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Abstract

Facial landmark detection, head pose estimation, and fa-
cial deformation analysis are typical facial behavior anal-
ysis tasks in computer vision. The existing methods usually
perform each task independently and sequentially, ignor-
ing their interactions. To tackle this problem, we propose a
unified framework for simultaneous facial landmark detec-
tion, head pose estimation, and facial deformation analysis,
and the proposed model is robust to facial occlusion. Fol-
lowing a cascade procedure augmented with model-based
head pose estimation, we iteratively update the facial land-
mark locations, facial occlusion, head pose and facial de-
formation until convergence. The experimental results on
benchmark databases demonstrate the effectiveness of the
proposed method for simultaneous facial landmark detec-
tion, head pose and facial deformation estimation, even if
the images are under facial occlusion.

1. Introduction

Typical facial behavior analysis tasks include facial land-
mark detection, head pose estimation, and facial deforma-
tion analysis. Facial landmark detection aims to detect the
key points around facial components and facial contour.
The goal of head pose estimation is to predict the orien-
tation and translation of the head with respect to the camera
coordinate frame. Facial deformation refers to the non-rigid
facial motion induced by facial expression change. Current
research usually tackles these tasks independently and se-
quentially. In reality, rigid head movements and non-rigid
facial expressions often happen together and they both af-
fect the 2D facial landmarks (see Figure 1). Head pose and
non-rigid facial deformation can lead to different 2D facial
shapes, and the 2D facial landmark locations can reflect the
head pose and non-rigid facial deformation. Therefore, due
to the coupled interactions, facial landmark, head pose, and
facial deformation should be estimated jointly utilizing their
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Figure 1. The coupling of facial landmark locations, head pose and
facial deformation

joint relationships.

Facial occlusion brings significant challenges for facial
behavior analysis. As shown in Figure 2, facial occlusion
can be induced by objects or it may be self-occlusion due to
significant head poses (e.g. > 60 degree). Facial appearance
information is noisy on images with occlusion, and facial
shape on the occluded facial parts is difficult to estimate.
The facial occlusion causes problems for all facial analysis
tasks, including facial landmark detection, head pose esti-
mation, and facial deformation analysis.

Based on the intuitions above, we propose to simultane-
ously estimate the facial landmark locations, head pose and
facial deformation in a unified framework using a method
that is robust to facial occlusion. There are a few major
contributions of the proposed method:

e We propose an iterative cascade method to simulta-
neously perform facial landmark detection, pose and
deformation estimation. The unified framework can
leverage the joint relationships among landmarks, pose
and deformation to boost the performances of all the
tasks. This is in contrast to most of the existing works,
which treat them sequentially or independently. It
is also different from some joint methods performing
one-shot estimation [18][2].

e The proposed method allows us to systematically inte-
grate the learning-based facial landmark detection with
model-based head pose and facial deformation estima-
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(a) (b)
Figure 2. Facial occlusion induced by (a) object occlusion (COFW
database [3]) or (b) self-occlusion due to extreme head poses (Mul-
tiPIE database [10]).

tion without the need for 3D annotation. This is in con-
trast to the existing data-driven learning-based meth-
ods that rely on 3D annotations [30][14][22][29].

e Unlike most of the existing works [22][29][18][2], our
method explicitly estimates facial occlusion, which
can, in turn, help landmark detection, pose and defor-
mation estimation under facial occlusion.

e The experiments on benchmark databases demonstrate
the effectiveness of the proposed method for landmark
detection, pose estimation, and deformation estimation
under facial occlusion.

The remaining part of the paper is organized as follows.
In section 2, we review the related works. In section 3, we
introduce the proposed method. In section 4, we evaluate
the proposed method and compare it to other state-of-the-
art works. In section 5, we conclude the paper.

2. Related Work
2.1. Facial landmark detection

Facial landmark detection algorithms can be classi-
fied into the holistic methods [5][23], Constrained Local
Methods (CLM) [6][18][2] and regression-based methods
[26][17][1][4]. The proposed method follows the regres-
sion framework.

Some recent facial landmark detection algorithms try to
handle facial occlusion. The method in [3] is one early work
that predicts the occlusion labels of different facial land-
marks. The authors train nine occlusion-dependent models
based on part of the facial appearance, and combine them
with weights based on the estimated facial occlusion for
landmark detection. In [9], a probabilistic graphical model
is utilized to model the spatial relationship among facial
landmarks and their occlusions under different facial defor-
mation and expressions for robust landmark detection under
facial occlusion. The method in [25] iteratively estimates
the facial landmark occlusion and locations following the
cascade regression framework. However, this method does
not consider head pose and non-rigid facial deformation.

