
DeMoN: Depth and Motion Network for Learning Monocular Stereo

Benjamin Ummenhofer*,1 Huizhong Zhou*,1

{ummenhof, zhouh}@cs.uni-freiburg.de

Jonas Uhrig1,2 Nikolaus Mayer1 Eddy Ilg1 Alexey Dosovitskiy1 Thomas Brox1

1University of Freiburg 2Daimler AG R&D
{uhrigj, mayern, ilg, dosovits, brox}@cs.uni-freiburg.de

Abstract

In this paper we formulate structure from motion as a
learning problem. We train a convolutional network end-
to-end to compute depth and camera motion from succes-
sive, unconstrained image pairs. The architecture is com-
posed of multiple stacked encoder-decoder networks, the
core part being an iterative network that is able to improve
its own predictions. The network estimates not only depth
and motion, but additionally surface normals, optical flow
between the images and confidence of the matching. A cru-
cial component of the approach is a training loss based on
spatial relative differences. Compared to traditional two-
frame structure from motion methods, results are more ac-
curate and more robust. In contrast to the popular depth-
from-single-image networks, DeMoN learns the concept of
matching and, thus, better generalizes to structures not seen
during training.

1. Introduction

Structure from motion (SfM) is a long standing task in
computer vision. Most existing systems, which represent
the state of the art, are carefully engineered pipelines con-
sisting of several consecutive processing steps. A funda-
mental building block of these pipelines is the computation
of the structure and motion for two images. Present imple-
mentations of this step have some inherent limitations. For
instance, it is common to start with the estimation of the
camera motion before inferring the structure of the scene by
dense correspondence search. Thus, an incorrect estimate of
the camera motion leads to wrong depth predictions. More-
over, the camera motion is estimated from sparse corre-
spondences computed via keypoint detection and descriptor
matching. This low-level process is prone to outliers and
does not work in non-textured regions. Finally, all exist-

∗Equal contribution

Figure 1. Illustration of DeMoN. The input to the network is two
successive images from a monocular camera. The network esti-
mates the depth in the first image and the camera motion.

ing SfM approaches fail in case of small camera translation.
This is because it is hard to integrate priors that could pro-
vide reasonable solutions in those degenerate cases.

In this paper, we succeed for the first time in training a
convolutional network to jointly estimate the depth and the
camera motion from an unconstrained pair of images. This
approach is very different from the typical SfM pipeline in
that it solves the problems of motion and dense depth esti-
mation jointly. We cannot yet provide a full learning-based
system for large-scale SfM, but the two-frame case is a cru-
cial first step towards this goal. In the longer term, the learn-
ing approach has large potential, since it integrates naturally
all the shape from X approaches: multi-view, silhouettes,
texture, shading, defocus, haze. Moreover, strong priors on
objects and structure can be learned efficiently from data
and regularize the problem in degenerate cases; see Fig. 6
for example. This potential is indicated by our results for
the two-frame scenario, where the learning approach clearly
outperforms traditional methods.

Convolutional networks recently have shown to excel at
depth prediction from a single image [7, 8, 24]. By learning
priors about objects and their shapes these networks reach
remarkably good performance in restricted evaluation sce-

1

ar
X

iv
:1

61
2.

02
40

1v
2

 [
cs

.C
V

]
 1

1
A

pr
 2

01
7

narios such as indoor or driving scenes. However, single-
image methods have more problems generalizing to previ-
ously unseen types of images. This is because they do not
exploit stereopsis. Fig. 9 shows an example, where depth
from a single image fails, because the network did not see
similar structures before. Our network, which learned to ex-
ploit the motion parallax, does not have this restriction and
generalizes well to very new scenarios.

To exploit the motion parallax, the network must put the
two input images in correspondence. We found that a sim-
ple encoder-decoder network fails to make use of stereo:
when trained to compute depth from two images it ends up
using only one of them. Depth from a single image is a
shortcut to satisfy the training objective without putting the
two images into correspondence and deriving camera mo-
tion and depth from these correspondences.

In this paper, we present a way to avoid this shortcut and
elaborate on it to obtain accurate depth maps and camera
motion estimates. The key to the problem is an architecture
that alternates optical flow estimation with the estimation
of camera motion and depth; see Fig. 3. In order to solve
for optical flow, the network must use both images. To this
end, we adapted the FlowNet architecture [5] to our case.
Our network architecture has an iterative part that is com-
parable to a recurrent network, since weights are shared.
Instead of the typical unrolling, which is common practice
when training recurrent networks, we append predictions of
previous training iterations to the current minibatch. This
training technique saves much memory and allows us to in-
clude more iterations for training. Another technical contri-
bution of this paper is a special gradient loss to deal with the
scale ambiguity in structure from motion. The network was
trained on a mixture of real images from a Kinect camera,
including the SUN3D dataset [43], and a variety of rendered
scenes that we created for this work.

2. Related Work
Estimation of depth and motion from pairs of images

goes back to Longuet-Higgins [25]. The underlying 3D ge-
ometry is a consolidated field, which is well covered in text-
books [17, 10]. State-of-the-art systems [14, 42] allow for
reconstructions of large scenes including whole cities. They
consist of a long pipeline of methods, starting with descrip-
tor matching for finding a sparse set of correspondences
between images [26], followed by estimating the essential
matrix to determine the camera motion. Outliers among
the correspondences are typically filtered out via RANSAC
[11]. Although these systems use bundle adjustment [39]
to jointly optimize camera poses and structure of many im-
ages, they depend on the quality of the estimated geometry
between image pairs for initialization. Only after estimation
of the camera motion and a sparse 3D point cloud, dense
depth maps are computed by exploiting the epipolar geom-

etry [4]. LSD-SLAM [9] deviates from this approach by
jointly optimizing semi-dense correspondences and depth
maps. It considers multiple frames from a short temporal
window but does not include bundle adjustment. DTAM
[30] can track camera poses reliably for critical motions by
matching against dense depth maps. However, an external
depth map initialization is required, which in turn relies on
classic structure and motion methods.

Camera motion estimation from dense correspondences
has been proposed by Valgaerts et al. [41]. In this paper,
we deviate completely from these previous approaches by
training a single deep network that includes computation of
dense correspondences, estimation of depth, and the camera
motion between two frames.

Eigen et al. [7] trained a ConvNet to predict depth from
a single image. Depth prediction from a single image is an
inherently ill-posed problem which can only be solved us-
ing priors and semantic understanding of the scene – tasks
ConvNets are known to be very good at. Liu et al. [24]
combined a ConvNet with a superpixel-based conditional
random field, yielding improved results. Our two-frame
network also learns to exploit the same cues and priors as
the single-frame networks, but in addition it makes use of a
pair of images and the motion parallax between those. This
enables generalization to arbitrary new scenes.

ConvNets have been trained to replace the descriptor
matching module in aforementioned SfM systems [6, 44].
The same idea was used by Žbontar and LeCun [45] to es-
timate dense disparity maps between stereo images. Com-
putation of dense correspondences with a ConvNet that is
trained end-to-end on the task, was presented by Dosovit-
skiy et al. [5]. Mayer et al. [28] applied the same concept
to dense disparity estimation in stereo pairs. We, too, make
use of the FlowNet idea [5], but in contrast to [28, 45], the
motion between the two views is not fixed, but must be es-
timated to derive depth estimates. This makes the learning
problem much more difficult.

Flynn et al. [12] implicitly estimated the 3D structure
of a scene from a monocular video using a convolutional
network. They assume known camera poses – a large sim-
plification which allows them to use the plane-sweeping
approach to interpolate between given views of the scene.
Moreover, they never explicitly predict the depth, only RGB
images from intermediate viewpoints.

Agrawal et al. [2] and Jayaraman & Grauman [19] ap-
plied ConvNets to estimating camera motion. The main fo-
cus of these works is not on the camera motion itself, but on
learning a feature representation useful for recognition. The
accuracy of the estimated camera motion is not competitive
with classic methods. Kendall et al. [21] trained a ConvNet
for camera relocalization — predicting the location of the
camera within a known scene from a single image. This is
mainly an instance recognition task and requires retraining

3x

r,t
egomotionimage pair

bootstrap net refinement netiterative net
depth

Figure 2. Overview of the architecture. DeMoN takes an image pair as input and predicts the depth map of the first image and the relative
pose of the second camera. The network consists of a chain of encoder-decoder networks that iterate over optical flow, depth, and egomotion
estimation; see Fig. 3 for details. The refinement network increases the resolution of the final depth map.

Figure 3. Schematic representation of the encoder-decoder pair used in the bootstrapping and iterative network. Inputs with gray font are
only available for the iterative network. The first encoder-decoder predicts optical flow and its confidence from an image pair and previous
estimates. The second encoder-decoder predicts the depth map and surface normals. A fully connected network appended to the encoder
estimates the camera motion r, t and a depth scale factor s. The scale factor s relates the scale of the depth values to the camera motion.

for each new scene. All these works do not provide depth
estimates.

