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Abstract

Statistical machine learning models that operate on manifold-valued data are being extensively 

studied in vision, motivated by applications in activity recognition, feature tracking and medical 

imaging. While non-parametric methods have been relatively well studied in the literature, 

efficient formulations for parametric models (which may offer benefits in small sample size 

regimes) have only emerged recently. So far, manifold-valued regression models (such as geodesic 

regression) are restricted to the analysis of cross-sectional data, i.e., the so-called “fixed effects” in 

statistics. But in most “longitudinal analysis” (e.g., when a participant provides multiple 

measurements, over time) the application of fixed effects models is problematic. In an effort to 

answer this need, this paper generalizes non-linear mixed effects model to the regime where the 

response variable is manifold-valued, i.e., f : Rd → ℳ. We derive the underlying model and 

estimation schemes and demonstrate the immediate benefits such a model can provide — both for 

group level and individual level analysis — on longitudinal brain imaging data. The direct 

consequence of our results is that longitudinal analysis of manifold-valued measurements 

(especially, the symmetric positive definite manifold) can be conducted in a computationally 

tractable manner.

1. Introduction

A multitude of applications across computer vision and statistical machine learning involve 

operations on objects that are “structured”; for instance, probability densities, special classes 

of matrices/tensors, trees and graphs. It is generally accepted in the literature that treating 

these objects in their vectorized forms within off the shelf machine learning models may, 

more often than not, lead to unsatisfactory results, since the basic conditions of Euclidean 

geometry including distances and angles may not be satisfied. Defining machine learning 

models on such data requires care because it involves performing calculations while 

respecting the constraints inherent to the space where our samples come from [1]. This is 

challenging when the geometry of the space is not very well understood.
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Fortunately, in certain cases, the canonical representations of the structured objects of 

interest lead to spaces that are relatively better characterized. For instance, when the space is 

a Riemannian manifold, the differential geometry provides a suitable Riemannian metric 

which serves as a building block for inference models. Within the last ten or so years, 

numerous authors have reported how respecting the geometry/structure of the data in tasks 

as simple as summarizing the observed variability in the empirical distribution [2] yields 

good empirical performance. There is a rapidly increasing body of work showing how 

manifold-based formulations yield powerful algorithms for problems including affine 

motion tracking [3, 4], human detection [5], modeling spatial distribution of earthquakes [6], 

classification tasks [7], robot localization [8], registration [9], and numerous settings in 

medical imaging [10, 11, 12].

Symmetric positive definite matrices (SPD) are a good representative example of structured 

data that lie on a Riemannian manifold. In computer vision, SPD matrices are often 

encountered due to covariance matrices which serve as feature descriptors in tracking [4] as 

well as for texture analysis and classification [5]. Diffusion tensor magnetic resonance 

imaging, a type of neuroimaging modality, yields an SPD matrix at each image voxel as the 

local diffusion tensor. But even aside from the SPD manifold, probability densities, shape 

spaces, and certain warping functions are other examples of Riemannian manifolds which 

commonly manifest themselves in vision applications [12, 13, 14, 15]. The need for metrics, 

estimators, hypothesis tests and other tools for inference tasks has led to much interest in 

Riemannian analogs of classical vision and machine learning methods. Consequently, we 

now have manifold versions of nearest neighbor queries, dimensionality reduction, 

dictionary learning, sparse coding, kernel methods, boosting, averaging and regression. 

These developments were recently compiled within a handbook [16] which offers an 

overview of what has been accomplished so far as well as the yet unresolved technical 

issues.

A majority of the technical contributions in manifold-based algorithms within computer 

vision have focused on non-parametric formulations of the underlying problems. The 

parametric versions are recently receiving attention, motivated by applications in the life 

sciences where sample sizes are smaller. For instance, consider the simple parametric model 

that seeks to identify associations between a predictor (feature) x and a response y which is 

manifold-valued, f : x → y. Efficient parametric algorithms for this problem were developed 

as recently as a few years back [17] where the model was used to identify the relationship 

between a “shape-based” manifold variable (e.g., shape of a segmented brain region) and a 

subject specific variable x (e.g., age). Only several months back, the generalization of this 

model for multi-dimensional predictors was obtained — to fit the response y by a linear 

combination of multiple predictors (or features), x ∈ Rd or even when the predictor variable 

is manifold-valued. Such a construction also serves to identify associations between a set of 

covariates while controlling for a set of “nuisance” variables [18, 19].

Manifold-valued regression—In a longitudinal neuroimaging study of disease 

progression, the statistical models need to capture morphometric changes over time while 

controlling for the dependency of repeated measurements from the same subject. Consider 
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the following analysis: we have two groups of subjects, “controls” and “disease” which 

correspond to healthy controls and individuals with a high risk of a disease. We want to 

identify the group-differences with respect to time (or disease progression). It is known that 

anatomical changes at a voxel X can be captured by spatial derivatives, i.e., the Jacobian 

matrix J(X), of deformation maps of a subject (e.g., the changes between the first and the 

second time points, two years apart). The most widely used “deformation” feature is the log 

determinant of the Jacobian matrices, log(det(J(X))) — a scalar voxel-wise value which 

captures the volumetric/anatomical changes. The so-called Cauchy deformation tensor 

(CDT) [20] represented as  is a richer representation of J(X), an object on the 

SPD(3) manifold, see Fig. 1. To understand how each specific voxel in the image is 

associated with a predictor variable (say, age or disease status), a regression between the 

predictor and CDT at each voxel will identify brain regions that are most affected by age or 

disease. This can be accomplished by recently proposed algorithms for geodesic regression 

[17, 19, 18] or kernel regression on manifolds [21].