2.2. Head pose estimation

Head pose estimation algorithms can be classified into
learning-based methods and model-based methods. The

learning-based methods utilize pattern recognition and ma-
chine learning techniques to directly map the image ap-
pearance to the discrete head pose (e.g., left pose, frontal,
and right pose) or continuous pose angles (e.g., pitch, yaw,
and roll). Common learning techniques include multi-layer
perceptron [19], random forests [7] and the Partial Least
Squares (PLS) regression method [11] etc.

Model-based methods utilize 2D facial landmarks and
3D computer vision techniques for pose estimation. For ex-
ample, in [24], the 3D head pose and the facial deformation
of a driver are estimated based on a flexible model and de-
tected 2D facial landmarks. In [21], a general 3D face with
six landmarks is combined with the RANSAC method for
head pose estimation. The existing head pose estimation al-
gorithms usually do not explicitly handle facial occlusion.
The model-based approaches may fail on facial images with
extreme head poses, since they may not be able to exclude
the landmarks on the self-occluded facial parts.

2.3. Joint estimation

There are a few algorithms that combine head pose or
deformable models with facial landmark detection. They
can be roughly classified into 3D Constrained Local Meth-
ods (3D CLMs), 3D cascade regression methods, and other
methods.

3D CLMs [18][2][28] use the 3D facial shape de-
formable model in combination with the head pose param-
eters to regularize the 2D facial landmark locations for 2D
facial landmark detection. While traditional CLMs [6] pre-
dict the 2D deformable model coefficients for landmark
detection, the 3D CLMs can predict both the 3D model
coefficients and head pose angles. Even though both the
3D CLMs [18][2][28] and the proposed method can pre-
dict head pose and deformable models coefficients, there
are a few differences. While the goal of 3D CLMs is facial
landmark detection and the head pose estimation is only the
intermediate result, the proposed method aims to perform
both landmark detection and pose estimation. Pose estima-
tion accuracy is usually not reported in 3D CLMs [18][28].
Furthermore, while 3D CLMs perform one-step estimation
for pose and deformable coefficients to directly determine
the 2D landmark locations, the proposed method follows
the regression approaches and performs cascade regression
to gradually update the landmark locations, head poses, and
deformable model coefficients. Since 3D CLMs directly
predict model coefficients and head pose for landmark de-
tection, and small model coefficients and pose errors may
lead to large landmark detection errors, their estimation may
not be accurate. On the other hand, our method directly pre-
dicts landmarks, which may be more accurate.

3D cascade regression methods are learning-based meth-
ods that perform 3D prediction. They either predict the 3D
facial landmark locations that determine the head pose and
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3D model coefficients, or they predict head pose and de-
formable coefficients that determine the 3D facial landmark
locations. For example, in [22], Tulyakov and Sebe propose
to predict the 3D facial shape from the facial image using
cascade regression methods based on 3D training data, and
the head pose can be calculated based on the predicted 3D
facial shape. In [13][30] [14], cascade regression learning
methods are proposed to directly predict the pose and 3D
model coefficients with 3D training data. There are a few
differences between the 3D cascade regression methods and
the proposed method. For example, 3D cascade regression
methods are purely data-driven, and they require 3D fa-
cial landmark annotations or head pose annotations for each
training data. Since the proposed method combines learning
with model-based head pose estimation, it does not require
3D annotations. Similar to the 3D CLMs, the 3D cascade
regression methods mainly focus on facial landmark detec-
tion and head pose estimation results may not be reported.
It is also not clear how them perform on images with facial
occlusion.

There are a few other joint learning methods that try to
simultaneously predict 2D facial landmarks and pose from
image appearance. For example, in [31][12], 2D head pose-
dependent facial landmark detection models are constructed
and applied to the testing image. The final selected 2D
landmark detection results and head pose are determined
by the pose-dependent model with the smallest fitting error.
In [29], a cascade iterative framework is proposed to predict
2D landmarks, pose, and expression labels based on random
forests. Compared to the proposed method, the methods in
this category are purely learning-based approaches requir-
ing additional pose labels, ignoring the projection model,
while the proposed method combines learning and model
without the need for pose annotations. In addition, while
those methods can only predict the discrete head poses, the
proposed method can predict the continuous head pose. It
is also not clear how the method in [29] will perform on
images with occlusion.

