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Abstract

RGB-D scanning of indoor environments is impor-
tant for many applications, including real estate, in-
terior design, and virtual reality. However, it is still
challenging to register RGB-D images from a hand-
held camera over a long video sequence into a globally
consistent 3D model. Current methods often can lose
tracking or drift and thus fail to reconstruct salient
structures in large environments (e.g., parallel walls in
different rooms). To address this problem, we propose
a “fine-to-coarse” global registration algorithm that
leverages robust registrations at finer scales to seed
detection and enforcement of new correspondence and
structural constraints at coarser scales. To test global
registration algorithms, we provide a benchmark with
10,401 manually-clicked point correspondences in 25
scenes from the SUN3D dataset. During experiments
with this benchmark, we find that our fine-to-coarse
algorithm registers long RGB-D sequences better than
previous methods.

1. Introduction

The proliferation of inexpensive RGB-D video
cameras allows for easy scanning of static indoor en-
vironments, enabling applications in many domains,
including cultural heritage, real estate and virtual real-
ity. Motivated by these applications, our goal is to cre-
ate a method that takes a sequence of RGB-D images
captured with a hand-held camera as input and pro-
duces a globally consistent 3D model as output. We
would like the algorithm to register images robustly in
a wide range of indoor environments (offices, homes,
museums, etc.), execute off-line within practical com-
putational limits, and work with data acquired by in-
expensive commodity cameras, so that it can be used
by non-experts.

Despite much prior work, it is still difficult to regis-
ter RGB-D data acquired with a hand-held camera. Al-

Figure 1: We present a fine-to-coarse optimization strategy for glob-
ally registering RGB-D scans in indoor environments. Given an ini-
tial registration (left), our algorithm iteratively detects and enforces
planar structures and feature correspondences at increasing scales.
In this way, it discovers long-range constraints important for a glob-
ally consistent registration – e.g., note how opposing walls are par-
allel even across different rooms in our results on the right.

though camera poses can usually be tracked over short
distances [28], local tracking often fails in texture-
less regions and/or drifts over long ranges [9, 30] (left
side of Figure 1). These errors can be fixed with
asynchronous or global optimizations based on de-
tected loop closures [8, 19, 46]. However, finding
loop closures is difficult without prior constraints in
large real-world scans with multiple rooms and/or re-
peated structures. In our experience, even state-of-the-
art global registration methods produce warped sur-
faces and improbable structures in these cases [8].

To address this issue, global refinement methods
have been proposed based on fitting structural models
[24, 25, 27] and/or aligning closest point correspon-
dences [5, 14]. However, these methods only succeed
when the alignments provided as input are nearly cor-
rect. Otherwise, they may detect and amplify erro-
neous constraints found in the misaligned inputs.

We introduce a new “fine-to-coarse” global regis-
tration algorithm that refines an initial set of cam-
era poses by iteratively detecting and enforcing geo-
metric constraints within gradually growing subsets of
the scanned trajectory. During each iteration, closest

1

ar
X

iv
:1

60
7.

08
53

9v
3 

 [
cs

.C
V

] 
 2

3 
N

ov
 2

01
6



Figure 2: Schematic view of window sizes and their growth as iter-
ations increase. In every iteration, the camera trajectory is divided
into multiple overlapping windows of equal length. The window
size is doubled in each iteration, until the entire trajectory is consid-
ered within a single window.

points and geometric constraints (plane parallelism,
perpendicularity, etc.) are detected and enforced only
within overlapping “windows” of sequential RGB-D
frames. The windows start small, such that relative
initial alignments are likely to be correct (Figure 2).
As the algorithm proceeds, the windows gradually
increase in size, enabling detection of longer-range
correspondences and large-scale geometric structures
leveraging the improved trajectory provided by pre-
vious iterations. This process is continued until final
window includes the entire scan and a global refine-
ment can be done robustly.