Random effects in longitudinal analysis—Now, let us consider a slightly more 

involved setting where each subject provides data over multiple time points, a few years 

apart. In such a longitudinal setting, we obtain one CDT image between each consecutive 

time point (i.e., pairs). A standard linear regression (or its manifold-valued analog) is 

agnostic to dependency of temporal samples. Since subjects are examined multiple times 

within the study, the repeated measurements from the same subject as the subject specific 

“random effect”. This dependency violates the i.i.d. assumptions of fixed effects models 

(e.g., generalized linear models), including the manifold versions [17, 18]. The fixed effects 

model assumes that all data are i.i.d. samples from the same underlying generating function 

with random noise on the response variable Y. As Fig. 2 shows, each subject may have a 

different trend. For example, subject A has an early disease onset (intercept). Subject B 

shows faster disease progression (slope). Also, based on the age-range of participants, there 

may be larger variability between subjects than the variability within a subject. So, a fixed 

effects linear model for the data in Fig. 2, is prone to fit population level variability (black) 
than the trajectory of each subject (red). Indeed, such subject specific random effects can be 

modeled via the more general mixed effects models. The overarching goal and contribution 
of this work is to derive formulations/algorithms for the regime where the set of longitudinal 

responses Y is a manifold valued variable and the objective is to fit linear (or non-linear) 

mixed effects models.

Related work—As briefly described above, there is a growing body of work in vision that 

incorporates the specific geometry/structure of the data directly within the estimation 

problem. Various statistical constructs have been generalized to Riemannian manifolds: 

these include regression [22, 23], margin-based and boosting classifiers [7], classification 

[24], kernel methods [25], filtering [10] and dictionary learning [26, 27]. The literature also 

includes ideas related to projective dimensionality reduction methods. For instance, the 

generalization of Principal Components analysis (PCA) via the so-called PGA [28], 

Geodesic PCA [29], Exact PGA [30], CCA on manifolds [31], Horizontal Dimension 

Reduction [32] with frame bundles, and an extension of PGA to the product space of 
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Riemannian manifolds, namely, tensor fields [24]. We should note that an important earlier 

work dealing with a univariate linear model on manifolds (related to geodesic regression) 

was studied for the group of diffeomorphisms using metrics which were not strictly 

Riemmanian [33, 34]. Despite these developments, the first results on successful 

generalization of parametric regression models to Riemannian manifolds is relatively recent: 

geodesic regression [17, 35], polynomial regression [36] and multi-variate linear regression 

with manifoldvalued responses [18]. Finally, we point out that a recent independent result on 

mixed effects models in [37] deals with univariate manifolds [0, 1], which is the unit interval 

in a real line R with a specifically designed metric to capture sigmoid function like patterns. 

This work does not deal with actual manifold-valued variables (e.g., SPD); further it is 

computationally impractical for more than hundreds of voxels. In contrast, 3D CDT images 

we will analyze exceed 1M+ voxels.

2. Preliminary concepts and notations

We first briefly review linear mixed effects models and their estimation methods. Then, we 

summarize some basic differential geometry notations that we will use. The extended 

version of this paper and [38, 39] describe more details. Also, we introduce CDT and 

Jacobian matrices to capture longitudinal morphometric brain changes.

2.1. Linear mixed effects model

In general, the estimation of regression models (such as linear/polynomial) assumes that the 

data come from an underlying model with i.i.d. noise; so effects of the covariates/features 

are pertinent to the entire sample. These models are called fixed effects. For example, a 

linear regression model is also a fixed effects model given as

(1)

where y ∈ R, x ∈ Rp, β = [β0, …, βp]T ∈ Rp+1. We see that the coefficients are ‘fixed’ and 

the same over entire population. However, in longitudinal studies (see Fig. 2), the repeated 

measurements from the same subject are no longer independent. We need a more flexible 

specification – often covariates/features have different effects on individual subjects (or 

groups), which is called random effects. For example, the rate of brain atrophy and disease 

progression can vary over subjects given by

(2)

where z is a known vector specifying which subject (or group) a sample belongs to, and  is 

the qth random effect for the ith subject (or group) denoted by ui. This combination of fixed 
and random effects yields mixed effects models [40]. When the model is linear, we get linear 

mixed effects models, which we introduce next. We then work with its nonlinear analog. The 
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nonlinear mixed effects models are an intermediate (but necessary) step in deriving our final 

models for manifold-valued data, introduced in Sec. 3.2.

Specifying the model—Let  be a set of ni repeated observations of a 

response variable for subject i. Here yi is a ni dimensional vector, vertically stacked with 

y⟦ij⟧ responses for subject i. The notation ⟦i, j⟧ simply recovers the specific observation j 
for subject i. Similarly, let the subject-specific matrix Xi of size ni × p be setup as 

 where we collect for subject i, all p measurements for all ni 

visits as rows. The matrix Zi will provide information on the number of longitudinal 

measurements for each subject (design matrix). Similar to Xi, we define Zi by specifying 

rows as . These correspond to sets of p and q variables 

(features) for the ith subject where one is interested in estimating fixed effects for the set Xi 

and random effects for the set Zi on yi. In the classical setting, a linear mixed effects model 

([40]) is given by

where β1, …, βp are the fixed effects shared over the entire population and  are the 

(subject-specific) random effects for the ith subject. The random effects 

 are assumed to follow a multivariate normal distribution. The 

“unexplained” random error ε⟦ij⟧ comes from a normal distribution . We can 

compactly write the model using matrix notation as

(3)

Let ‘vstack(·)’ be the vertical stack of parameters. By denoting y = vstack(y1, y2, · · ·, yN), 

and similarly X, Z, u, the final model for all N subjects can be expressed as,

where u ~ (0, Σ̃) and Σ̃ = diag(Σ1,Σ2, …, ΣN) = Σ ⊗ I (when Σi = Σ∀i), and Z = diag(Z1, 

Z2, …, ZN). In general, estimation of linear mixed effects models does not have an analytic 

solution unless Σ̃ and  are known.