3. Approach
3.1. General framework

The proposed method simultaneously performs facial
landmark detection, head pose estimation, and facial de-
formation estimation under facial occlusion given the facial
image, denoted as I. The facial landmark locations of the
facial key points on 2D images are denoted as x € RP,
where D is the number of landmark points. The head pose
refers to the continuous pose angles, including pitch, yaw,
and roll, denoted as h = {pitch, yaw,roll}. The facial
deformation refers to the non-rigid facial deformation re-
lated to facial expression, facial action unit etc., excluding
the rigid pose variations. In particular, assume we have a

3D deformable facial model trained with 3D facial shapes
using principal component analysis technique, the 3D face
shape can be represented using the deformation coefficients,
denoted as o.

s =S5+ Ba 1)

Here, s = {x1,v1,21,..,@D,yp,2p}’ denotes the 3D
face shape. s is the average 3D shape and B represents
the orthonormal bases. To handle facial occlusion, we in-
troduce the landmark visibility vector ¢ € [0,1]”, which
specifies the probabilities that the landmark points are visi-
ble. The proposed algorithm simultaneously estimates x, h,
«, and c.

Landmark occlusion
probability

&
- Head pose
Vision model, P 2d facial landmark
deformable w
model Non-rigid

deformation
LA

Model based pose
and deformation
estimation

Figure 3. Overall framework

The proposed method follows a cascade iterative proce-
dure. The overall algorithm is illustrated in Algorithm 1 and
Figure 3. We first initialize the facial landmark locations us-
ing the mean face x°, assuming the pose is frontal h® = 0,
there is no non-rigid deformation o® = 0, and all the land-
marks are visible ¢® = 1. Then, we iteratively update the
landmark visibility probabilities, the landmark locations,
the head pose angles and non-rigid deformations. For each
iteration ¢, we sequentially update the landmark visibility
probabilities, the landmark locations, and the head poses. In
the first step, when updating the landmark visibility prob-
abilities ¢, we predict the landmark visibility probability
updates Ac! given the previously predicted landmark loca-
tions x*~! and the head pose h'~!. The estimated visibility
probability updates Ac? will be added to the previously es-
timated visibility probabilities ¢'~! to generate the new vis-
ibility probabilities ¢’. In the second step, when updating
the landmark locations x*, we predict the landmark location
updates Ax’ by using the previously estimated landmark
locations x*~!, the currently estimated landmark visibility
probabilities ¢!, the previously estimated non-rigid defor-
mation information o' ~!, and the previously estimated head
pose h'~!. The update will be added to the previous estima-
tion to generate the new estimation of landmark locations
x'. In the third step, when updating the head pose h’ and
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Algorithm 1: The general framework

1 Initialize the landmark locations x" using the mean

face; Assuming all the landmarks are visible =1,
the pose is frontal h® = 0, and the there is no
non-rigid deformation a® = 0.
2 for =1, 2, ..., T or convergence do
3 Update the landmark visibility probabilities given
the image, the landmark locations, and the head
pose.;

fe: Ix!"Lht " — Act
¢ =c A

5 Update the landmark locations given the image,
the landmark locations, the landmark visibility
probabilities, the head pose, and the non-rigid
deformation.;

gs 2 1, Xt_l,ct,ht*l’at_1 — Ax
xt = x'! 4 Ax!

7 Update the head pose and non-rigid deformation
given the landmark locations, the landmark
visibility probabilities, and a pre-trained 3D
deformable model.;

my : X', ¢t 3D model — h', ot

9 Output the estimated landmark locations xT the

predicted visibility probabilities ¢”, the estimated

head pose h”, and the non-rigid deformation o .

non-rigid deformation ! simultaneously, we use the cur-
rently predicted landmark locations x*, the landmark visi-
bility probabilities ¢?, and the 3D deformable model. Note
that, in the third step for pose and deformation estimation,
we follow model-based approach, and there is no learning
involved. Therefore, we do not need any annotation for pose
and deformation. We only need the landmark locations and
occlusion labels, since learning is involved in the first two
steps for landmark and occlusion predictions. Those three
steps iterate until convergence. In the following, we discuss
each step in details.

3.2. Predict the facial occlusion

In each cascade level, the first task is to estimate the fa-
cial occlusion. We need to update the landmark visibility
probabilities ¢’ by predicting the landmark visibility proba-
bility updates Ac?. Intuitively, we can predict the visibility
based on the local appearance information, which refers to
the local image patches around the landmarks encoded with

image features (e.g. SIFT features). The previously pre-
dicted head pose information is also an effective cue for es-
timation, since the occlusion could be caused by head poses.
Overall, we use the linear regression model for the predic-
tion.

Ac = TIo(x' 1 T) + Tint 2)

c=c 1+ Ac 3)

In the first term, we predict the probability updates from the
local facial appearance information, denoted as ®(x‘~1, I)
for the image I with regression parameters 7. In the sec-
ond term, we add the current pose angles as additional fea-
tures for the prediction with linear regression parameters
T,’i. Note that, the prediction is bounded, since ¢! represents
probability vectors and they should be in the range [0, 1].