The advantage of this fine-to-coarse approach is
that closest point correspondences and planar struc-
tures are detected in each iteration only at the scales
at which previous iterations have already aligned the
scans. Enforcing these constraints in one iteration
improves the registration for the next. For example
in Figure 3, note how geometric constraints between
walls become easier to detect in each iteration (left to
right), and enforcement of those constraints gradually
rectifies the reconstruction. In the final iteration, the
alignment is almost perfect, making it trivial to detect
very large-scale structures and long-range constraints
(e.g., parallel walls in different rooms), which are cru-
cial for correct global registration.

To evaluate this algorithm and enable comparisons
between future algorithms, we have created a new reg-
istration benchmark based on the SUN3D dataset [47].
It contains 10,401 manually-clicked point correspon-
dences in RGB-D scans containing 149011 frames in
25 scenes, many of which span multiple rooms. Dur-
ing experiments with this new benchmark, we find that
our fine-to-coarse algorithm produces more accurate
global registrations and handles more difficult inputs
than previous approaches.

Overall, the research contributions of this paper are
three-fold. First, we propose a new fine-to-coarse, it-
erative refinement strategy for global registration of
large-scale RGB-D scans. Second, we introduce a a
new benchmark dataset for evaluating global registra-
tion algorithms quantitatively on real RGB-D scans.
Finally, we provide results of ablation studies reveal-

ing trade-offs for different components of a global reg-
istration algorithm. The code and data for all three will
be made publicly available.

2. Related Work

There has been a long history of research on reg-
istration of RGB-D images in both computer graphics
and computer vision, as well as in augmented reality,
robotics, and other fields [37]. The following para-
graphs describe the work most closely related to ours.

Real-time reconstruction. Most prior work has fo-
cused on real-time registration motivated by SLAM
applications in robotics and augmented reality [37].
Early systems use ICP to estimate pairwise alignments
of adjacent video frames [4] and feature matching
techniques to detect and align loop closures [2]. More
recent methods have aligned frames to a scene model,
represented as a point cloud [19, 21, 34, 46] or an im-
plicit function [6, 9, 20, 28, 42, 44, 45]. With these
methods, small local alignment errors can accumulate
to form gross inconsistencies at large scales [22, 30].

Off-line global registration. To rectify misalign-
ments in on-line camera pose estimates, it is com-
mon to use off-line or asynchronously executed global
registration procedures. A common formulation is to
compute a pose graph with edges representing pair-
wise transformations between frames and then opti-
mize an objective function penalizing deviations from
these pairwise alignments [16, 19, 50, 51]. A ma-
jor challenge in these approaches is to identify which
pairs should be connected by edges (loop closures).
Previous methods have searched for similar images
with Bag-of-Words models [2], randomized fern en-
codings [46], convolutional neural networks [7], and
other methods. Choi et al.[8] recently proposed a
method that uses indicator variables to identify true
loop closures during the global optimization using a
least-squares formulation. In our experiments, their al-
gorithm is successful on scans of small environments,
but not for ones with multiple rooms, large-scale struc-
tures, and/or many repeated elements.

Hierarchical graph optimization. Some methods
fuse subgraphs of a pose graph hierarchically to im-
prove optimization robustness and efficiency [8, 13,
15, 33, 40]. Some of the ideas motivating these meth-
ods are related to ours. However, they detect all po-
tential loop closures before the optimization starts. In
contrast, we detect new constraints (planar relation-
ships and feature correspondences) in the inner loop of
an iterative refinement, which enables gradual discov-
ery of large-scale structures and long-range constraints



Figure 3: Schematic view of fine-to-coarse registration. Starting with initial alignment T0 shown on the left, our algorithm detects and enforces
structures in local regions (color-coded) in the first few iterations. As the algorithm progresses, the trajectory is refined, allowing for detection
of larger geometrical structures. By iteration 6, we have properly aligned the wall marked by the arrow, without using explicit loop closures.

as the registration gets better.