2.2. Basic differential geometry notations

Let ℳ be a differentiable (smooth) manifold in arbitrary dimensions. A differentiable 

manifold ℳ is a topological space that is locally similar to Euclidean space and has a 
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globally defined differential structure. A Riemannian manifold (ℳ, g) is a differentiable 

manifold ℳ equipped with a smoothly varying inner product g. The family of inner products 

on all tangent spaces is known as the Riemannian metric, which defines various geometric 

notions on curved manifolds such as the length of a curve etc. A geodesic curve is a locally 

shortest path, which is analogous to straight lines in Rd — such a geodesic curve will be the 

object that defines the trajectory of our covariance matrices in the space of SPD matrices. 

Unlike the Euclidean space, note that there may exist multiple geodesic curves between two 

points on a curved manifold. So the geodesic distance between two points on ℳ is defined 

as the length of the shortest geodesic curve connecting two points (i.e., SPD matrices). The 

geodesic distance helps in measuring the error of our trajectory estimation (analogous to a 

Frobenius or ℓ2 norm based loss in the Euclidean setting). The geodesic curve from yi to yj is 

parameterized by a tangent vector in the tangent space anchored at yi with an exponential 

map Exp(yi, ·) : Tyiℳ → ℳ. The inverse of the exponential map is the logarithm map, 

Log(yi, ·) :ℳ → Tyiℳ. These two operations move us back and forth between the manifold 

and the tangent space. Separate from the above notation, matrix exponential (and logarithm) 

are simply exp(·) (and log(·)). Finally, parallel transport is a generalized parallel translation 

on manifolds. Given a differentiable curve γ : ℐ → ℳ, where ℐ is an open interval, the 

parallel transport of v0 ∈ Tγ(t0)ℳ along curve γ can be interpreted as the parallel translation 

of v0 on the manifold preserving the angle between v(t) and γ. The parallel transport of v 
from y to y′ is Γy→y′v (more details in the extended version).

3. Longitudinal analysis of CDT images

Let ℐi,j denote the image acquired from subject i at time point j. Given images ℐi,j and ℐi,j+1 

for successive visits (j, j + 1), we can compute a deformation that aligns the two images [41, 

42]. Let ℐi,1 give the subject-specific coordinate system denoted as Ωi. This will provide the 

(intermediate) common coordinate system to represent the deformations undergone by 

subject i over time, j = 1, 2, · · ·, ni. The global template where all (ni − 1) temporal 

deformations (i.e., CDT images) for each subject i will be represented is denoted as Ω. Then, 

a nonlinear deformation Φ( vox) for voxels (spatial locations) vox ∈ Ω for each image 

(rather, for each (ℐi,j+1, ℐi,j) pair) is given as

(4)

where J( vox) denotes the Jacobian of the deformations at position vox. A nice property of 

CDTs is that it preserves the determinant of J( vox), since det(J( vox)) > 0. So, a CDT 

representation introduced in Sec. 1, nicely symmetrizes J( vox) without affecting the 

volumetric change information, i.e.,  (proof in the extended version). 

The CDT “image” comprised of voxel locations vox is an object of the same size as ℐ1,1 

and derived from a black-box diffeomorphism solver given as a 3 × 3 SPD matrix  at 

each voxel. It provides the deformation field between two longitudinal images of a subject. 
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Various results have described the benefits of CDT images for analysis; an example from our 

experiments is in Sec. 6.

Recall that for a pair of real numbers a and b, the prediction of a linear model “y = ax+b” is 

always a real number. But if a and b are SPD matrices (i.e., CDTs), this property no longer 

holds: “y = ax + b” may not be a valid SPD matrix (e.g., consider when x < 0). In addition to 

the validity of predictions, while in classical linear regression, the residual of a fit, (y − (Ax 
+ b)), can be estimated directly, the error (residual) on a SPD manifold must be measured 

via the geodesic distance on a manifold between the prediction ŷ and the true response y. 

So, any machine learning model that needs to be extended for manifold-valued data must 

give particular attention to these issues, and often specialized optimization methods for 

parameter estimation are needed [17, 18, 21]. With these issues in mind, we first describe a 

linear mixed effects models with subject-specific intercepts and then transition to nonlinear 

mixed effects models for manifold valued data.

3.1. A model with subject specific intercepts

We know that in any longitudinal dataset, the errors/noise of repeated measurements are 

dependent. To consider this aspect, a common approach is to express the random effects as 

nuisance parameters. If the set {i = 1, i = 2, · · ·, i = N} indexes the columns, we may write 

the design matrix Z as diag(𝟙n1, 𝟙n2, · · ·, 𝟙nN), where 𝟙ni = [1 · · · 1]T ∈ Rni. Then, the 

model in (3) becomes

(5)

where y⟦ij⟧, β0, ui ∈ R, and β, x⟦ij⟧ ∈ Rp. Note that z⟦ij⟧ ∈ RN recovers a specific row 

corresponding to subject i’s visit j from matrix Z taking dot product with u gives us the 

subject specific random effects, ui = z⟦ij⟧u.