The goal for model learning is to estimate the param-
eters of those linear regression models, including T;, and
T}. We can get the ground truth landmark visibility prob-
abilities (cg = 0 for occluded point and 1 otherwise) given
the ground truth facial landmark occlusion labels. Then we
can calculate the ground truth landmark visibility probabil-
ity updates Aci* = ¢; —c! ™!, where ¢} refers to the ground
truth visibility probability (1 for visible points and O for oc-
cluded points). In addition, we have the previously esti-
mated landmark locations Xﬁ_l, head pose angles hz_l, and
deformation parameters o' ~!. We can formulate parame-
ter learning as a linear least squares problem with a closed
form solution.

Th Ty = i Ac —Tto(x! =, I)~T}ht !
a ' th arg%(?,l’fnhtzl:ll cz a (X ’ ) h ‘
@

3.3. Predict the facial landmark locations

In each cascade level, the second task is to update the fa-
cial landmark locations. We could use the local appearance
information from the previously estimated landmark loca-
tions for the update, as in the traditional cascade regression
framework [26]. However, due to the facial occlusion, the
local appearance information may not be reliable. The head
pose and the facial deformation can also be useful for land-
mark detection. To take all these factors into consideration,
we predict the facial landmark location updates as follows:

Axt = R [Vet o ®(x'~1, I)] + Rih' ™! + Rha!™! (5)

xl =x"1 + Ax! (6)

In the first term, similar to [25], we propose to weigh the
local appearance, denoted as ®(x* !, I), using the currently
predicted landmark visibility probabilities ¢, and use a lin-
ear regression model with parameter R!, to predict the shape
updates. “o” represents the point-wise product between the
landmark occlusion probability of a particular point and its

corresponding appearance information. The square root is
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used for better empirical performance. The intuition is that
we want to weigh more on the appearance information from
the visible points rather than that from the occluded points,
since the occluded parts may not provide useful information
for the landmark locations. In the second and third terms,
we add the current pose and deformation information into
the prediction with regression parameters R and RY, re-
spectively.

For model learning, we can calculate the ground truth
shape updates sz’* =X; — xf‘l for the arbitrary ith sam-
ple. Similar to learning the regression parameters for visi-
bility prediction in section 3.2, we can formulate the param-
eter estimation problem in a weighted linear least squares
formulation.

tx pt, : t,
RL* R, R;" =arg min E |AX;™
RL,RL,RY & ’
1

~RVEoaxtr) P

RGN Ryl

In Equation 7, we introduce the diagonal matrix C' to handle
missing facial landmark annotations. Due to the extreme
head poses, some facial landmarks may not be visible for
annotation. The corresponding element of C' is set to zero
for completely occluded points, and one otherwise. Overall,
the problem is a weighted linear least squares problem and
it can be solved in a closed-form solution.

3.4. Predict the head pose and non-rigid deforma-
tion

In each cascade level, the third task is to predict the head
pose angles h’ and facial deformation of. We first build
a 3D deformable model to capture the variations of frontal
3D facial shapes caused by the non-rigid facial deformation
(e.g., cross-subject variations, expression variations). Given
the 3D facial shapes as training data, we can learn the de-
formable model as shown in Equation 1 using the principal
component analysis technique to generate the average 3D
shape s and the orthonormal bases B.

Given the pre-trained 3D deformable model, the cur-
rently estimated facial landmark locations x¢, and the facial
visibility probabilities ¢?, we can simultaneously predict the
head pose angles h” and the facial deformation o by mini-
mizing the projection error for all landmark points.

M*,o* = arg min Y w(||ugs—tp kl|*+ | vak—vp k[
Mot .

®)
Here, w4, and vgq , denote the column and row coordinates
extracted from currently predicted 2D facial landmarks x°.
Up, % and v, ;, denote the column and row coordinates of the
projected 2D landmarks based on the 3D deformable model
with coefficients of and the current head pose h® with weak-

perspective projection.

Tk
M = M |y | +t ©)
Vk 2

Here, M is a 2 by 3 weak-perspective projection matrix that
consists of two rows, representing respectively the scaled
first and second rows of the rotation matrix. M hence en-
codes pose angles: pitch, yaw, and roll. ¢ presents 2D trans-
lation. As in section 3.3, we handle facial occlusion by in-
troducing the weight wy for each point based on its visi-
bility probability cg. The intuition is that we weigh more
on the projection errors produced by more visible landmark
points. To solve Equation 8, we iteratively update the head
pose angles and deformation parameters. While fixing one
set of variables and estimating the other set of variables
(e.g. M or o), the problem becomes a weighted linear least
squares problem with a closed-form solution.