Iterative refinement. Other methods have used Iter-
ative Closest Point (ICP) [4] to compute global regis-
trations [32, 5, 14]. The advantage of this approach is
that dense correspondences (including loop closures)
are found only with local searches for closest points
based on a prior alignments, rather than with global
searches that consider all pairs of frames. However,
ICP generally requires a good initial alignment and
thus is rarely used for global RGB-D registration ex-
cept as fine-scale refinement in the last step [8]. Our
work addresses that limitation.

3. Approach
In this paper, we describe a global registration al-

gorithm that leverages detection and enforcement of
nearly-satisfied constraints in the inner loop of an iter-
ative registration refinement. The algorithm starts with
an initial registration and then follows the general E-M
strategy of alternating between a discrete E step (de-
tecting constraints) and a continuous M step (solving
for the camera poses that best satisfy the constraints).

Though the method is general, we consider two
types of constraints in this work: feature correspon-
dences and planar structure relationships. During each
iteration of the algorithm, constraints are created based
on correspondences between closest compatible fea-
tures (like in ICP) and based on geometric relation-
ships (coplanarity, parallelism, orthogonality, etc.) be-
tween detected planar structures. The constraints are
integrated into a global optimization that refines cam-
era poses before proceeding to the next iteration.

The key new idea is that the detection of constraints
occurs only within windows of sequential RGB-D
frames that grow gradually as the iterative algorithm
proceeds. In the early iterations, the windows span just
a few sequential RGB-D frames where relative camera
poses of the initial alignment should be nearly correct.
At this early stage, for example, it should be possible
to detect coplanarity and orthogonality constraints be-
tween nearby surfaces in adjacent frames (Figure 3a).
As the iterations proceed, the windows get larger, en-

abling detection and enforcement of larger-scale and
longer-range feature correspondences and planar con-
straints (Figure 3c). At each iteration, we expect the
relative camera poses within each window to be ap-
proximately correct, since they have been optimized
according to constraints detected in smaller windows
during previous iterations. Thus, we expect that it
will be possible to detect the relevant structural con-
straints within each window robustly based on the cur-
rent camera pose estimates. Ultimately, in the final
iteration, the algorithm uses a single window encom-
passing the entire scan. At that stage, it detects and
enforces a single structural model within a global op-
timization of all camera poses (Figure 3d).

We call this method “fine-to-coarse” because it is
the opposite of “coarse-to-fine:” alignment at the fine-
scale facilitates alignment at the coarse-scale, rather
than vice-versa.

The main advantages of this approach are two-fold.
First, it avoids a global search for pairwise loop clo-
sures – they are instead found incrementally as they
become nearly aligned. Second, it enables detection
and enforcement of large-scale geometric constraints
(like planar structure relationships) even though they
might not be evident in the initial alignment (e.g., the
parallel relationship between the leftmost and right-
most walls in the example of Figure 3 would be dif-
ficult to infer in iteration 0, but is simple to detect in
Iteration 6). As a result, our method achieves signif-
icantly better registration results for large-scale scans
compared to previous methods (Section 5).

4. Algorithm

The input to our system is a set of n RGB-D images
I acquired with a consumer level RGB-D camera. The
output is set of camera poses T , where T [k] represents
the position and orientation of the camera for I[k].

Processing proceeds as shown in Algorithm 1. Dur-
ing a preprocessing phase, we first extract features F
and planar regions P from all images in I , estimate
pairwise local alignment transformations L[k] for suc-
cessive images I[k − 1] and I[k], and concatenate lo-