3. Network Architecture
The overall network architecture is shown in Fig. 2.

DeMoN is a chain of encoder-decoder networks solving dif-
ferent tasks. The architecture consists of three main com-
ponents: the bootstrap net, the iterative net and the refine-
ment net. The first two components are pairs of encoder-
decoder networks, where the first one computes optical flow
while the second one computes depth and camera motion;
see Fig. 3. The iterative net is applied recursively to succes-
sively refine the estimates of the previous iteration. The last
component is a single encoder-decoder network that gener-
ates the final upsampled and refined depth map.

Bootstrap net. The bootstrap component gets the image
pair as input and outputs the initial depth and motion es-
timates. Internally, first an encoder-decoder network com-
putes optical flow and a confidence map for the flow (the
left part of Fig. 3). The encoder consists of pairs of convo-
lutional layers with 1D filters in y and x-direction. Using
pairs of 1D filters as suggested in [37] allows us to use spa-
tially large filter while keeping the number of parameters
and runtime manageable. We gradually reduce the spatial
resolution with a stride of 2 while increasing the number
of channels. The decoder part generates the optical flow
estimate from the encoder’s representation via a series of
up-convolutional layers with stride 2 followed by two con-
volutional layers. It outputs two components of the optical

Method L1-inv sc-inv L1-rel
Single image 0.080 0.159 0.696

Naı̈ve image pair 0.079 0.165 0.722
DeMoN 0.012 0.131 0.097

Table 1. Naı̈ve two-frame depth estimation does not perform bet-
ter than depth from a single image on any of the error measures
(smaller is better). The architecture of DeMoN forces the network
to use both images, yielding a large performance improvement.

flow field and an estimate of their confidence. Details on the
loss and the training procedure are described in Section 5.

The second encoder-decoder, shown in the right part of
Fig. 3, takes as input the optical flow, its confidence, the im-
age pair, and the second image warped with the estimated
flow field. Based on these inputs it estimates depth, sur-
face normals, and camera motion. The architecture is the
same as above, apart from the extra 3 fully connected lay-
ers that compute the camera motion and a scaling factor for
the depth prediction. The latter reflects the inherent con-
nection between depth and motion predictions due to scale
ambiguity; see Section 4.

By feeding optical flow estimate into the second
encoder-decoder we let it make use of motion parallax.
Tab. 1 shows that an encoder-decoder network trained to es-
timate depth and camera motion directly from an image pair
(naı̈ve image pair) fails to make use of stereo cues and per-
forms on par with a single-image network. DeMoN, on the
other hand, performs significantly better.

Iterative net. The iterative net is trained to improve ex-

isting depth, normal, and motion estimates. The architec-
ture of this encoder-decoder pair is identical to the boot-
strap net, but it takes additional inputs. We convert the
depth map and camera motion estimated by the bootstrap
net or a previous iteration of the iterative net into an op-
tical flow field, and feed it into the first encoder-decoder
together with other inputs. Likewise, we convert the optical
flow to a depth map using the previous camera motion pre-
diction and pass it along with the optical flow to the second
encoder-decoder. In both cases the networks are presented
with a prediction proposal generated from the predictions of
the previous encoder-decoder.

Fig. 4 shows how the optical flow and depth improve
with each iteration of the network. The iterations enable
sharp discontinuities, improve the scale of the depth values,
and can even correct wrong estimates of the initial boot-
strapping network. The improvements largely saturate after
3 or 4 iterations. Quantitative analysis is shown in the sup-
plementary material.

During training we simulate 4 iterations by appending
predictions from previous training iterations to the mini-
batch. Unlike unrolling, there is no backpropagation of the
gradient through iterations. Instead, the gradient of each
iteration is described by the losses on the well defined net-
work outputs: optical flow, depth, normals, and camera mo-
tion. Compared to backpropagation through time this saves
a lot of memory and allows us to have a larger network
and more iterations. A similar approach was taken by Li et
al. [23], who train each iteration in a separate step and there-
fore need to store predictions as input for the next stage. We
also train the first iteration on its own, but then train all iter-
ations jointly which avoids intermediate storage.

Refinement net. While the previous network compo-
nents operate at a reduced resolution of 64 × 48 to save
parameters and to reduce training and test time, the final re-
finement net upscales the predictions to the full input image
resolution (256 × 192). It gets as input the full resolution
first image and the nearest-neighbor-upsampled depth and
normal field. Fig. 5 shows the low-resolution input and the
refined high-resolution output.

A forward pass through the network with 3 iterations
takes 110ms on an Nvidia GTX Titan X. Implementation
details and exact network definitions of all network compo-
nents are provided in the supplementary material.

4. Depth and Motion Parameterization
The network computes the depth map in the first view

and the camera motion to the second view. We represent
the relative pose of the second camera with r, t ∈ R3. The
rotation r = θv is an angle axis representation with angle θ
and axis v. The translation t is given in Cartesian coordi-
nates.

It is well-known that the reconstruction of a scene from

Bootstrap Iterative 1 2 3 GT

D
ep

th
Fl

ow

Figure 4. Top: Iterative depth refinement. The bootstrap net fails
to accurately estimate the scale of the depth. The iterations refine
the depth prediction and strongly improve the scale of the depth
values. The L1-inverse error drops from 0.0137 to 0.0072 after
the first iteration. Bottom: Iterative refinement of optical flow.
Images show the x component of the optical flow for better visi-
bility. The flow prediction of the bootstrap net misses the object
completely. Motion edges are retrieved already in the first iteration
and the endpoint error is reduced from 0.0176 to 0.0120.

Prediction Refined prediction Ground Truth

Figure 5. The refinement net generates a high-resolution depth
map (256× 192) from the low-resolution estimate (64× 48) and
the input image. The depth sampling preserves depth edges and
can even repair wrong depth measurements.

images with unknown camera motion can be determined
only up to scale. We resolve the scale ambiguity by nor-
malizing translations and depth values such that ‖t‖ = 1.
This way the network learns to predict a unit norm transla-
tion vector.

Rather than the depth z, the network estimates the in-
verse depth ξ = 1/z. The inverse depth allows represen-
tation of points at infinity and accounts for the growing lo-
calization uncertainty of points with increasing distance.To
match the unit translation, our network predicts a scalar
scaling factor s, which we use to obtain the final depth val-
ues sξ.

5. Training Procedure
5.1. Loss functions

The network estimates outputs of very different na-
ture: high-dimensional (per-pixel) depth maps and low-
dimensional camera motion vectors. The loss has to bal-
ance both of these objectives, and stimulate synergy of the
two tasks without over-fitting to a specific scenario.

Point-wise losses. We apply point-wise losses to our
outputs: inverse depth ξ, surface normals n, optical flow
w, and optical flow confidence c. For depth we use an L1
loss directly on the inverse depth values:

Ldepth =
∑
i,j |sξ(i, j)− ξ̂(i, j)|, (1)

with ground truth ξ̂. Note that we apply the predicted scale
s to the predicted values ξ.

For the loss function of the normals and the optical flow
we use the (non-squared) L2 norm to penalize deviations
from the respective ground truths n̂ and ŵ

Lnormal =
∑
i,j ‖n(i, j)− n̂(i, j)‖2

Lflow =
∑
i,j ‖w(i, j)− ŵ(i, j)‖2 .

(2)

For optical flow this amounts to the usual endpoint error.
We train the network to assess the quality of its own flow

prediction by predicting a confidence map for each optical
flow component. The ground truth of the confidence for the
x component is

ĉx(i, j) = e−|wx(i,j)−ŵx(i,j)|, (3)

and the corresponding loss function reads as

Lflow confidence =
∑
i,j |cx(i, j)− ĉx(i, j)| . (4)

Motion losses. We use a minimal parameterization of
the camera motion with 3 parameters for rotation r and
translation t each. The losses for the motion vectors are

Lrotation = ‖r− r̂‖2
Ltranslation = ‖t− t̂‖2.

(5)

The translation ground truth is always normalized such that
‖t̂‖2 = 1, while the magnitude of r̂ encodes the angle of
the rotation.

Scale invariant gradient loss. We define a discrete scale
invariant gradient g as

gh[f](i, j) =
(

f(i+h,j)−f(i,j)
|f(i+h,j)|+|f(i,j)| ,

f(i,j+h)−f(i,j)
|f(i,j+h)|+|f(i,j)|

)>
.

(6)
Based on this gradient we define a scale invariant loss that
penalizes relative depth errors between neighbouring pixels:

Lgrad ξ =
∑

h∈{1,2,4,8,16}

∑

i,j

∥∥∥gh[ξ](i, j)− gh[ξ̂](i, j)
∥∥∥
2
.