4. Experimental results

4.1. Implementation details

4.1.1 Model details

We use the SIFT [16] features to represent the local fa-
cial appearance information. We augment the training data
by 8 random initializations of the landmarks in different
scales and locations with consistent initializations of the
pose and deformation for each sample. We trained the 3D
deformable model using the 3D facial shape from BU4D-
FE databases [27] provided in [22]. We retain 90% of the
energy when choosing the number of principal components.
The overall model contains four cascade iterations.

4.1.2 Evaluation criteria

For facial landmark detection, we use two evaluation crite-
ria. For images without self-occlusion (e.g. COFW [3]), we
use the normalized error, which is defined as the distance
between the predicted facial landmark locations and the
ground truth landmark locations normalized by the inter-
ocular distance (times 100%). We denote the error as nor-
malized error. On images with self-occlusion (e.g. Multi-
PIE [10]), since one eye may be occluded, we cannot use
the normalized error. Therefore, we use the average abso-
lute pixel distance. For facial occlusion prediction, we fol-
low the previous works [3] and compare the recall values
by fixing the precision value to 80%. For the evaluation of
head pose estimation algorithms, we use the mean absolute
error, which calculates the difference between the estimated
angles and the ground truth angles. On databases with dis-
crete head pose labels, we also include the head pose classi-
fication accuracy, which calculates the percentage of images
that have an error less than 7.5 degrees.
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4.2. Comparison of the proposed method to state-
of-the-art works

4.2.1 Evaluation of head pose estimation on BU
database

In the first experiment, we evaluate the proposed method
on the Boston University (BU) head tracking database [15].
The BU database contains facial videos of subjects with dif-
ferent translation and rotation movements. Following the
previous works [15] [20] [24], we use the 45 sequences of
5 subjects with uniform lighting conditions. Since the BU
database only provides the continuous pitch yaw roll pose
label, we cannot train the joint framework. Therefore, we
only evaluate the head pose estimation on the BU database,
where the 68 facial landmarks are generated using the pre-
trained detector [26].

The experimental results are shown in Table 1. Since
there is limited facial occlusion on the BU database, all the
methods perform reasonably well and our method achieves
the best overall head pose estimation accuracy compared to
other model-based methods [21][15][20][24]. Our method
is more effective than [21], [20] and [15], since they rely
on a general rigid 3D head model or the cylindrical mod-
els. It also performs better than the flexible model in [24],
even though they further assume that the camera intrinsic
parameters are known. We also run [2] (code provided by
the authors), and their pose estimation errors are also worse
than ours (cannot reproduce their reported results).

Table 1. Comparison of the head pose estimation methods (mean
absolute errors) on BU database.

Method Pitch Yaw Roll Average
Rigid model [21] 11.9 5.2 2.8 6.6
Cylindrical [15] 6.6 3.3 9.8 6.4

Cylindrical+AAM [20] 5.6 54 3.1 4.7
Deformable model [24] 4.3 6.2 3.2 4.6
3D CLM [2] 6.0 39 37 4.5
ours 5.3 49 31 4.4

4.2.2 Evaluation of proposed joint method on COFW
database with severe facial occlusion

In the second experiment, we evaluate the overall frame-
work on the Caltech Occluded Faces in the Wild (COFW)
database [3]. The COFW database contains facial images
(Figure 2 (a)) with severe facial occlusions in arbitrary
head poses, facial deformations collected from the website.
There are 1345 training images and 507 testing images, with
29 facial landmark location annotations and their occlusion

labels. Since COFW only provides the landmark annota-
tion and occlusion labels, we can just evaluate the landmark
detection and occlusion prediction accuracy.

The experimental results are shown in Table 2. We
compared the proposed method with other state-of-the-art
works, including the CRC [8], OC [9], RCPR [3], CRC
[8], ESR [4], and FPLL [31], where the first three meth-
ods are specifically designed to handle facial occlusion. For
both landmark detection and occlusion prediction, the pro-
posed method outperforms all of the existing works, and
its performance is closest to human performance. Our re-
sults on COFW outperforms the basic version of [25] (base-
line in Tab. 1 of [25]), which demonstrates the impor-
tance of adding the pose/deformation information to help
landmark/occlusion predictions. We are slightly worse than
their full version with occlusion pattern and shape features.
We can further include occlusion patterns and shape fea-
tures to improve the performances of our method.

Table 2. Comparison of facial landmark detection errors (normal-
ized errors w.r.t. inter-ocular distance) and occlusion prediction
results on COFW database (29 points) [3].