Input: Images I , window length l0, n iter;
Output: Camera transformations T ;
F = ExtractFeatures(I);
P0 = CreateProxies(I);
L[k] = AlignImages(I[k − 1], I[k]);
T0 = Concatenate(L[i]);
for i← 0 to n iter do

foreach Wi[j] do
Pi[j]=CreateProxies(P ,Wi[j]) foreach Wi[j]
do

Si[j]=StructuralConstraints(Pi, Ti, j);
Ci[j]=CorrespConstraints(F,Wi[j], Ti);

end
Ti+1=Solve argminTE(Ci, Si, Ti);
li+1 = 2 ∗ li;

end
Algorithm 1: Fine-to-coarse refinement

cal transformations to form an initial guess for global
transformations T0. Then, we iteratively refine the
global transformations Ti by detecting a set of pla-
nar proxies Pi, creating structural constraints Si be-
tween those proxies, detecting feature correspondence
constraints Ci, and optimizing the global transforma-
tions for the next iteration Ti+1 by minimizing an error
function encoding those constraints. At each iteration
i, constraints are detected and enforced only within
windows of consecutive li images, with each window
Wi[j] overlapping its neighbors by li/2. The size of
the windows grows by a factor of two after each it-
eration, providing fine-to-coarse alignment, until they
cover the entire set of n input images. The following
subsections describe the core ideas for each of these
steps. The full implementation details appear in the
supplemental material.

4.1. Preprocessing

Extracting Features. The first step of preprocess-
ing is to extract a dense set of features F [k] from
each input depth image I[k]. Our goal in this step
is mainly to construct a set of well-spaced and re-
peatable features that can be matched robustly later
when searching for closest correspondences. We ex-
perimented with a number of feature types, including
SIFT and Harris corners in both color and depth im-
ages. However, we ultimately found planar patches
[3, 43, 29, 31, 35, 10, 41, 12, 39, 25, 11] and linear
edges along creases and contours in depth images [52]
to be most robust, and so we use only them.

Creating Planar Proxies. The next step is to extract
planar proxies from each depth image. The goal here
is to extract planar regions that can form the basis of

structural constraints introduced later during the fine-
to-coarse iterations. To do this, we use a method based
on agglomerative clustering, which we found to per-
form well on the noisy depth data tested in this study.

Aligning Adjacent Images. The following step is
to estimate a local alignment transformation L[k] for
each pair of successive input images, I[k− 1]→ I[k].
Our goal in this step is to provide a local alignment
transformation that can be used later in the optimiza-
tion to preserve the local shape of the estimated camera
trajectory. To do this, we use a pairwise image align-
ment approach based on Xiao et al. [47]: we detect
SIFT features in color images, prune out ones without
valid depth values, assign 3D positions to the rest, and
then use RANSAC in 3D to search for the rigid trans-
formation L[k] aligning as many of these features as
possible.

Initializing Transformations. The final pre-
computation step is to estimate an initial transforma-
tion T0[k] for each image I[k]. Since these transfor-
mations are input to our fine-to-coarse algorithm, they
do not need to be globally consistent. Rather it is im-
portant that they are locally accurate. So, we form
T0[k] by simply concatenating local transformations in
L: (T0[0] = I; T0[k] = L[k− 1]T0[k− 1]; k ∈ [1, n]).

4.2. Fine-to-Coarse Refinement

After preprocessing the images, the algorithm iter-
atively detects constraints within windows of increas-
ing sizes and solves for camera transformations based
on those constraints. The input to each iteration i is a
window size li and a set of camera transformations Ti
from the previous iteration. The output is a set of new
camera transformations Ti+1, computed as follows:

Creating Co-planarity Constraints. We first build
a set of co-planarity constraints H relating proxies in
P for each overlapping window of successive images.
We do that by computing a global position for every
planar proxy in P using the current transformations Ti.
Then, for every window Wi[j], we cluster co-planar
proxies associated with features of images within the
window using an agglomerative hierarchical clustering
algorithm. Each coplanar set constitutes a new planar
proxy Pl that is inserted into P , and co-planar, parent-
child constraint {Pl, Pj ; j ∈ [1, |children(Pl)|]} is in-
serted into H .

The constraints implied by H are depicted for a
single-room example in Figure 4. Note that shown
is a late in the fine-to-coarse refinement, and thus the
planar structures in the green span entire walls. In con-
trast to previous methods based on alignment to planes
[25, 35, 49], it is possible to detect these large planar



Figure 4: Exploded view of our structural model for one of the
SUN3D scenes. Geometrical properties like parallelism (dashed
orange) and orthogonality (dashed red) are created between parent
proxies (green). Parent proxies are connected to the scan features
(point-cloud) through children proxies via co-planarity constraints
(blue and light blue, respectively).

structures in our approach because previous iterations
align overlapping subsets of the wall.

