and blur are in-

cluded. Failure cases, shown in the bottom row of Figure 4,
are often linked to extended periods of motion blur or occlu-
sion across frames. This hinders the ConvNet from captur-
ing local appearance properties and impacts the estimation
of dense optical flow. In these cases temporal inference over
longer distances may be necessary.

6. Conclusion

We have proposed an end-to-end trainable network tak-
ing spatio-temporal consistency into consideration to es-
timate human poses in natural, unconstrained video se-
quence. We have experimentally shown that leverag-
ing such a unified structured prediction approach outper-
forms multiple baselines and state-of-the art methods across
datasets. Training regression layers jointly with the spatio-
temporal inference layer benefits cases that display motion
blur and occlusions but also improves predictions of unary
terms due to the iterative back-propagation of errors. In-
teresting directions for future work include incorporation of
long-range temporal dependencies and handling of groups
of people.
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