(7)
To cover gradients at different scales we use 5 different
spacings h. This loss stimulates the network to compare
depth values within a local neighbourhood for each pixel.
It emphasizes depth discontinuities, stimulates sharp edges
in the depth map and increases smoothness within homo-
geneous regions as seen in Fig. 10. Note that due to the
relation gh[ξ](i, j) = −gh[z](i, j) for ξ, z > 0, the loss is
the same for the actual non-inverse depth values z.

We apply the same scale invariant gradient loss to each
component of the optical flow. This enhances the smooth-
ness of estimated flow fields and the sharpness of motion
discontinuities.

Weighting. We individually weigh the losses to balance
their importance. The weight factors were determined em-
pirically and are listed in the supplementary material.

5.2. Training Schedule

The network training is based on the Caffe frame-
work [20]. We train our model from scratch with Adam [22]
using a momentum of 0.9 and a weight decay of 0.0004.
The whole training procedure consists of three phases.

First, we sequentially train the four encoder-decoder
components in both bootstrap and iterative nets for 250k
iterations each with a batch size of 32. While training an
encoder-decoder we keep the weights for all previous com-
ponents fixed. For encoder-decoders predicting optical flow,
the scale invariant loss is applied after 10k iterations.

Second, we train only the encoder-decoder pair of the it-
erative net. In this phase we append outputs from previous
three training iterations to the minibatch. In this phase the
bootstrap net uses batches of size 8. The outputs of the pre-
vious three network iterations are added to the batch, which
yields a total batch size of 32 for the iterative network. We
run 1.6 million training iterations.

Finally, the refinement net is trained for 600k iterations
with all other weights fixed. The details of the training pro-
cess, including the learning rate schedules, are provided in
the supplementary material.

6. Experiments

6.1. Datasets

SUN3D [43] provides a diverse set of indoor images to-
gether with depth and camera pose. The depth and camera
pose on this dataset are not perfect. Thus, we sampled im-
age pairs from the dataset and automatically discarded pairs
with a high photoconsistency error. We split the dataset so
that the same scenes do not appear in both the training and
the test set.

RGB-D SLAM [36] provides high quality camera poses
obtained with an external motion tracking system. Depth
maps are disturbed by measurement noise, and we use the
same preprocessing as for SUN3D. We created a training
and a test set.

MVS includes several outdoor datasets. We used the
Citywall and Achteckturm datasets from [15] and the
Breisach dataset [40] for training and the datasets provided
with COLMAP [33, 34] for testing. The depth maps of the
reconstructed scenes are often sparse and can comprise re-
construction errors.

Scenes11 is a synthetic dataset with generated images of
virtual scenes with random geometry, which provide perfect
depth and motion ground truth, but lack realism.

Thus, we introduce the Blendswap dataset which is
based on 150 scenes from blendswap.com. The dataset
provides a large variety of scenes, ranging from cartoon-like
to photorealistic scenes. The dataset contains mainly indoor
scenes. We used this dataset only for training.

NYUv2 [29] provides depth maps for diverse indoor
scenes but lacks camera pose information. We did not train
on NYU and used the same test split as in Eigen et al. [7]. In
contrast to Eigen et al., we also require a second input im-
age that should not be identical to the previous one. Thus,
we automatically chose the next image that is sufficiently
different from the first image according to a threshold on
the difference image.

In all cases where the surface normals are not available,
we generated them from the depth maps. We trained De-
MoN specifically for the camera intrinsics used in SUN3D
and adapted all other datasets by cropping and scaling to
match these parameters.

6.2. Error metrics

While single-image methods aim to predict depth at the
actual physical scale, two-image methods typically yield the
scale relative to the norm of the camera translation vector.
Comparing the results of these two families of methods re-
quires a scale-invariant error metric. We adopt the scale-
invariant error of [8], which is defined as

sc-inv(z, ẑ) =
√

1
n

∑
i d

2
i − 1

n2 (
∑
i di)

2
, (8)

with di = log zi−log ẑi. For comparison with classic struc-
ture from motion methods we use the following measures:

L1-rel(z, ẑ) = 1
n

∑
i
|zi−ẑi|
ẑi

(9)

L1-inv(z, ẑ) = 1
n

∑
i|ξi − ξ̂i| = 1

n

∑
i

∣∣∣ 1zi −
1
ẑi

∣∣∣ (10)

L1-rel computes the depth error relative to the ground truth
depth and therefore reduces errors where the ground truth
depth is large and increases the importance of close objects
in the ground truth. L1-inv behaves similarly and resembles
our loss function for predicted inverse depth values (1).

For evaluating the camera motion estimation, we report
the angle (in degrees) between the prediction and the ground
truth for both the translation and the rotation. The length of
the translation vector is 1 by definition.

The accuracy of optical flow is measured by the aver-
age endpoint error (EPE), that is, the Euclidean norm of the
difference between the predicted and the true flow vector,
averaged over all image pixels. The flow is scaled such that
the displacement by the image size corresponds to 1.

6.3. Comparison to classic structure from motion

We compare to several strong baselines implemented by
us from state-of-the-art components (“Base-*”). For these
baselines, we estimated correspondences between images,
either by matching SIFT keypoints (“Base-SIFT”) or with
the FlowFields optical flow method from Bailer et al. [3]
(“Base-FF”). Next, we computed the essential matrix with
the normalized 8-point algorithm [16] and RANSAC. To

Depth Motion
Method L1-inv sc-inv L1-rel rot trans

M
V

S

Base-Oracle 0.019 0.197 0.105 0 0
Base-SIFT 0.056 0.309 0.361 21.180 60.516
Base-FF 0.055 0.308 0.322 4.834 17.252

Base-Matlab - - - 10.843 32.736
Base-Mat-F - - - 5.442 18.549

DeMoN 0.047 0.202 0.305 5.156 14.447

Sc
en

es
11

Base-Oracle 0.023 0.618 0.349 0 0
Base-SIFT 0.051 0.900 1.027 6.179 56.650
Base-FF 0.038 0.793 0.776 1.309 19.425

Base-Matlab - - - 0.917 14.639
Base-Mat-F - - - 2.324 39.055

DeMoN 0.019 0.315 0.248 0.809 8.918

R
G

B
-D

Base-Oracle 0.026 0.398 0.336 0 0
Base-SIFT 0.050 0.577 0.703 12.010 56.021
Base-FF 0.045 0.548 0.613 4.709 46.058

Base-Matlab - - - 12.831 49.612
Base-Mat-F - - - 2.917 22.523

DeMoN 0.028 0.130 0.212 2.641 20.585

Su
n3

D

Base-oracle 0.020 0.241 0.220 0 0
Base-SIFT 0.029 0.290 0.286 7.702 41.825
Base-FF 0.029 0.284 0.297 3.681 33.301

Base-Matlab - - - 5.920 32.298
Base-Mat-F - - - 2.230 26.338

DeMoN 0.019 0.114 0.172 1.801 18.811

N
Y

U
v2

Base-oracle - - - - -
Base-SIFT - - - - -
Base-FF - - - - -

Base-Matlab - - - - -
Base-Mat-F - - - - -

DeMoN - - - - -

Depth
Method sc-inv

Liu indoor 0.260
Liu outdoor 0.341
Eigen VGG 0.225

DeMoN 0.203

Liu indoor 0.816
Liu outdoor 0.814
Eigen VGG 0.763

DeMoN 0.303

Liu indoor 0.338
Liu outdoor 0.428
Eigen VGG 0.272

DeMoN 0.134

Liu indoor 0.214
Liu outdoor 0.401
Eigen VGG 0.175

DeMoN 0.126

Liu indoor 0.210
Liu outdoor 0.421
Eigen VGG 0.148

DeMoN 0.180

Table 2. Left: Comparison of two-frame depth and motion es-
timation methods. Lower is better for all measures. For a fair
comparison with the baseline methods, we evaluate depth only at
pixels visible in both images. For Base-Matlab depth is only avail-
able as a sparse point cloud and is therefore not compared to here.
We do not report the errors on NYUv2 since motion ground truth
(and therefore depth scale) is not available. Right: Comparison
to single-frame depth estimation. Since the scale estimates are not
comparable, we report only the scale invariant error metric.

further improve accuracy we minimized the reprojection er-
ror using the ceres library [1]. Finally, we generated the
depth maps by plane sweep stereo and used the approach
of Hirschmueller et al. [18] for optimization. We also re-
port the accuracy of the depth estimate when providing
the ground truth camera motion (“Base-Oracle”). (“Base-
Matlab”) and (“Base-Mat-F”) are implemented in Matlab.
(“Base-Matlab”) uses Matlab implementations of the KLT
algorithm [38, 27, 35] for correspondence search while
(“Base-Mat-F”) uses the predicted flow from DeMoN. The
essential matrix is computed with RANSAC and the 5-point
algorithm [31] for both.