Creating Planar Relationship Constraints. We next
build a set of structural constraints G representing ge-
ometric relationships between parent planar proxies in
the same or adjacent windows. Our goal is to detect
salient relationships between planar structures (paral-
lel, antiparallel, or orthogonal) that can help guide the
optimization towards the correct registration.

We create a typed and weighted planar relationship
for every pair of parent planar proxies (Pa = {~na, pa}
and Pb = {~nb, pb}) within the same window. Specifi-
cally, the type of the structural relationship sab and its
weight wab are based on the angle θ = acos(~na, ~nb)
between the normals. For parallel relationships the
weight is defined as wab = exp(−θ2/2σ2

θ), for or-
thogonal wab = exp(−(θ − π

2 )2/2σ2
θ), and for an-

tiparallel wab = exp(−(θ− π)2/2σ2
θ). These weights

are chosen so as to guide the registration when con-
straints are nearly met, but have little influence when
they are not.

Creating Feature Correspondences. We next build
a set of correspondence constraints C between fea-
tures detected in images within the same window. Fol-
lowing the general strategy of ICP, we construct cor-
respondences between the closest compatible features
for every pair of scans in every Wi[j], where compati-
bility is determined by a maximum distance threshold,
a maximum normal angle deviation, and a feature type
check (planar features only match to planar features,
etc.). No shape descriptors are used.

Since we expect images within the same window to
become aligned as they are optimized, we set the max-
imum distance and maximum normal angle thresholds
for rejecting outliers dynamically for every pair of im-

ages based on how many iterations they have been
within the same window. The first time the two images
are paired, the thresholds are quite large: 0.5m and 45
degrees. As the iterations proceed, they decrease lin-
early down to 0.15m and 20 degree.

Finally, for performance reasons, we subsample the
set of correspondences created for all windows Wi[j],
such that the total number of them is equal to |C| =
100n.

4.3. Optimization

The final processing step in each iteration is to opti-
mize the camera transformations Ti and planar proxies
Pi to minimize an error function encoding the detected
constraints.

Our error function is a weighted sum of terms pe-
nalizing deformations of structural relationships (ES),
warps of detected planes (EP ), distances between
corresponding features (EC), misalignments of local
transformations (EL), and large changes in transfor-
mations (EI ):

E(T, S,C) =wSES(S) + wCEC(T,C)

wLEL(T ) +WIEI(T )

Planar Structure Error. ES is designed to encour-
age consistency between the registration and the the
structural model:

ES(T, S) = wPEP (T, P ) +wHEH(H) +wgEG(G)

where the three sub-terms account for coplanarity of
hierarchical proxy relationships (EH ), detected geo-
metric relationships between proxies (EG), and fits of
planar proxies to depth images (EP ). The error due to
coplanarity constraints is defined as:

EH(P ) =

|H|∑
j=1

Ecp(Pk, Pj)

whereEcp(A,B) measures the deviation of two planar
structures from coplanarity. The error in geometric re-
lationships is:

EG(G) =

|G|∑
j=1


wjk(~nj − ~nk)2 parallel

wjk(~nj + ~nk)2 antiparallel

wjk(~nj · ~nk)2 orthogonal

where the ~nj and ~nk are normals of proxies Pj , Pk
respectively. The error aligning planar proxies with
depth images is:

EP (T, P ) =

|P |∑
j=1

mj∑
k=1

Ecp(Pj , T [ik](F [k]))



where ik is the index of the image containing feature
F [k] and mj is a number proportional to inliers of
proxy Pj , selected such that

∑
mj = 100n.