This model poses two problems. 1) It has the same slope β for the entire population, whereas 

subjects in the study may have different rate of disease progression; 2) Another issue is the 

interpretation of ui, which is viewed as subject-specific shift in the y space or x space, i.e., 

depending on whether we move it to the left or right of the equality in (5). In medical 

applications, readability of models is important to understand the disease. Our solution 

involves explicitly adding a subject-specific shift for x as well as a shift in y.

3.2. Nonlinear mixed effects models with ψi(x)

Based on the foregoing motivation, we can extend the linear mixed effects models with a 

subject-specific random function ψi(·) as

(6)
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Depending on the form of ψi(·), (6) can be a nonlinear mixed effects model (NLMM). When 

ψi is the Identity, we simply get a linear mixed effects model. In our analysis, we use 

ψi(x) := αi(x − τi − t0) + t0 motivated by [43] where each subject can have their own speed 

of disease progression (αi) and different onset time τi, but (β0, β, t0) are common for the 

population. Then we have

(7)

Note that this extension is different from the generalized linear mixed effects models [44], 

e.g., y⟦ij⟧ = h−1(x⟦ij⟧β+ z⟦ij⟧ui), ui ~ (0, Σi). Next, we extend the mixed effects models in 

(5) and (7) to manifold-valued data.

4. Mixed effects models on manifolds

The Linear Mixed Effects Model (LMM) can be extended in many ways to the manifold 

setting depending on the order of addition and interpretation. For instance, recall that the 

associativity of addition, (a+b)+c = a+(b+c), in the Euclidean space is not directly translated 

to manifolds, i.e., Exp(Exp(a, b), c) ≠ Exp(Exp(a, c′), b′), where b′ and c′ are parallelly 

transported tangent vectors of b and c respectively, so that they are in the right tangent 

spaces. A natural extension of LMM in (3) can be written as

(8)

where y⟦ij⟧, B, Bi ∈ ℳ, V ∈ TBℳp, Ui ∈ Th⟦ij⟧ℳ
q, h⟦ij⟧ = Exp(B, V x⟦ij⟧), x⟦ij⟧ ∈ Rp and 

z⟦ij⟧ ∈ Rq. Recall that the base point B on the manifold ℳ is the analog to the intercept β0 in 

(5) whereas V (and Ui) corresponds to the slope β (and the random effects ui) respectively. 

Unfortunately, the model above has an issue related to Ui. Note that Ui is used in different 

tangent spaces at h⟦ij⟧. Also, especially on SPD(n) manifolds with the GL-invariant metric, 

the norm of the tangent vectors varies as a function of the base point B of the respective 

tangent spaces, i.e., . So the corresponding scales might 

be different. As a result, the prior for Ui needs to be carefully designed [45] to have 

consistency over all tangent spaces. To address this problem, we change the order of the 

exponential maps and propose a mixed effects model with subject specific intercepts (shift in 

y) on manifolds. Also, unlike the Euclidean space, in general, there is no equivalence 

between the shift in x and the shift in y. So, we can explicitly add in the shift in x, denoted 

as τi. Then, our formulation on manifolds is given as

(9)
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(10)

where τi ∈ Rp, Bi ∈ ℳ, V ∈ TBℳp, Ui ∈ TBℳq, and the remaining variables are the same as 

before. As in the standard mixed effects models, Ui is assumed to follow a normal 

distribution. With this construction in hand, we may now include a subject-specific time shift 

in the onset time (similar to (7)) and assume that the progression of disease has the same 

overall pattern but only its speed/rate and onset time vary between subjects. The model is 

given by

(11)

where αi is the subject-specific acceleration, αi < 1 (and αi > 1 resp.) means slower (and 

faster resp.) than the population. Further, τi is the subject-specific shift in onset time: τi > 0 

means a late onset time whereas t0 is the global shift in onset time. Finally, Ui (or Bi) are the 

tangent vectors (or base points) that characterize the subject-specific shift in the response 

variable space (see the Euclidean case in Fig. 2). As in the classical setting, we may assume 

that the random effects are normally distributed, i.e., 

.

5. Parameter estimation procedure

The estimation of the mixed effects models on manifolds is challenging; provably accurate 

estimation methods are almost infeasible to run over the entire brain image. Even for 

Euclidean response variables, efficient estimation methods for nonlinear mixed effects 

models are still being actively studied in literature, e.g., Alternating algorithms [44], 

Laplacian and adaptive Gaussian quadrature algorithms [46], as well as generalized EM 

algorithms with MCMC [47]. Unfortunately, this issue only gets worse in the manifold 

setting. Fitting a nonlinear mixed effects model exactly, even for univariate manifolds on the 
real line takes about a day [37]. In our data set, the number of voxels is 1M+, it is 

impractical to perform exact analysis for the full brain. So, we present approximate 

algorithms based on a certain geometrical interpretation of the models.

5.1. Estimation of RNLMM

We observe that the main building block of our models, Riemannian nonlinear mixed effects 

models (RNLMMs), is a manifold-valued multivariate general linear model (MMGLM). 