Method Landmark error Occlusion
(precision/recall)

Human 5.6 [3] -

CRC [8] 7.30 -

OC [9] 7.46 80.8/37.0%
RCPR [3] 8.50 80/40%
ESR [4] 11.20 -

FPLL [31] 14.40 -

SDM [26] 7.70 -

ours 6.40 80/44.43%

4.2.3 Evaluation of proposed joint method on Multi-
PIE database with varying head poses and self-
occlusion

In the third experiment, we evaluate the full model on the
MultiPIE database [10] for both head pose estimation and
facial landmark detection. The MultiPIE database con-
tains facial images (Figure 2 (b)) with varying illumina-
tions, head poses, and facial deformations. There are 13
head poses with yaw angles ranging from -90 to 90 degrees
with a 15-degree difference between two angles. The facial
deformations are induced by different expressions, includ-
ing happiness, surprise, etc. The facial landmark locations
and head pose labels are provided. In the experiments, we
use the facial images from the first 150 subjects for training
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Table 3. Facial landmark detection (pixel errors) and head pose estimation (mean absolute error, classification rate: error less than 7.5
degree) results on MultiPIE database (51 points) with the proposed method.

| 9 75 60 45 30 15 0

landmark error ‘ 341 333 317 416 296 3.19 337

ose estimation classification accuracy | 62.5 623 49.1 784 82.6 71.0 893

p yaw 527 725 833 581 499 590 3385
\ -5 30 45 60 -75  -90
landmark error ‘ 339 309 399 313 403 4.89
ose estimation classification accuracy | 96.5 96.6 949 31.3 56.3 125
P yaw 3.00 2.87 320 125 7.76 158

Table 4. Comparison of head pose estimation methods on MultiPIE database (mean absolute error, classification rate: error less than 7.5

degree).
PCR[11] linear PLS[11] kPLS[I1] ours
yaw 11.03 9.11 5.31 5.36
classification accuracy  48.33% 57.22% 79.48%  T17.1%

Table 5. Comparison of landmark detection (average pixel errors) on MultiPIE database (51 points).

near-frontal

‘ all poses

CLM [18] FPLL [31] Pose-free [28] Deep3D [30] 3D CLM [2] Chehra[!] ours‘ ours

4.75 4.39 7.34

5.74

530 4.09 351 \ 3.50

and use the subjects with IDs between 151 and 200 as test-
ing data. In the MultiPIE database, the facial occlusion is
caused by self-occlusion due to extreme head poses.

Table 3 shows the performance of the proposed method
on facial images with different yaw angles. For landmark
detection, the average pixel errors are similar across differ-
ent head poses. However, for head pose estimation, the er-
rors increase on images with extreme head poses. This is
due to the fact that for images with extreme head poses, the
numbers of visible points decrease. With limited informa-
tion, the prediction accuracy would decrease.

Comparisons of the proposed method to other state-of-
the-art works are shown in Table 4 and Table 5. For head
pose estimation, we compare the proposed method to the
learning-based head pose estimation algorithms, including
the Principal Component Regression (PCR), linear Partial
Least Squares (PLS), and kernel PLS (kPLS) methods [11].
Our method is more accurate than PCR and linear PLS, and
it is comparable to kPLS. The model-based methods [2] that
take all landmarks may fail on the images with large head
poses.

For landmark detection, our method outperforms
CLM [18], FPLL [31], Pose-free [28], Deep 3D [30], 3D
CLM [2], and Chehra [ ] on near-frontal facial images. The

performances of the proposed method on images of all 13
poses are similar to that of near-frontal images.

4.3. Further evaluation of the proposed method

4.3.1 Effectiveness of the interaction among landmark,
pose and deformable estimation

One major benefit of the proposed method is to leverage
the interactions among landmarks, pose, and deformation
to boost the performances of all tasks. In this section, we
show empirical study about how the joint interactions would
improve the performances.

First, we show how the occlusion, pose and deforma-
tion estimation will improve facial landmark detection on
the COFW database in Table 6. The baseline method is a
conventional cascade regression method for landmark de-
tection [26], and it doesn’t consider the facial occlusion,
head pose, and facial deformation. Our method can add
the occlusion prediction (ours_occlusion) without the head
pose and deformation estimation to help in facial landmark
detection. We can also additionally add the head pose and
facial deformation (second term in Equation 2, second and
third terms in Equation 5) to have the full model (ours_all)
for the prediction. From the comparison, we see that by
adding the occlusion (ours_occlusion), the landmark de-
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tection performance is better than the baseline. By fur-
ther adding the head pose and deformation, the full model
(ours_all) achieves the best performance. The experiments
demonstrate the effectiveness of utilizing the interactions
among landmarks, pose, and deformation and the occlusion
prediction.