Tab. 2 shows that DeMoN outperforms all baseline
methods both on motion and depth accuracy by a factor of
1.5 to 2 on most datasets. The only exception is the MVS
dataset where the motion accuracy of DeMoN is on par with
the strong baseline based on FlowFields optical flow. This
demonstrates that traditional methods work well on the tex-
ture rich scenes present in MVS, but do not perform well for
example on indoor scenes, with large homogeneous regions
or small baselines where priors may be very useful. Besides

Reference

Se
co

nd

Figure 6. Qualitative performance gain by increasing the baseline
between the two input images for DeMoN. The depth map is pro-
duced with the top left reference image and the second image be-
low. The first output is obtained with two identical images as input,
which is a degenerate case for traditional structure from motion.

First frame Frontal view Top view

Figure 7. Result on a sequence of the RGB-D SLAM dataset [36].
The accumulated pairwise pose estimates by our network (red) are
locally consistent with the ground truth trajectory (black). The
depth prediction of the first frame is shown. The network also
separates foreground and background in its depth output.

that, all Base-* methods use images at the full resolution of
640 × 480, while our method uses downsampled images
of 256 × 192 as input. Higher resolution gives the Base-*
methods an advantage in depth accuracy, but on the other
hand these methods are more prone to outliers. For detailed
error distributions see the supplemental material. Remark-
ably, on all datasets except for MVS the depth estimates of
DeMoN are better than the ones a traditional approach can
produce given the ground truth motion. This is supported
by qualitative results in Fig. 8. We also note that DeMoN
has smaller motion errors than (“Base-Mat-F”), showing its
advantage over classical methods in motion estimation.

In contrast to classical approaches, we can also han-
dle cases without and with very little camera motion, see
Fig. 6. We used our network to compute camera trajecto-
ries by simple concatenation of the motion of consecutive
frames, as shown in Fig. 7. The trajectory shows mainly
translational drift. We also did not apply any drift correc-
tion which is a crucial component in SLAM systems, but
results convince us that DeMoN can be integrated into such
systems.

6.4. Comparison to depth from single image

To demonstrate the value of the motion parallax, we
additionally compare to the single-image depth estimation
methods by Eigen & Fergus [7] and Liu et al. [24]. We com-
pare to the improved version of the Eigen & Fergus method,
which is based on the VGG network architecture, and to two

Image GT Base-O Eigen DeMoN

Su
n3

D
R

G
B

D
M

V
S

Sc
en

es
11

N
Y

U
v2

Figure 8. Top: Qualitative depth prediction comparison on var-
ious datasets. The predictions of DeMoN are very sharp and de-
tailed. The Base-Oracle prediction on NYUv2 is missing because
the motion ground truth is not available. Results on more methods
and examples are shown in the supplementary material.

models by Liu et al.: one trained on indoor scenes from the
NYUv2 dataset (“indoor”) and another, trained on outdoor
images from the Make3D dataset [32] (“outdoor”).

The comparison in Fig. 8 shows that the depth maps pro-
duced by DeMoN are more detailed and more regular than
the ones produced by other methods. This becomes even
more obvious when the results are visualized as a point
cloud; see the videos in the supplemental material.

On all but one dataset, DeMoN outperforms the single-
frame methods also by numbers, typically by a large mar-
gin. Notably, a large improvement can be observed even on
the indoor datasets, Sun3D and RGB-D, showing that the
additional stereopsis complements the other cues that can
be learned from the large amounts of training data avail-
able for this scenario. Only on the NYUv2 dataset, DeMoN
is slightly behind the method of Eigen & Fergus. This is
because the comparison is not totally fair: the network of
Eigen & Fergus as well as Liu indoor was trained on the
training set of NYUv2, whereas the other networks have
not seen this kind of data before.

6.4.1 Generalization to new data

Scene-specific priors learned during training may be use-
less or even harmful when being confronted with a scene
that is very different from the training data. In contrast, the
geometric relations between a pair of images are indepen-
dent of the content of the scene and should generalize to
unknown scenes. To analyze the generalization properties
of DeMoN, we compiled a small dataset of images show-
ing uncommon or complicated scenes, for example abstract
sculptures, close-ups of people and objects, images rotated
by 90 degrees.

Image GT Eigen Liu DeMoN

Eigen Liu DeMoN

Figure 9. Visualization of DeMoN’s generalization capabilities to
previously unseen configurations. Single-frame methods have se-
vere problems in such cases, as most clearly visible in the point
cloud visualization of the depth estimate for the last example.

Method L1-inv sc-inv L1-rel
Liu [24] 0.055 0.247 0.194
Eigen [7] 0.062 0.238 0.185
DeMoN 0.041 0.183 0.130

Table 3. Quantitative generalization performance on previously
unseen scenes, objects, and camera rotations, using a self-recorded
and reconstructed dataset. Errors after optimal log-scaling. The
best model of Eigen et al. [7] for this task is based on VGG, for
Liu et al. [24], the model trained on Make3D [13] performed best.
DeMoN achieved best performance after two iterations.

Fig. 9 and Tab. 3 show that DeMoN, as to be expected,
generalizes better to these unexpected scenes than single-
image methods. It shows that the network has learned to
make use of the motion parallax.

6.5. Ablation studies

Our architecture contains some design decisions that we
justify by the following ablation studies. All results have
been obtained on the Sun3D dataset with the bootstrap net.

Choice of the loss function. Tab. 4 shows the influence
of the loss function on the accuracy of the estimated depth
and motion. Interestingly, while the scale invariant loss
greatly improves the prediction qualitatively (see Fig. 10),
it has negative effects on depth scale estimation. This leads
to weak performance on non-scale-invariant metrics and the
motion accuracy. Estimation of the surface normals slightly
improves all results. Finally, the full architecture with the
scale invariant loss, normal estimation, and a loss on the
flow, leads to the best results.

a b c d

Figure 10. Depth prediction comparison with different outputs and
losses. (a) Just L1 loss on the absolute depth values. (b) Addi-
tional output of normals and L1 loss on the normals. (c) Like (b)
but with the proposed gradient loss. (d) Ground truth.

Depth Motion
grad norm flow L1-inv sc-inv L1-rel rot tran
no no no 0.040 0.211 0.354 3.127 30.861
yes no no 0.057 0.159 0.437 4.585 39.819
no yes no 0.037 0.190 0.336 2.570 29.607
no yes yes 0.029 0.184 0.266 2.359 23.578
yes yes yes 0.032 0.150 0.276 2.479 24.372

Table 4. The influence of the loss function on the performance.
The gradient loss improves the scale invariant error, but degrades
the scale-sensitive measures. Surface normal prediction improves
the depth accuracy. A combination of all components leads to the
best tradeoff.

Depth Motion Flow
Confidence L1-inv sc-inv L1-rel rot tran EPE

no 0.030 0.028 0.26 2.830 25.262 0.027
yes 0.032 0.027 0.28 2.479 24.372 0.027

Table 5. The influence of confidence prediction on the overall per-
formance of the different outputs.

Flow confidence. Egomotion estimation only requires
sparse but high-quality correspondences. Tab. 5 shows that
given the same flow, egomotion estimation improves when
given the flow confidence as an extra input. Our interpreta-
tion is that the flow confidence helps finding most accurate
correspondences.

7. Conclusions and Future Work
DeMoN is the first deep network that has learned to es-

timate depth and camera motion from two unconstrained
images. Unlike networks that estimate depth from a single
image, DeMoN can exploit the motion parallax, which is a
powerful cue that generalizes to new types of scenes, and al-
lows to estimate the egomotion. This network outperforms
traditional structure from motion techniques on two frames,
since in contrast to those, it is trained end-to-end and learns
to integrate other shape from X cues. When it comes to han-
dling cameras with different intrinsic parameters it has not
yet reached the flexibility of classic approaches. The next
challenge is to lift this restriction and extend this work to
more than two images. As in classical techniques, this is
expected to significantly improve the robustness and accu-
racy.

Acknowledgements We acknowledge funding by the
ERC Starting Grant VideoLearn, the DFG grant BR-
3815/5-1, and the EU project Trimbot2020.