This module has an efficient parameter estimation called the Log-Euclidean framework. It is 

known [19] that in practice the estimation can be well approximated in the tangent space at 

the Fréchet mean of the response variables Y with a centered X, i.e., B ≈ Ȳ, τ ≈ X̄. As in a 

global manifold-valued linear model [19], the parameter V will correspond to the full data 

set; however, we allow subject-specific variability for the base point B and τ via Bi(r) and 
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τi(r), where r ∈ R can be viewed as the mixing rate between the local models that share a 

global V. This is given by

(12)

In other words, r ∈ R is a weight to globally average the population subject specific base 

points Bi(r) and time shifts τi(r) — all subjects share the fixed effects V but each subject 

corresponds to its own shifts τi(r) and Bi(r) in x and y spaces. When r = 0, the model reduces 

to the model in [18] with only global intercepts (see the extended version).

Our estimation for (12) is summarized in Alg. 1, where  is a tangent vector obtained by: 

taking the response y⟦ij⟧ and mapping it to the tangent space at Bi(r) and parallel 

transporting that mapping to TBℳ. We now briefly describe how we can perform the 

estimation efficiently. First, in Step 2, we solve for the linear interpolation of two SPD 

matrices w.r.t the geodesic distance on the SPD manifold using the analytical form of the 

solution in [48] (note that when the number of samples is large, recursive schemes exist 

[49]). In Step 4, we transport the tangent vectors from B to I and vice versa using group 

action, which is known to be more efficient than parallel transport but equivalent [50].

Algorithm 1

Riemannian mixed effects models

1: Calculate the mean for each subject, ȳi,

yi = argmin
y ∈ ℳ

∑
j = 1

ni
d(y, y⟦i j⟧)2 . (13)

Similarly calculate ȳ for the entire population.

2: Given r, solve for Bi(r) (interpolation of ȳi and ȳ) by

Bi(r) = y(y−1yi)
r = yi(yi

−1y)1 − r, 0 ≤ r ≤ 1.

3:

.

4:

Transport  to I by group action.

5: Center x by x⟦ij⟧ (r)=( 1 − r)(x⟦ij⟧ − x̄) + r(x⟦ij⟧ − x̄i).

6:

Calculate V* using MMGLM [19] on transported  and x⟦ij⟧ (r).

7: Prediction is given by

Kim et al. Page 10

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yi j = Exp(Bi(r), ΓB Bi(r)(V
∗)xi j(r)) . (14)

5.2. Estimation of RNLMM with ψi(x)

The estimation of the model in (11) with the subject-specific random function ψi(·) involves 

few additional technical challenges. To reduce the problem complexity, we first find the 

main longitudinal change direction η controlling for the subject-specific random effects Ȳi 

and X̄
i (since Ui and τi are random effects). This scheme is described in Alg. 2.

Algorithm 2

Calculate longitudinal change direction

1: Calculate the population Fréchet mean ȳ of response.

2: Calculate the Fréchet mean for each subject ȳi.

3:

Solve .

4:

Solve , where x̄i = j [x⟦ij⟧].

5:

Collect , and .

6: Calculate longitudinal change direction η by least squares estimation, η=((X≀)TX≀)−1 ((X≀)T Y )∈TIℳ.

Once the longitudinal change direction η (fixed effects for the entire population) is 

estimated, we solve for a subset of parameters at a time. This procedure is described in Alg. 

3, where we solve for all parameters given the estimate of η. Note that for our downstream 

analysis, the bias induced by priors on parameters may reduce the statistical power. So, we 

simply used noninformative priors for all parameters. While Alg. 3 utilizes noninformative 

priors, with minor changes, we can easily incorporate normal distribution priors, see the 

extended version.

Algorithm 3

Riemannian mixed effects models with ψi(x)

1: Calculate the Fréchet mean ȳ ∈ℳof population.

2: Calculate the Fréchet mean for each subject ȳi ∈ℳ.

3: Main longitudinal change direction η by algorithm (2).

4:
Calculate subject-specfic base points (random effects) , where 

.

5:

.

6: while until convergence do
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7: Calculate the common speed of change V = cη and common time intercept t0 = b/c with fixed all other variables by

∑i j qi
Tqi ∑i j pi j

T qi

∑i j pi j
T qi ∑i j pi j

T pi j

b
c

=
∑i j qi

Tyi j
≀

∑i j pi j
T yi j

≀ ,

where b := t0c, qi := η(1 − αi), pij := η(αixij − αiτi).

8:
Given V, t0, calculate the subject-specific acceleration αi, and time-shift τi by generalized least square estimation 
with the priors for αi and τi = di/αi

∑ jWi j
T Wi j −∑ jWi j

T V

∑ jWi j
T V −∑ jVTV

αi
di

=
∑ jϒi j

T Wi j

∑ jϒi j
T V

,

where , Wij := V (Xij − t0) and di = αiτi.

9: end while

Alg. 3 contains many steps in common with Alg. 1. In Step 7, we estimate the fixed effects 

V and t0 by fixing all other variables (c is a dummy variable). In Step 8, we estimate the 

subject-specific random effects αi and τi by fixing V and t0 (di are dummy variables). 

Additional details including derivation are available in the extended version.

6. Experiments

Goals—The overarching goal of our experiments is to evaluate whether the proposed 

formulations can serve as core modules that drive longitudinal analysis of image datasets in 

neuroimaging. To this end, when conducting analysis of longitudinal data acquired in the 

context of a specific disease, the procedure should yield meaningful results for group 

analysis — for instance, when the population is split with a stratification variable (e.g., 

gender or disease risk factor), the “maps” of statistically significant group-wise differences 

in subject/voxel-specific “random” effects (especially, acceleration and spatial shift) should 

be scientifically interpretable, yet generally consistent with a baseline. Our experiments 

below show the extent to which the models satisfy this requirement.