Table 6. Effectiveness of joint occlusion, pose, and deformation
estimation for landmark detection on COFW database (normalized
errors w.r.t inter-ocular distance, 29 points).

Method Dbaseline [26] ours_occlusion ours_all

error 7.70 6.61 6.40

Second, we illustrate why the occlusion prediction is im-
portant for head pose and deformation estimation on the
MultiPIE database. As shown in Figure 4, due to self-
occlusion, it’s difficult to detect the facial landmarks on the
occluded facial part. Without considering the landmark oc-
clusion, the pose estimation algorithms may take all the fa-
cial landmarks into consideration and lead to incorrect pose
estimation results. Our method jointly performs landmark
detection and occlusion estimation. Therefore, the method
only uses the visible points for pose estimation. For exam-
ple, by fitting all points for Figure 4 (a), the estimated yaw
angle is about 26 degree, which significantly differs from
the ground truth (yaw angle is 90 degree). If we consider
the occlusion label, we can use the visible points and accu-
rately estimate the yaw angle as 90 degree.

(a) (b)
Figure 4. Facial landmark detection and occlusion prediction re-
sults on sample images. Green points: visible landmarks. Red
points: occluded landmarks.

4.3.2 Convergence study

Since the proposed method is an iterative cascade method,
we need to study its convergence property. Figure 5 and
6 show the performances of the proposed method across
different iterations on COFW and MultiPIE databases, re-
spectively. For COFW, we show landmark detection and
occlusion prediction performances. For MultiPIE, we show
landmark detection and pose estimation accuracies. As can
be seen, the proposed method converges quickly for land-
mark detection, occlusion prediction and pose estimation.

=08

landmark detection errors

recall values while fixing precision

2 3 4 1 2 3 4
iterations iterations

(a) (c)
Figure 5. Performance of the proposed method across iterations
on COFW database. (a) Landmark detection errors (normalized
errors). (b) Occlusion prediction accuracy (recall while fixing pre-
cision = (0.8).

[Ifrontal
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landmark detection errors
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(@) (b)
Figure 6. Performance of the proposed method across iterations on
MultiPIE database. (a) Landmark detection errors (pixel errors).
(b) Head pose estimation errors for the yaw angle (mean absolute
error).

5. Conclusion

In this work, we propose a unified framework that can si-
multaneously perform facial landmark detection, head pose
estimation and deformation estimation under facial occlu-
sion. With a cascade iterative procedure augmented with
model-based pose estimation, we iteratively predict the fa-
cial occlusion, facial landmark locations, head pose angles
and facial deformation. The iterative cascade procedure al-
lows us to fully exploit their joint relationships. The exper-
iments demonstrate the effectiveness of the proposed meth-
ods on benchmark databases compared to state-of-the-art
works for landmark detection, occlusion predictions and
head pose estimations.

In the future, we would further evaluate the frame-
work on more “in-the-wild” databases with the joint land-
mark, poses, and deformation annotations. In addition, al-
though the proposed method solves a specific vision prob-
lem, it demonstrates the power of leveraging the relation-
ships among related tasks with the cascade iterative proce-
dure. It can be applied to other problems that involve mul-
tiple tasks, such as joint object detection, image segmenta-
tion, and scene understanding.

Acknowledgements: The work described in this pa-
per was partly supported by IBM Ph.D. fellowship and by
the RPI-IBM Cognitive and Immersive Systems Laboratory
(CISL) project.

3478



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Incre-
mental face alignment in the wild. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pages 1859-1866,
Columbus, OH, USA, 2014. 2,7

T. Baltrusaitis, P. Robinson, and L.-P. Morency. 3d con-
strained local model for rigid and non-rigid facial track-
ing. In IEEE Conf. Comput. Vision and Pattern Recognition
(CVPR), pages 2610 — 2617, Providence, RI, USA, 2012. 1,
2,6,7

X. P. Burgos-Artizzu, P. Perona, and P. Dollar. Robust face
landmark estimation under occlusion. In /IEEE Int. Conf.
Comput. Vision (ICCV), pages 1513-1520, Sydney, Aus-
tralia, 2013. 2,5, 6

X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by ex-
plicit shape regression. Int. J. Comput. Vision, 107(2):177-
190, Apr. 2014. 2,6

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active ap-
pearance models. [EEE Trans. Pattern Anal. Mach. Intell.,
23(6):681-685, Jun. 2001. 2

D. Cristinacce and T. F. Cootes. Feature detection and
tracking with constrained local models. In Proceedings of
the British Machine Vision Conference, pages 95.1-95.10.
BMVA Press, 2006. 2

G. Fanelli, J. Gall, and L. Van Gool. Real time head pose esti-
mation with random regression forests. In IEEE Conf. Com-
put. Vision and Pattern Recognition (CVPR), pages 617-624,
Colorado Springs, CO, USA, 2011. 2