References
[1] S. Agarwal, K. Mierle, and Others. Ceres Solver. 6
[2] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In IEEE International Conference on Computer Vi-
sion (ICCV), Dec. 2015. 2

[3] C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense Cor-
respondence Fields for Highly Accurate Large Displacement
Optical Flow Estimation. In IEEE International Conference
on Computer Vision (ICCV), Dec. 2015. 6

[4] R. T. Collins. A space-sweep approach to true multi-image
matching. In Proceedings CVPR ’96, 1996 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, 1996, pages 358–363, June 1996. 2

[5] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,
V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In IEEE
International Conference on Computer Vision (ICCV), Dec.
2015. 2

[6] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Ried-
miller, and T. Brox. Discriminative unsupervised feature
learning with exemplar convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
38(9):1734–1747, Oct 2016. TPAMI-2015-05-0348.R1. 2

[7] D. Eigen and R. Fergus. Predicting Depth, Surface Normals
and Semantic Labels With a Common Multi-Scale Convo-
lutional Architecture. In IEEE International Conference on
Computer Vision (ICCV), Dec. 2015. 1, 2, 6, 7, 8

[8] D. Eigen, C. Puhrsch, and R. Fergus. Depth Map Predic-
tion from a Single Image using a Multi-Scale Deep Network.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 2366–2374. Curran Asso-
ciates, Inc., 2014. 1, 6

[9] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In European Conference on
Computer Vision (ECCV), September 2014. 2

[10] O. Faugeras. Three-dimensional Computer Vision: A Geo-
metric Viewpoint. MIT Press, Cambridge, MA, USA, 1993.
2

[11] M. A. Fischler and R. C. Bolles. Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Im-
age Analysis and Automated Cartography. Commun. ACM,
24(6):381–395, June 1981. 2

[12] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep-
stereo: Learning to predict new views from the world’s im-
agery. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 2

[13] D. A. Forsyth. Make3d: Learning 3d scene structure from
a single still image. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(5):824–840, May 2009. 8

[14] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,
R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-
nik, and M. Pollefeys. Building Rome on a Cloudless Day.
In K. Daniilidis, P. Maragos, and N. Paragios, editors, Eu-
ropean Conference on Computer Vision (ECCV), number
6314 in Lecture Notes in Computer Science, pages 368–381.
Springer Berlin Heidelberg, 2010. 2

[15] S. Fuhrmann, F. Langguth, and M. Goesele. Mve-a mul-
tiview reconstruction environment. In Proceedings of the
Eurographics Workshop on Graphics and Cultural Heritage
(GCH), volume 6, page 8, 2014. 5

[16] R. I. Hartley. In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(6):580–593, June 1997. 6

[17] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 2

[18] H. Hirschmüller. Accurate and efficient stereo processing
by semi-global matching and mutual information. In IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 807–814, June 2005.
6

[19] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to egomotion. In ICCV, 2015. 2

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014. 5

[21] A. Kendall and R. Cipolla. Modelling Uncertainty in Deep
Learning for Camera Relocalization. In International Conv-
erence on Robotics and Automation (ICRA), 2016. 2

[22] D. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs], Dec. 2014. arXiv:
1412.6980. 5

[23] K. Li, B. Hariharan, and J. Malik. Iterative Instance Segmen-
tation. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3659–3667, June 2016.
4

[24] F. Liu, C. Shen, G. Lin, and I. Reid. Learning Depth from
Single Monocular Images Using Deep Convolutional Neural
Fields. In IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2015. 1, 2, 7, 8

[25] H. C. Longuet-Higgins. A computer algorithm for re-
constructing a scene from two projections. Nature,
293(5828):133–135, Sept. 1981. 2

[26] D. G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, Nov. 2004. 2

[27] B. D. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. In Proceed-
ings of the 7th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’81, pages 674–679, San Fran-
cisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc. 6

[28] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. In IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2

[29] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
Segmentation and Support Inference from RGBD Images. In
European Conference on Computer Vision (ECCV), 2012. 6

[30] R. A. Newcombe, S. Lovegrove, and A. Davison. DTAM:
Dense tracking and mapping in real-time. In 2011 IEEE In-
ternational Conference on Computer Vision (ICCV), pages
2320–2327, 2011. 2

[31] D. Nister. An efficient solution to the five-point relative pose
problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(6):756–770, June 2004. 6

[32] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. In In NIPS 18. MIT Press, 2005.
7

[33] J. L. Schönberger and J.-M. Frahm. Structure-from-motion
revisited. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016. 5

[34] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016.
5

[35] J. Shi and C. Tomasi. Good features to track. In 1994
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’94), pages 593 – 600, 1994. 6

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 5, 7

[37] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision.
arXiv:1512.00567 [cs], Dec. 2015. 3

[38] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical report, International Journal of Computer
Vision, 1991. 6

[39] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle Adjustment A Modern Synthesis Vision Algorithms:
Theory and Practice. In B. Triggs, A. Zisserman, and
R. Szeliski, editors, Vision Algorithms: Theory and Practice,
volume 1883, pages 153–177. Springer Berlin / Heidelberg,
Apr. 2000. 2

[40] B. Ummenhofer and T. Brox. Global, dense multiscale re-
construction for a billion points. In IEEE International Con-
ference on Computer Vision (ICCV), Dec 2015. 5

[41] L. Valgaerts, A. Bruhn, M. Mainberger, and J. Weickert.
Dense versus Sparse Approaches for Estimating the Funda-
mental Matrix. International Journal of Computer Vision,
96(2):212–234, Jan. 2012. 2

[42] C. Wu. Towards Linear-Time Incremental Structure from
Motion. In International Conference on 3D Vision (3DV),
pages 127–134, June 2013. 2

[43] J. Xiao, A. Owens, and A. Torralba. SUN3D: A Database of
Big Spaces Reconstructed Using SfM and Object Labels. In
IEEE International Conference on Computer Vision (ICCV),
pages 1625–1632, Dec. 2013. 2, 5

[44] S. Zagoruyko and N. Komodakis. Learning to compare im-
age patches via convolutional neural networks. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015. 2

[45] J. Žbontar and Y. LeCun. Computing the Stereo Matching
Cost With a Convolutional Neural Network. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 2

DeMoN: Depth and Motion Network for Learning Monocular Stereo
– Supplementary Material –

A. Network Architecture Details

Our network is a chain of encoder-decoder networks.
Figures 15 and 16 explain the details of the two encoder-
decoders used in the bootstrap and iterative net part. Fig. 17
gives implementation details for the refinement net.

The encoder-decoders for the bootstrap and iterative net
use additional inputs which come from previous predic-
tions. Some of these inputs, like warped images or depth
from optical flow, need to be generated with special layers,
which we describe here.

Warped second image We warp the second image using
the predicted or generated optical flow field. We compute
all values with bilinear interpolation and fill values that fall
outside the image boundaries with zeros.

After warping with ground truth optical flow, the second
image should look like the first image with the exception
of occlusion regions. Comparing first image and warped
image allows to assess the quality of the optical flow.

Flow from depth and motion We generate an optical
flow estimate based on a depth and camera motion estimate
for the first encoder-decoder of the iterative net. This op-
tical flow can be used as an initial estimate, which can be
further improved by the iterative net.

Depth from optical flow and motion In contrast to gen-
erating optical flow from a depth map and camera motion,
computing depth from optical flow and camera motion is
not straightforward. To compute the depth value of a pixel,
we first project the corresponding point in the second im-
age to the epipolar line and then triangulate the 3D point to
retrieve the depth.

This generated depth map provides an estimate which
combines optical flow and camera motion. Note that us-
ing the estimated camera motion here ensures that the depth
values of the estimate are correctly scaled according to the
camera motion. In case of ground truth optical flow and
camera motion this yields the true depth map.

Iteration [*k]

0 500 1000 1500 2000 2500 3000 3500

L
e
a
rn

in
g
 r

a
te

#10 -4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
the 1st encoder-decoder in bootstrap net

the 2nd encoder-decoder in bootstrap net

the 1st encoder-decoder in iterative net

the 2nd encoder-decoder in iterative net

refinement net

Figure 1. Learning rate schedule. During the training of each
encoder-decoder a multistep learning rate is applied. At each step
the learning rate is reduced by 20%.

B. Training Schedule

We train our model from scratch for 3200k iterations
in total. Fig. 1 shows our learning rate schedule. From 0
to 1000k iterations we sequentially train the four encoder-
decoders, then the two encoder-decoders of the iterative net
are jointly trained to iteration 2600k, finally we train the
refinement net for another 600k iterations. This training
schedule can be further optimized.

We normalize all point-wise losses with the number of
pixels. The loss weights for flow, flow confidence, depth
and normals are 1000, 1000, 300 and 100 respectively. The
loss weight for the scale invariant gradient loss on flow is
1000. For depth we weight the scale invariant gradient loss
with 1500, because we consider sharp edges and smooth
surfaces more important for depth prediction. The transla-
tion and rotation losses are weighted with a factor of 15 and
160 respectively to balance their importance with respect to
the other losses.

C. Datasets

Our training procedure requires ground truth camera
poses and ground truth depth for the first image.