Feature Correspondence Error. Ec is designed to
encourage alignment of detected feature correspon-
dences:

EC(T,C) =

|C|∑
j=1

{
((pb − pa)× ~na)2 edges

((pb − pa) · ~na)2 planes

where pa, pb and ~na, ~nb are the transformed positions
and normals of features F [a] and F [b].

Local Alignment Error. EL is designed to encourage
pairwise transformations between adjacent frames to
match the ones computed during preprocessing:

EL(T ) =

n−1∑
j=0

kmax∑
k=0

Et(T0[j + 2k]−1(T0[j]), T [j + 2k]−1(T [j]))

where kmax = 4 and Et measures the misalignment
of two transformations.

Inertia Error. EI is designed to encourage the trans-
formations to remain approximately the same across
iterations.

EI(T, P ) =

|I|∑
j=1

(∆T [j])2 +

|P |∑
j=1

(∆P [j])2

where ∆A represents the sum of squared differences
between Euler angle rotations and translations for A
from one iteration to the next. This term has very low
weight – it is added mainly to provide stability for the
optimization and prevent the system of equations from
being under-constrained.

5. Experimental Results
We performed a series of experiments designed to

test the performance of the proposed method with
comparisons to previous methods and ablation studies.

New Benchmark Dataset. RGB-D scans of indoor
scenes with ground truth alignments are scarce. Most
contain only part of a room [1, 9, 18, 23, 26, 36, 38],
have less than ten test examples [9, 26, 47], or are
based on synthetic data [18, 17]. As a result, the re-
search community has compared registration results
mainly on small, clean datasets that are not represen-
tative of the large real-world scans required for most
applications.

To address this issue, we introduce a new regis-
tration benchmark based on the SUN3D dataset [47].

Figure 5: Ground truth correspondences for 6 out of 25 scenes in
our benchmark. The visualization shows lines between manually-
clicked corresponding points after alignment with T0, the initial reg-
istration for our method. Color indicates the frame distance - blue
correspondences denote loop closure pairs, while red denotes local
pairs.

SUN3D contains a large set RGB-D videos captured
with a ASUS Xtion PRO LIVE sensor attached to a
hand-held laptop in a variety of spaces (apartments,
hotel rooms, classrooms, etc.). Each scan contains
103−104 images, often covering multiple rooms. Pre-
viously, only eight of the scenes were released with
full annotations and pose correction. Because of the
lack of ground truth poses, these have not been used
for quantitative evaluation of registration algorithms.

One of our contributions is to provide ground-truth
point correspondences for 25 of the largest scenes
in SUN3D. In all, we have manually clicked on
10,401 point correspondences with pixel-level accu-
racy. These ground-truth correspondences are largely
in pairs of overlapping frames forming loop closures,
but they also appear in pairs of nearby frames spread
evenly through the scan, as shown in Figure 5. The
average number of correspondences per scan is 416,
with a minimum of 239 and a maximum of 714.

We use these ground truth correspondences to eval-
uate and compare RGB-D registration algorithms by
computing their root mean squared error (RMSE). To
quantify a lower bound on the RMSE in this test, we
aligned the ground truth correspondences for all scene
with no other constraints and report the errors in the
left column of Table 1. Note that these lower-bounds
are non-zero, even though clicked correspondences
are pixel-accurate, due to the extreme noise in uncali-
brated SUN3D depth maps.

Comparisons to Previous Work. We evaluate our
method in comparison to two prior methods for offline
registration: Xiao et al.’s Sun3DSfm[48] and Choi et
al.’s Robust Reconstruction of Indoor Scenes [8] (Fig-
ure 6). The first method by Xiao et al. uses the same
method as we do for tracking camera poses, but also
predicts loop closures via visual place recognition with
a BoW approach and performs a global bundle ad-



Figure 6: Qualitative comparison of global registration results for example SUN3D scenes. The rightmost column shows our results. The
leftmost column shows the solution used to initialize our algorithm (T0). The middle two columns show results produced with prior work
[8, 47]. In insets, we show close-ups of particular regions. In the first two rows, our method is able to recover correct arrangement of captured
multi-room environments, while previous work produces improbable structures, like intersecting rooms. The third row shows a sequence with
non-Manhattan walls, which we are able to register correctly. Our method is also able to correctly align a challenging corridor sequence in the
fourth row, where for Xiao et al., the visual place recognition has failed. Due to a lot of geometrical self similarities, Choi et al. is unable to
recover proper geometry.