Z.-H. Feng, P. Huber, J. Kittler, W. Christmas, and X.-J. Wu.
Random cascaded-regression copse for robust facial land-
mark detection. IEEE Signal Processing Letters, 22(1):76—
80, Jan. 2015. 6

G. Ghiasi and C. Fowlkes. Occlusion coherence: Local-
izing occluded faces with a hierarchical deformable part
model. In IEEE Conf. Comput. Vision and Pattern Recogni-
tion (CVPR), pages 1899-1906, Columbus, OH, USA, 2014.
2,6

R. Gross, 1. Matthews, J. Cohn, T. Kanade, and S. Baker.
Multi-pie. Image and Vision Computing, 28(5):807-813,
May 2010. 2,5, 6

M. Haj, J. Gonzalez, and L. Davis. On partial least squares
in head pose estimation: How to simultaneously deal with
misalignment. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 2602-2609, June
2012. 2,7

G.-S. Hsu, K.-H. Chang, and S.-C. Huang. Regressive tree
structured model for facial landmark localization. In The
IEEE International Conference on Computer Vision (ICCV),
December 2015. 3

A. Jourabloo and X. Liu. Pose-invariant 3d face alignment.
In The IEEE International Conference on Computer Vision
(ICCV), December 2015. 3

A. Jourabloo and X. Liu. Large-pose face alignment via cnn-
based dense 3d model fitting. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Ve-
gas, NV, USA, 2016. 2, 3

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

3479

M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head
tracking under varying illumination: An approach based on
registration of texture-mapped 3d models. /IEEE Trans. Pat-
tern Anal. and Mach. Intell., 22(4):322-336, 2000. 6

D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2). 5

S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000
fps via regressing local binary features. In IEEE Conf. Com-
put. Vision and Pattern Recognition (CVPR), pages 1685—
1692, Columbus, OH, USA, 2014. 2

J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable model
fitting by regularized landmark mean-shift. Int. J. Comput.
Vision, 91(2):200-215, Jan. 2011. 1,2, 7

R. Stiefelhagen, J. Yang, and A. Waibel. Modeling focus of
attention for meeting indexing based on multiple cues. IEEE
Trans. Neural Networks, 13(4):928-938, Jul. 2002. 2

J. Sung, T. Kanade, and D. Kim. Pose robust face tracking
by combining active appearance models and cylinder head
models. Int. J. Comput. Vision, 80(2):260-274, Nov. 2008. 6
Y. Tong, Y. Wang, Z. Zhu, and Q. Ji. Robust facial feature
tracking under varying face pose and facial expression. Pat-
tern Recognition, 40(11):3195-3208, 2007. 2, 6

S. Tulyakov and N. Sebe. Regressing a 3d face shape from
a single image. In IEEE Int. Conf. Comput. Vision (ICCV),
pages 3748 — 3755, Santiago, Chile, 2015. 2, 3,5

G. Tzimiropoulos. Project-out cascaded regression with an
application to face alignment. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2015. 2

F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang,
and D. Levi. Driver gaze tracking and eyes off the road de-
tection system. [EEE Trans. Intelligent Transportation Sys-
tems, 16(4):2014-2027, Aug. 2015. 2,6

Y. Wu and Q. Ji. Robust facial landmark detection under
significant head poses and occlusion. In International Con-
ference on Computer Vision (ICCV), pages 3658-3666, San-
tiago, Chile, 2015. 2,4, 6

X. Xiong and F. De la Torre Frade. Supervised descent
method and its applications to face alignment. In IEEE Conf.
Comput. Vision and Pattern Recognition (CVPR), pages 532
— 539, Portland, OR, USA, 2013. 2,4,6,7, 8

L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale. A high-
resolution 3D dynamic facial expression database. In FG
conf., 2008. 5

X. Yu, J. Huang, S. Zhang, W. Yan, and D. Metaxas. Pose-
free facial landmark fitting via optimized part mixtures and
cascaded deformable shape model. In IEEE Int. Conf. Com-
put. Vision (ICCV), pages 1944-1951, Sydney, Australia,
2013. 2,7

X. Zhao, T.-K. Kim, and W. Luo. Unified face analysis by
iterative multi-output random forests. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1765—
1772, June 2014. 2, 3

X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face align-
ment across large poses: A 3d solution. In /EEE Conf. Com-
puter Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 2016. 2,3, 7



[31] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In IEEE Conf. Com-
put. Vision and Pattern Recognition (CVPR), pages 2879—
2886, Providence, RI, USA, 2012. 3,6, 7

3480