Data—The CDT images (denoting subject-specific warps) were derived from a longitudinal 

neuroimaging study of pre-clinical Alzheimer’s disease (AD). The longitudinal warps (or 

transformations) were obtained using with-in subject registration of T1-weighted images 

between two consecutive visits i.e., Φi,j : ℐi,j → ℐi,j+1. Voxelwise CDTs were derived from 

the spatial derivatives ∇Φi,j( vox) of the deformation field. The details of minimizing 

spatiotemporal biases in the CDT estimation are presented in the extended verion due to 

space constraints.

CDT versus det(J)—We first present a motivating experiment to demonstrate the rationale 

behind using CDTs instead of the determinants det(J) of Jacobian of the deformations, i.e., 

do CDTs actually carry more information? We test for group differences in longitudinal 
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changes of the brain between groups of middle versus old aged individuals using CDTs and 

compare these results to those obtained via determinants. In order to avoid confounding 

factors in this comparison, we use the Cramér’s test, a nonparametric test for univariate as 

well as manifold-valued data since it does not require any specification of the null 

distribution [51]. Fig. 3 clearly shows the improvements in statistical differences across the 

groups (higher sensitivity) when using CDTs (instead of det(J) maps).

RNLMMs on longitudinal CDTs—We now present results using our Riemannian 

nonlinear mixed effects models (RNLMM) using subject specific transformation functions 

ψi(x⟦ij⟧) (6). Here, x⟦ij⟧ ∈ R is used to represent the age of each subject at the previous visit 

and y⟦ij⟧ ∈ ℳ, (the CDT image calculated from scans at two points). For these results, we 

used data from subjects who had at least three visits. We estimated our model at each voxel 

in the brain (1.3M+) using a total of N = 228 participants that had at least two CDT images. 

The maps for acceleration (αi), spatial shift (Ui) and time shift (τi) for each of the subjects 

offer unique advantages. For instance, these maps are not offered by standard linear mixed 

effects models where only a subject specific slope or intercept is used as the random-effects 

(independently noted in [37]). Fig. 4 shows four representative subject-specific acceleration 

maps. The regions where this specific individual has a faster (slower) aging (or disease 

progression) compared to the population average rate are colored in yellow (and blue) color-

scales respectively. These RNLMM maps can be used to perform additional “downstream” 

statistical tests using parametric tests. Here, we cover two specific examples. In Fig. 4, we 

show the kind of results our model can offer at the individual level. Fig. 4(a)–(d) shows four 

results, each pertaining to a different participant in the study. Fig. 4(a)–(b) show maps for 

two females, whereas Fig. 4(c)–(d) show examples of two males. The color indicates the 

brain deformation over time (captured via acceleration), for this specific person, relative to 

the population. We see that a representative male (with no APOE risk) shows a slower 

acceleration rate (blue regions) compared to the population. Few other models in the 

literature can provide such personalized assessment.

Of course, such acceleration and spatial shift maps can also be used for group level analysis. 

We present results of Hotelling-T2 tests on the group-wise Ui maps using the following two 

stratification variables: (a) males and females and (b) individuals with/without AD risk (due 

to APOE) [52, 53]. This enables us to identify longitudinal spatial shifts (deviations from 

population base points B) between these groups, shown in Fig. 5 for the gender and APOE 

stratification variables. The extended version provides several more analyses including 

synthetic experiments to show the behavior of RNLMMs in (10) and (11).

7. Conclusion

This paper extends nonlinear mixed effects models to the setting where the responses lie on 

curved spaces such as the manifold of symmetric positive definite (SPD) matrices. By 

treating the subject-wise “non-linear warps” between consecutive time points as a field of 

Cauchy deformation tensors (CDT), we show how our model can facilitate longitudinal 

analysis that respects the geometry of such data. While the existing body of work dealing 

with regression models on manifold-valued data is inherently restricted to cross-sectional 
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studies, the proposed mixed effects formulation significantly expands the operating range of 

the types of analyses we can conduct. For instance, the “random” effects in the construction 

parameterized by acceleration and spatial and time shifts offer interesting advantages. Not 

only can these quantities be directly used for downstream models but they also offer 

interpretability at the level of individual subjects — as an example, when conditioned on (or 

controlled for) race, sex and education, we can ask if a specific person’s onset time of brain 

atrophy or rate of atrophy, at the level of individual voxels, deviates from the group. This 

capability is not currently available otherwise.
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Figure 1. 
An example panel of data generated in morphometric studies. (a, d) The moving and fixed 

brain image respectively. (b) Warped spatial grid to move (a) to (d). (c) Vector field of local 

deformations. (e, f) A map of the det(J) of the deformation field. (g, h) The Cauchy 

deformation tensor field (CDTs) ( ). Among the different features of brain 

morphology that can be analyzed, CDTs are the focus of this paper.
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Figure 2. 
This figure demonstrates the key effects we are interested in capturing. Each subject has a 

different progression rate of the brain atrophy (acceleration effect) and has a different onset 

for the change (time shift). A regular general linear model (GLM) with fixed effects is 

insufficient to capture these effects while including random effects (subject-specific slope 

and intercept) in mixed effects models can capture these effects.
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Figure 3. 
Results of Cramér’s test showing voxels that are different between middle and old age 

groups (p < 0.01) from (a) CDTs and (b) det(J).
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Figure 4. 
Representative acceleration (αi) maps derived from our RNLMM. (a) Female, APOE−. (b) 