The datasets we use for training can be divided in two
groups: synthetic and real datasets. Real datasets provide
natural images, but do only provide sparse pseudo ground
truth due to measurement and reconstruction errors. Syn-
thetic datasets provide perfect ground truth but often fea-

1

ture unrealistic images. Since no single dataset is perfect,
we train on a set of five datasets with different proper-
ties. Tab. 1 provides an overview of the properties of the
datasets. Figures 11, 12, 13, 14 and 3 show examples from
the datasets we used.

SUN3D The dataset from [11] is a set of video sequences
with camera poses and depth maps. Camera poses and
depth maps are inaccurate because they have been created
via a reconstruction process. The raw sensor data for this
dataset was recorded with a structured light depth sensor
which reports absolute depth values, thus the reconstruction
scale for this dataset is known. The dataset features indoor
scenes of offices, apartments, hotel rooms and university
buildings.

To sample image pairs suitable for training, we apply a
simple filtering process. To avoid image pairs with large
pose or depth error, we filter out pairs with a large photo-
consistency error. We also filter out image pairs with less
than 50% of the pixels from the first image visible in the
second image. Further we discard images with a baseline
smaller than 5cm.

We have split the datasets into training and testing
scenes. The training set contains 253 scenes and the test
set contains 16 scenes. For training we sample a total of
117768 image pairs from all image sequences. For testing
we generate a diverse set of 80 image pairs which mini-
mizes overlap within image sequences. This way we obtain
a small test set with large diversity.

RGB-D SLAM The dataset from [9] is a set of video se-
quences with camera poses and depth maps. Camera poses
are accurate since they come from an external motion track-
ing system. The scale of the reconstructed camera poses
is known. Depth maps have been recorded with a struc-
tured light sensor and are therefore affected by measure-
ment noise and limited to a fixed depth range. Due to the
use of an external tracking system, the data is restricted to
indoor scenes in a lab environment.

We use the same sampling process as for SUN3D. The
training set contains 45276 image pairs, while the test set
features 80 diverse image pairs.

MVS In contrast to SUN3D and RGB-D SLAM, MVS is
a dataset with outdoor images. We use the Citywall and
Achteckturm datasets provided with [4] and the Breisach
dataset from [10] for training. We compute depth maps and
camera poses with the Multiview Reconstruction Environ-
ment by [4].

For testing we use datasets provided with the COLMAP
software from Schönberger et al. [7, 8], which are called
Person-Hall, Graham-Hall, and South-Building. These

Figure 2. Annotation volumes for the Blendswap dataset. Left:
We annotate each scene with volumes that describe valid camera
positions (white box) and valid positions for the ”look at” target
(orange box). Right: Image from a randomly sampled camera
and target.

datasets show the exterior of the eponymous buildings. Fur-
ther, we have recorded a small scene which shows a sculp-
ture and can be seen in the third row of Fig. 13. We use
the COLMAP software for computing the depth and cam-
era poses for these scenes.

Due to the scale ambiguity in the reconstruction pro-
cess, the absolute scale is unknown. The datasets are small
and not very diverse. Again we use the same image pair
sampling strategy as for the previous datasets. We sample
16152 image pairs for training and 66 image pairs for test-
ing.

Scenes11 Scenes11 is a synthetic dataset with randomly
generated geometry and objects from ShapeNet [3]. All
scenes have a ground plane which makes the scenes look
like outdoor scenes. We use the open source software
Blender [2] for rendering.

Due to the synthetic nature of the dataset, the accuracy of
the camera poses and depth maps is perfect. Disadvantages
are the artificial look and a simplistic model of the camera
movement. We sample camera parameters from Gaussian
and uniform distributions, which bears the risk of learning
the underlying model by heart when training only on this
data.

The absolute scale for this dataset is meaningless since
the scale of the objects is arbitrary and inconsistent. We
generate 239508 image pairs from 19959 unique scenes for
training and 128 image pairs from 128 unique scenes for
testing.

Blendswap The blendswap dataset is an artificial dataset
generated with 150 scenes from blendswap.com.
Scenes range from cartoon-like to photorealistic.
Blendswap contains some outdoor scenes, but a large
part of the scenes shows interiors. We annotated each
of the 150 scenes with a camera volume, which marks
free space that can be used for camera placement, and a
”look at” volume for placing target points defining the

Figure 3. Images and the corresponding depth maps from the
Blendswap dataset. Blendswap contains 150 distinct scenes, with
a large variety of different styles and settings.

camera viewing direction. We sample camera positions and
targets uniformly over the annotated volumes. Fig. 2 shows
an example of an annotated scene and an automatically
generated image. When sampling a camera pair we use the
same target point but add individual uniform noise to its
position. The noise level depends on the distance of each
camera to this target point.

We sample 34320 image pairs from the 150 annotated
scenes for training. Fig. 3 shows images from this dataset
and the corresponding ground truth depth maps. The gen-
erated data set contains a diverse set of scenes with many
realistic images and actual ground truth data, and remedies
the main disadvantages of Scenes11. However, adding new
scenes to this dataset requires manual annotation, which is a
time-consuming process. Due to the small number of scenes
we only use this data for training. We plan to gradually ex-
tend this dataset in the future with more scenes.

Generalization test data In Section 6.4.1 of the main pa-
per, we compare the generalization capabilities of DeMoN
and other learned approaches. To evaluate this, we recon-
structed seven self-recorded scenes using COLMAP [7, 8],
and generated 16 views of these scenes with correspond-
ing depth maps. Examples are shown in Fig. 4. Content of
the scenes is very different from the data DeMoN has been
trained on: Close-ups of unique objects such as a miniature
bridge, figurine, and ship, as well as a person. We also in-
clude some outdoor scenes containing different architecture
as well as 90-degree rotated images and a unique sculpture.

Scale normalization: To compensate for the inherent
scale ambiguity of our reconstruction, we compute all er-
rors in Tab. 3 of the main paper with optimally scaled depth
predictions. The scale slog = exp(1n

∑
log ẑ − log z) is

computed to minimize the mean logarithmic difference be-
tween ground truth and prediction.

D. Experiments with Ground Truth
DeMoN iterates between estimating optical flow and es-

timating depth and camera motion. This is supposed to
gradually refine the depth and motion estimates. The ar-

Figure 4. Samples of the seven scenes used for the generalization
experiment.

chitecture is justified by a strong mathematical relation be-
tween optical flow, depth and camera motion. Optical flow
can be computed analytically from depth and motion, and
vice-versa, depth and motion can be computed from optical
flow in non-degenerate cases. But can a convolutional net-
work fully exploit this mathematical relation? Given per-
fect optical flow, can it indeed estimate depth and camera
motion very accurately?

To answer these questions we trained networks to esti-
mate depth and motion from ground truth optical flow, and,
other way round, to estimate optical flow given ground truth
depth and motion. Results on the SUN3D dataset are re-
ported in Table 2. In all cases performance dramatically
improves when the ground truth input is provided, com-
pared to only taking an image pair as input. The network
can use an accurate optical flow estimate to refine the depth
and motion estimates, and vice-versa.

At the same time, this experiment provides an upper
bound on the performance we can expect from the current
architecture. DeMoN’s performance is still far below this
bound, meaning that the difficulties come from estimating
optical flow, depth and motion from images, and not from
converting between these modalities.

Ground truth Depth Motion Flow

flow dep+mot L1-inv sc-inv L1-rel rot tran EPE

yes no 0.007 0.058 0.066 - - -
yes no - - - 0.340 2.235 -
no no 0.058 0.163 0.603 4.472 41.766 -

no yes - - - - - 0.005
no no - - - - - 0.027

Table 2. The effect of providing the ground truth optical flow
(flow) or ground truth depth and motion (dep+mot) to the network.
A network can be trained to produce very accurate depth and mo-
tion estimates given the ground truth optical flow, and vice-versa,
a network can estimate the optical flow very well given the ground
truth depth and motion.

Dataset Perfect GT Photorealistic Outdoor scenes Rot. avg Rot. stddev Tri. angle avg Tri. angle stddev

SUN3D no yes no 10.6 7.5 5.2 4.6
RGBD no yes no 10.4 8.3 6.8 4.5
Scenes11 yes no (yes) 3.3 2.1 5.3 4.4
MVS no yes yes 34.3 24.7 28.9 17.5
Blendswap yes (yes) (yes) 23.1 17.1 20.1 13.6

Table 1. Training dataset properties. Perfect GT: Perfect ground truth camera poses and depth maps are only available for the synthetic
datasets Scenes11 and Blendswap. Photorealistic: The synthetic Blendswap dataset features some photorealistic scenes, while Scenes11
looks entirely artificial. The other datasets use real images. Outdoor scenes: MVS is the only outdoor dataset with real images. Images
from Scenes11 show wide open spaces, similar to outdoor data. Blendswap contains some outdoor scenes, but is biased towards indoor
environments. Rotation and Triangulation angle: Camera rotation and triangulation angles are given in degree. The rotation and
triangulation angle is similar for SUN3D and RGB-D SLAM. Both datasets are indoor video sequences. MVS and Blendswap also show
similar characteristics, which means that the sampling procedure for Blendswap mimics the camera poses of a real outdoor dataset.

GT Iter 0 Iter 1 Iter 2 Iter 3

Figure 5. Effect of the iterative net on depth values.

Depth Motion Flow
L1-inv sc-inv L1-rel δ<1.25 δ<1.252 δ<1.253 rot tran EPE

It
er

at
io

n

0 0.029 0.145 0.244 0.587 0.844 0.940 2.18 20.27 0.030
1 0.024 0.130 0.207 0.679 0.891 0.961 1.94 17.25 0.020
2 0.022 0.131 0.187 0.688 0.900 0.982 1.87 18.31 0.019
3 0.021 0.132 0.179 0.698 0.912 0.981 1.80 18.81 0.019
4 0.021 0.133 0.184 0.690 0.908 0.975 1.79 18.94 0.019
5 0.021 0.133 0.185 0.692 0.910 0.970 1.79 19.65 0.019

Table 3. The effect of iterative refinement of the predictions. The
performance is computed on the SUN3D dataset. The results do
not significantly improve beyond 3 iterations. The threshold met-
ric is defined as the percentage of pixel zi so that max(zi

ẑi
, ẑi
zi
) =

δ < thr.

E. Effect of Iterative Refinement

The quantitative evaluation of iterative refinement is
shown in Table 3. Both depth and motion accuracy signifi-
cantly improve up to iteration 3.

Fig. 5 shows the effect on one sample of the MVS
dataset. The iterative net improves the depth values, which
is visible as a reduced distortion of the building in the point
cloud.

F. Error Distributions

We show the per-pixel error distributions and means for
Base-Oracle and DeMoN on the MVS and SUN3D dataset
in Fig. 6. Note that the average values in Tab. 2 in the main

paper have been computed over test samples and here we
average over pixels.

The distributions on the highly textured MVS show that
Base-Oracle produces many very accurate depth estimates,
while the distribution of errors is more spread for DeMoN.
This is an effect of Base-Oracle using higher resolution im-
ages (640 × 480) than DeMoN (256 × 192). Base-Oracle
also uses the motion ground truth, which again helps finding
the correct depth.

For SUN3D distributions are more similar and the reso-
lution adavantage of Base-Oracle is less pronounced. This
can be explained by the more homogeneous image regions,
which make matching difficult on this dataset. Base-Oracle
suffers significantly more from outliers than DeMoN. De-
pending on the task higher depth accuracy can be more im-
portant than less outliers. It also shows the importance of
lifting restrictions on the camera intrinsics and supporting
higher resolutions in future works.

We show the distributon of the motion errors for Base-
FF, Base-Mat-F and DeMoN in Fig. 7. Base-FF uses the
FlowFields algorithm for correspondence search [1] and our
baseline implementation using the noramlized 8-point algo-
rithm [5] and RANSAC to compute the relative camera mo-
tion. Base-Mat-F uses the optical flow of DeMoN predicted
after three iterations for correspondences and uses the Mat-
lab implementations of [6] and RANSAC to estimate the
camera motion.

The distribution is similar for Base-FF and DeMoN on
the MVS dataset with Base-FF being slightly more accurate
for rotation and DeMoN being more accurate for transla-
tion. Base-Mat-F is less accurate than both comparisons.

On SUN3D DeMoN can estimate the motion more accu-
rately than the comparisons. Base-FF produces some out-
liers for rotation while DeMoN and Base-Mat-F have al-
most no outliers. Base-FF also fails to estimate accurate
translation directions on SUN3D. We show some failure
cases in Fig. 8. On SUN3D baselines are usually smaller
than on MVS.

0.00 0.05 0.10 0.15 0.20

L1-inv

0

20

40

60

80

100

120

140

160

d
e
n
si

ty

L1-inv error distribution on MVS

Base-Oracle

DeMoN

0.0 0.2 0.4 0.6 0.8 1.0

L1-rel

0

5

10

15

20

25

30

35

d
e
n
si

ty

L1-rel error distribution on MVS

Base-Oracle

DeMoN

Base-Oracle: mean 0.018 (0.013) Base-Oracle: mean 0.103 (0.064)
DeMoN: mean 0.045 (0.037) DeMoN: mean 0.272 (0.177)

0.00 0.05 0.10 0.15 0.20

L1-inv

0

10

20

30

40

50

60

70

d
e
n
si

ty

L1-inv error distribution on SUN3D

Base-Oracle

DeMoN

0.0 0.2 0.4 0.6 0.8 1.0

L1-rel

0

1

2

3

4

5

6

7
d
e
n
si

ty

L1-rel error distribution on SUN3D

Base-Oracle

DeMoN

Base-Oracle: mean 0.021 (0.018) Base-Oracle: mean 0.218 (0.174)
DeMoN: mean 0.019 (0.018) DeMoN: mean 0.172 (0.169)

Figure 6. Error histograms and mean for per pixel depth errors
(L1-inv and L1-rel) on MVS (top) and SUN3D (bottom). The last
bin includes samples with errors above of the shown range. The
second mean value in parenthesis excludes the last bin of the re-
spective histogram.

0 2 4 6 8 10 12 14

rotation error [deg]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
e
n
si

ty

Rotation error distribution on MVS

Base-Mat-F

Base-FF

DeMoN

0 10 20 30 40 50 60 70 80 90

translation error [deg]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

d
e
n
si

ty

Translation error distribution on MVS

Base-Mat-F

Base-FF

DeMoN

Base-FF: mean 4.834 Base-FF: mean 17.252
Base-Mat-F: mean 5.442 Base-Mat-F: mean 18.549

DeMoN: mean 5.156 DeMoN: mean 14.447

0 2 4 6 8 10 12 14

rotation error [deg]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d
e
n
si

ty

Rotation error distribution on SUN3D

Base-Mat-F

Base-FF

DeMoN

0 10 20 30 40 50 60 70 80 90

translation error [deg]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

d
e
n
si

ty

Translation error distribution on SUN3D

Base-Mat-F

Base-FF

DeMoN

Base-FF: mean 3.681 Base-FF: mean 33.301
Base-Mat-F: mean 2.230 Base-Mat-F: mean 26.338

DeMoN: mean 1.801 DeMoN: mean 18.811

Figure 7. Error distributions for rotation and translation on MVS
(top) and SUN3D (bottom). The translation error is given as angle
because the length of the translation is 1 by definition. The last bin
includes samples with errors above of the shown range.

G. Qualitative Depth Estimation Results

We show more qualitative results of depth estimation on
the test sets of SUN3D, RGB-D SLAM, MVS, Scenes11
and NYUv2 in Fig. 11 to Fig. 10 respectively. Our method
presents smooth depth estimations while preserving sharp
edges. This advantage can be observed more clearly by the

(a) DeMoN: tran 24.096, rot 0.878
Base-FF: tran 71.871, rot 2.564

(b) DeMoN: tran 4.804, rot 1.237
Base-FF: tran 56.948 , rot 2.087

(c) DeMoN: tran 11.725, rot 1.628
Base-FF: tran 110.516, rot 15.197

Figure 8. Comparison of the motion error (in degrees) in some
special cases. The classic method Base-FF fails when the baseline
of the camera motion is small shown in (a) and the scenes have
many homogeneous regions like (b) and (c).

point clouds, which we show in Fig. 9.

Image GT Eigen DeMoN
N

Y
U

v2
N

Y
U

v2
M

V
S

Figure 9. Qualitative point clouds comparison on NYUv2 and MVS.

Image1 Image2 GT Liu-Indoor Eigen-VGG DeMoN

Figure 10. Qualitative depth prediction comparison on NYUv2. The Base-Oracle prediction is not available because there is no motion
ground truth. Our method fails to predict the upper bodies of the persons in the fourth example because the persons move between the two
frames.

Image1 Image2 GT Base-O Liu-Indoor Eigen-VGG DeMoN

Figure 11. Qualitative depth prediction comparison on SUN3D. The Base-Oracle performs badly due to inaccurate motion ground truth.
Eigen-VGG, which was trained on NYUv2, works well for many images. SUN3D is similar to the NYUv2 dataset shown in Fig. 10.

Image1 Image2 GT Base-O Liu-Indoor Eigen-VGG DeMoN

Figure 12. Qualitative depth prediction comparison on RGB-D SLAM. Our method can deal with very thin objects (third row).