Female, APOE+. (c) Male, APOE−. (d) Male, APOE+. The male with no APOE risk shows 

slower progression (more blue regions) compared to the population average.
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Figure 5. 
P-value maps of group differences in random effects (Ui). Top: Gender differences. Bottom: 

APOE group {APOE+, APOE−} differences. Gender differences can be effectively captured 

by our RNLMM.
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	Abstract
	1. Introduction
	A multitude of applications across computer vision and statistical machine learning involve operations on objects that are “structured”; for instance, probability densities, special classes of matrices/tensors, trees and graphs. It is generally accepted in the literature that treating these objects in their vectorized forms within off the shelf machine learning models may, more often than not, lead to unsatisfactory results, since the basic conditions of Euclidean geometry including distances and angles may not be satisfied. Defining machine learning models on such data requires care because it involves performing calculations while respecting the constraints inherent to the space where our samples come from [1]. This is challenging when the geometry of the space is not very well understood.Fortunately, in certain cases, the canonical representations of the structured objects of interest lead to spaces that are relatively better characterized. For instance, when the space is a Riemannian manifold, the differential geometry provides a suitable Riemannian metric which serves as a building block for inference models. Within the last ten or so years, numerous authors have reported how respecting the geometry/structure of the data in tasks as simple as summarizing the observed variability in the empirical distribution [2] yields good empirical performance. There is a rapidly increasing body of work showing how manifold-based formulations yield powerful algorithms for problems including affine motion tracking [3, 4], human detection [5], modeling spatial distribution of earthquakes [6], classification tasks [7], robot localization [8], registration [9], and numerous settings in medical imaging [10, 11, 12].Symmetric positive definite matrices (SPD) are a good representative example of structured data that lie on a Riemannian manifold. In computer vision, SPD matrices are often encountered due to covariance matrices which serve as feature descriptors in tracking [4] as well as for texture analysis and classification [5]. Diffusion tensor magnetic resonance imaging, a type of neuroimaging modality, yields an SPD matrix at each image voxel as the local diffusion tensor. But even aside from the SPD manifold, probability densities, shape spaces, and certain warping functions are other examples of Riemannian manifolds which commonly manifest themselves in vision applications [12, 13, 14, 15]. The need for metrics, estimators, hypothesis tests and other tools for inference tasks has led to much interest in Riemannian analogs of classical vision and machine learning methods. Consequently, we now have manifold versions of nearest neighbor queries, dimensionality reduction, dictionary learning, sparse coding, kernel methods, boosting, averaging and regression. These developments were recently compiled within a handbook [16] which offers an overview of what has been accomplished so far as well as the yet unresolved technical issues.A majority of the technical contributions in manifold-based algorithms within computer vision have focused on non-parametric formulations of the underlying problems. The parametric versions are recently receiving attention, motivated by applications in the life sciences where sample sizes are smaller. For instance, consider the simple parametric model that seeks to identify associations between a predictor (feature) x and a response y which is manifold-valued, f : x → y. Efficient parametric algorithms for this problem were developed as recently as a few years back [17] where the model was used to identify the relationship between a “shape-based” manifold variable (e.g., shape of a segmented brain region) and a subject specific variable x (e.g., age). Only several months back, the generalization of this model for multi-dimensional predictors was obtained — to fit the response y by a linear combination of multiple predictors (or features), x ∈ Rd or even when the predictor variable is manifold-valued. Such a construction also serves to identify associations between a set of covariates while controlling for a set of “nuisance” variables [18, 19].Manifold-valued regression—In a longitudinal neuroimaging study of disease progression, the statistical models need to capture morphometric changes over time while controlling for the dependency of repeated measurements from the same subject. Consider the following analysis: we have two groups of subjects, “controls” and “disease” which correspond to healthy controls and individuals with a high risk of a disease. We want to identify the group-differences with respect to time (or disease progression). It is known that anatomical changes at a voxel X can be captured by spatial derivatives, i.e., the Jacobian matrix J(X), of deformation maps of a subject (e.g., the changes between the first and the second time points, two years apart). The most widely used “deformation” feature is the log determinant of the Jacobian matrices, log(det(J(X))) — a scalar voxel-wise value which captures the volumetric/anatomical changes. The so-called Cauchy deformation tensor (CDT) [20] represented as 
 is a richer representation of J(X), an object on the SPD(3) manifold, see Fig. 1. To understand how each specific voxel in the image is associated with a predictor variable (say, age or disease status), a regression between the predictor and CDT at each voxel will identify brain regions that are most affected by age or disease. This can be accomplished by recently proposed algorithms for geodesic regression [17, 19, 18] or kernel regression on manifolds [21].Random effects in longitudinal analysis—Now, let us consider a slightly more involved setting where each subject provides data over multiple time points, a few years apart. In such a longitudinal setting, we obtain one CDT image between each consecutive time point (i.e., pairs). A standard linear regression (or its manifold-valued analog) is agnostic to dependency of temporal samples. Since subjects are examined multiple times within the study, the repeated measurements from the same subject as the subject specific “random effect”. This dependency violates the i.i.d. assumptions of fixed effects models (e.g., generalized linear models), including the manifold versions [17, 18]. The fixed effects model assumes that all data are i.i.d. samples from the same underlying generating function with random noise on the response variable Y. As Fig. 2 shows, each subject may have a different trend. For example, subject A has an early disease onset (intercept). Subject B shows faster disease progression (slope). Also, based on the age-range