Image1 Image2 GT Base-O Liu-Outdoor Eigen-VGG DeMoN

Figure 13. Qualitative depth prediction comparison on MVS. The single image methods Liu-Outdoor and Eigen-VGG do not generalize
well to new datasets. The depth maps show coarse outliers caused by hallucinating wrong depth values at object contours like the street
sign in the third row or the windows in the last row. The Base-Oracle method performs well on this data. Most outliers fall into image
regions not visible in the second image.

Image1 Image2 GT Base-O Liu-Outdoor Eigen-VGG DeMoN

Figure 14. Qualitative depth prediction comparison on Scenes11. Base-Oracle and DeMoN give the best results on this dataset.

2x(Conv + ReLU)

Conv + ReLU

Fully Connected

Upconv + ReLU

6 x 256 x 192

32 x 128 x 96

32 x 64 x 48

64 x 64 x 48

64 x 64 x 48

128 x 32 x 24

128 x 32 x 24

256 x 16 x 12

256 x 16 x 12

512 x 8 x 6

516 x 16 x 12

256 x 32 x 24

128 x 64 x 48

24 x 8 x 6

2 x 64 x 48 2 x 64 x 48

Conv + ReLU kernel [9x1] stride [2,1]
Conv + ReLU kernel [1x9] stride [1,2]

Conv + ReLU kernel [7x1] stride [2,1]
Conv + ReLU kernel [1x7] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [5x1] stride [2,1]
Conv + ReLU kernel [1x5] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [5x1] stride [2,1]
Conv + ReLU kernel [1x5] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [3x1] stride [2,1]
Conv + ReLU kernel [1x3] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Upconv + ReLU kernel [4x4] stride [2,2]

Upconv + ReLU kernel [4x4] stride [2,2]

Upconv + ReLU kernel [4x4] stride [2,2]

Conv + ReLU kernel [3x3] stride [1,1]

Conv kernel [3x3] stride [1,1]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv

512 x 8 x 6

image pair

warped 2nd image

depth + normals

flow from depth & motion

4 x 64 x 48

1 x 64 x 48 3 x 64 x 48

optical flow confidence

Conv + ReLU kernel [3x3] stride [1,1]

2 x 8 x 6 2 x 8 x 6

Upconv

Conv kernel [3x3] stride [1,1]

Upconv kernel [4x4] stride [2,2]

optical flow confidence

4 x 16 x 12

24 x 64 x 48

previous

 motion: r, t

d
ir

e
c
t

c
o
n
n

e
c
ti
o
n
s

fi
rs

t
p
re

d
ic

ti
o
n

p
re

v
io

u
s
 n

e
tw

o
rk

 i
n
p
u
ts

s
e
c
o
n
d
 p

re
d
ic

ti
o
n

Figure 15. Encoder-decoder architecture for predicting optical flow. The depicted network is used in the bootstrap net and the iterative net
part. Inputs with gray font (depth and normals, flow from depth & motion, warped 2nd image) are only available for the iterative net. The
encoder-decoder predicts optical flow and its confidence at two different resolutions. The first prediction is directly appended to the end of
the encoder and its output resolution is 8× 6. We also apply our losses to this small prediction. We also feed this prediction back into the
decoder part after upsampling it with an upconvolutional layer. The second prediction is part of the decoder and predicts all outputs with a
resolution of 64 × 48, which is four times smaller than the original image dimensions (256 × 192). Due to this resolution difference we
concatenate inputs from the previous network at the respective spatial resolution level within the encoder. We use direct connections from
the encoder to the decoder, which allows the decoder to reuse features from the respective spatial resolution levels from the encoder.

2x(Conv + ReLU)

Conv + ReLU

Fully Connected

Upconv + ReLU

Scaling

6 x 256 x 192

32 x 128 x 96

32 x 64 x 48

64 x 64 x 48

64 x 64 x 48

128 x 32 x 24

128 x 32 x 24

256 x 16 x 12

256 x 16 x 12

512 x 8 x 6

512 x 16 x 12

256 x 32 x 24

128 x 64 x 48

24 x 64 x 48

1 x 64 x 48 3 x 64 x 48

128 x 8 x 6

1024

128

7

6

1

Conv + ReLU kernel [9x1] stride [2,1]
Conv + ReLU kernel [1x9] stride [1,2]

Conv + ReLU kernel [7x1] stride [2,1]
Conv + ReLU kernel [1x7] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [5x1] stride [2,1]
Conv + ReLU kernel [1x5] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [5x1] stride [2,1]
Conv + ReLU kernel [1x5] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [3x1] stride [2,1]
Conv + ReLU kernel [1x3] stride [1,2]

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

Conv + ReLU kernel [3x3] stride [1,1]

Fully Connected

Fully Connected

Fully Connected

Upconv + ReLU kernel [4x4] stride [2,2]

Upconv + ReLU kernel [4x4] stride [2,2]

Upconv + ReLU kernel [4x4] stride [2,2]

Conv + ReLU kernel [3x3] stride [1,1]

Conv kernel [3x3] stride [1,1]

Scaling

Conv + ReLU kernel [3x1] stride [1,1]
Conv + ReLU kernel [1x3] stride [1,1]

scale

Conv

512 x 8 x 6

depth

image pair

warped 2nd image

motion: r, t normals

optical flow + confidence
previous

 motion: r, t

depth from flow & motion

4 x 64 x 48

1 x 64 x 48 3 x 64 x 48

p
re

v
io

u
s
 n

e
tw

o
rk

 i
n
p
u

ts

m
o
ti
o
n
 p

re
d
ic

ti
o
n

d
ir
e
c
t

c
o
n
n
e
c
ti
o

n
s

Figure 16. Encoder-decoder architecture for predicting depth and camera motion. The depicted network is used in the bootstrap net and
the iterative net part. Inputs with gray font (previous motion, depth from flow & motion) are only available for the iterative net. The
encoder-decoder predicts the depth map, the normals and the camera motion for an image pair. Similar to the encoder-decoder shown in
Fig. 15, this encoder-decoder features direct connections and integrates previous network inputs at the corresponding resolution level into
the encoder. This encoder-decoder predicts a camera motion vector and depth and normal maps. While all predictions share the encoder
part, the camera motion prediction uses a separate fully connected network for its prediction. The depth and normal prediction is integrated
in the decoder part. The scale of the depth values and the camera motion are highly related, therefore the motion prediction part also
predicts a scale factor that we use to scale the final depth prediction.

Conv + ReLU

Upconv + ReLU

1 x 256 x 192

32 x 256 x 192

64 x 128 x 96

64 x 128 x 96

128 x 64 x 48

192 x 128 x 96

96 x 256 x 192

Upconv + ReLU kernel [4x4] stride [2,2]

Upconv + ReLU kernel [4x4] stride [2,2]

Conv + ReLU kernel [3x3] stride [1,1]

Conv kernel [3x3] stride [1,1]

Conv

first image

depth

NN upsampled depth

refined depth

16 x 256 x 192

Conv + ReLU kernel [3x3] stride [2,2]

Conv + ReLU kernel [3x3] stride [1,1]

Conv + ReLU kernel [3x3] stride [2,2]

Conv + ReLU kernel [3x3] stride [1,1]

128 x 64 x 48

1 x 256 x 192

3 x 256 x 192

Conv + ReLU kernel [3x3] stride [1,1]

d
ir

e
c
t

c
o
n

n
e
c
ti
o
n

s

Figure 17. Encoder-decoder architecture for refining the depth prediction. The refinement network is a simple encoder-decoder network
with direct connection. Input to this network is the first image and the upsampled depth map with nearest neighbor interpolation. Output is
the depth map with the same resolution as the input image.

References
[1] C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense Cor-

respondence Fields for Highly Accurate Large Displacement
Optical Flow Estimation. In IEEE International Conference
on Computer Vision (ICCV), Dec. 2015. 4

[2] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Blender Institute,
Amsterdam, 2016. 2

[3] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015. 2

[4] S. Fuhrmann, F. Langguth, and M. Goesele. Mve-a mul-
tiview reconstruction environment. In Proceedings of the
Eurographics Workshop on Graphics and Cultural Heritage
(GCH), volume 6, page 8, 2014. 2

[5] R. I. Hartley. In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(6):580–593, June 1997. 4

[6] D. Nister. An efficient solution to the five-point relative pose
problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(6):756–770, June 2004. 4

[7] J. L. Schönberger and J.-M. Frahm. Structure-from-motion
revisited. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016. 2, 3

[8] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016.
2, 3

[9] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 2

[10] B. Ummenhofer and T. Brox. Global, dense multiscale re-
construction for a billion points. In IEEE International Con-
ference on Computer Vision (ICCV), Dec 2015. 2

[11] J. Xiao, A. Owens, and A. Torralba. SUN3D: A Database of
Big Spaces Reconstructed Using SfM and Object Labels. In
IEEE International Conference on Computer Vision (ICCV),
pages 1625–1632, Dec. 2013. 2