of participants, there may be larger variability between subjects than the variability within a subject. So, a fixed effects linear model for the data in Fig. 2, is prone to fit population level variability (black) than the trajectory of each subject (red). Indeed, such subject specific random effects can be modeled via the more general mixed effects models. The overarching goal and contribution of this work is to derive formulations/algorithms for the regime where the set of longitudinal responses Y is a manifold valued variable and the objective is to fit linear (or non-linear) mixed effects models.Related work—As briefly described above, there is a growing body of work in vision that incorporates the specific geometry/structure of the data directly within the estimation problem. Various statistical constructs have been generalized to Riemannian manifolds: these include regression [22, 23], margin-based and boosting classifiers [7], classification [24], kernel methods [25], filtering [10] and dictionary learning [26, 27]. The literature also includes ideas related to projective dimensionality reduction methods. For instance, the generalization of Principal Components analysis (PCA) via the so-called PGA [28], Geodesic PCA [29], Exact PGA [30], CCA on manifolds [31], Horizontal Dimension Reduction [32] with frame bundles, and an extension of PGA to the product space of Riemannian manifolds, namely, tensor fields [24]. We should note that an important earlier work dealing with a univariate linear model on manifolds (related to geodesic regression) was studied for the group of diffeomorphisms using metrics which were not strictly Riemmanian [33, 34]. Despite these developments, the first results on successful generalization of parametric regression models to Riemannian manifolds is relatively recent: geodesic regression [17, 35], polynomial regression [36] and multi-variate linear regression with manifoldvalued responses [18]. Finally, we point out that a recent independent result on mixed effects models in [37] deals with univariate manifolds [0, 1], which is the unit interval in a real line R with a specifically designed metric to capture sigmoid function like patterns. This work does not deal with actual manifold-valued variables (e.g., SPD); further it is computationally impractical for more than hundreds of voxels. In contrast, 3D CDT images we will analyze exceed 1M+ voxels.
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	Goals—The overarching goal of our experiments is to evaluate whether the proposed formulations can serve as core modules that drive longitudinal analysis of image datasets in neuroimaging. To this end, when conducting analysis of longitudinal data acquired in the context of a specific disease, the procedure should yield meaningful results for group analysis — for instance, when the population is split with a stratification variable (e.g., gender or disease risk factor), the “maps” of statistically significant group-wise differences in subject/voxel-specific “random” effects (especially, acceleration and spatial shift) should be scientifically interpretable, yet generally consistent with a baseline. Our experiments below show the extent to which the models satisfy this requirement.Data—The CDT images (denoting subject-specific warps) were derived from a longitudinal neuroimaging study of pre-clinical Alzheimer’s disease (AD). The longitudinal warps (or transformations) were obtained using with-in subject registration of T1-weighted images between two consecutive visits i.e., Φi,j : ℐi,j → ℐi,j+1. Voxelwise CDTs were derived from the spatial derivatives ∇Φi,j( vox) of the deformation field. The details of minimizing spatiotemporal biases in the CDT estimation are presented in the extended verion due to space constraints.CDT versus det(J)—We first present a motivating experiment to demonstrate the rationale behind using CDTs instead of the determinants det(J) of Jacobian of the deformations, i.e., do CDTs actually carry more information? We test for group differences in longitudinal changes of the brain between groups of middle versus old aged individuals using CDTs and compare these results to those obtained via determinants. In order to avoid confounding factors in this comparison, we use the Cramér’s test, a nonparametric test for univariate as well as manifold-valued data since it does not require any specification of the null distribution [51]. Fig. 3 clearly shows the improvements in statistical differences across the groups (higher sensitivity) when using CDTs (instead of det(J) maps).RNLMMs on longitudinal CDTs—We now present results using our Riemannian nonlinear mixed effects models (RNLMM) using subject specific transformation functions ψi(x⟦ij⟧) (6). Here, x⟦ij⟧ ∈ R is used to represent the age of each subject at the previous visit and y⟦ij⟧ ∈ ℳ, (the CDT image calculated from scans at two points). For these results, we used data from subjects who had at least three visits. We estimated our model at each voxel in the brain (1.3M+) using a total of N = 228 participants that had at least two CDT images. The maps for acceleration (αi), spatial shift (Ui) and time shift (τi) for each of the subjects offer unique advantages. For instance, these maps are not offered by standard linear mixed effects models where only a subject specific slope or intercept is used as the random-effects (independently noted in [37]). Fig. 4 shows four representative subject-specific acceleration maps. The regions where this specific individual has a faster (slower) aging (or disease progression) compared to the population average rate are colored in yellow (and blue) color-scales respectively. These RNLMM maps can be used to perform additional “downstream” statistical tests using parametric tests. Here, we cover two specific examples. In Fig. 4, we show the kind of results our model can offer at the individual level. Fig. 4(a)–(d) shows four results, each pertaining to a different participant in the study. Fig. 4(a)–(b) show maps for two females, whereas Fig. 4(c)–(d) show examples of two males. The color indicates the brain deformation over time (captured via acceleration), for this specific person, relative to the population. We see that a representative male (with no APOE risk) shows a slower acceleration rate (blue regions) compared to the population. Few other models in the literature can provide such personalized assessment.Of course, such acceleration and spatial shift maps can also be used for group level analysis. We present results of Hotelling-T2 tests on the group-wise Ui maps using the following two stratification variables: (a) males and females and (b) individuals with/without AD risk (due to APOE) [52, 53]. This enables us to identify longitudinal spatial shifts (deviations from population base points B) between these groups, shown in Fig. 5 for the gender and APOE stratification variables. The extended version provides several more analyses including synthetic experiments to show the behavior of RNLMMs in (10) and (11).
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