Ground Truth Ours T0 Xiao et al. Choi et al.
Average 0.031 0.077 0.531 0.431 0.993
Standard Deviation 0.006 0.037 0.471 0.491 1.481
Median 0.031 0.065 0.421 0.255 0.224
Minimum 0.019 0.042 0.114 0.078 0.043
Maxium 0.045 0.221 2.124 2.007 5.819

Table 1: Comparison of RMSE statistics in meters with different
registration methods for the 25 scenes in our SUN3D benchmark.

justment to optimize for camera poses. The second
method by Choi et al. fuses consecutive groups of 50
frames into fragments, aligns all pairs of fragments
with a variant of RANSAC, selects pairs as poten-
tial loop closures, and then solves a least squares sys-
tem of nonlinear equations that simultaneously solves
for camera poses and loop closure weights. We be-
lieve this second method is the state-of-the-art for off-
line global registration amongst ones with code avail-
able, even though it only uses the depth information.
Comparisons are provided in the supplemental ma-
terials for several real-time reconstruction methods,
which demonstrate worse performance than these off-
line global methods.

Table 1 and Figure 7 show quantitative results for
the comparison evaluated on our new SUN3D bench-

Figure 7: Quantitative comparison. Every vertical bar in each row
represents the RMSE achieved for one of the 25 SUN3D scenes with
the algorithm listed on the left. The vertical gray bar shows the aver-
age RMSE for each method, and the shaded gray regions represents
one standard deviation.

mark. Table 1 compares overall statistics of RMSEs
for each algorithm, while Figure 7 shows the distribu-
tions of RMSEs. It can be seen in both of these results
that our reconstruction algorithm aligns the ground
truth correspondences better than either of the other
two methods: our median error is 0.065m in compari-
son to 0.255m for Xiao et al. and 0.224m for Choi et
al. In case-by-case comparisons, our method has the
lowest error in 21 of 25 scenes.

Investigating Fine-to-Coarse Iteration. To investi-
gate the behavior of our fine-to-coarse algorithm, we
computed histograms of L2 distances versus frame



Figure 8: Investigating fine-to-coarse iteration. Each bin gathers
correspondences that are specific numbers of frames away from each
other in the RGB-D video. Blue bars show the correspondence er-
rors using initial pairwise transformations (T0), while orange bars
show errors after applying our method (on a log scale). Note that er-
rors decrease for both long-range loop closures and nearby frames.

index differences between pairs of frames linked by
ground-truth correspondences. Figure 8 shows a com-
parison of these histograms for the registrations at
the start of our algorithm (blue) and at the end (or-
ange). It is interesting to note that our algorithm not
only reduces the distances between ground-truth cor-
respondences forming long-range loop closures (the
right side of the plot), but also over short ranges. This
demonstrates that the extracted structural model helps
to fix not only global alignments, but also local ones.

Ablation Studies. To investigate the value of our pro-
posed a) fine-to-coarse iteration strategy and b) struc-
tural model, we performed comparisons of our method
with all combinations of these methods enabled or dis-
abled. The results in Figure 9 and 10 show that both
provide critical improvements to the results. In partic-
ular, it is interesting to note that the fine-to-coarse iter-
ation strategy improves ICP, even when no structural
model is computed. This result highlights the value
of aligning local structures before searching for loop
closures at larger scales.

Figure 9: Ablation studies. Distributions of errors in the SUN3D
benchmark for alternatives of our algorithm. Disabling coarse-to-
fine iteration or structural modeling diminishes performance.

Failure Cases. Our method does not always suc-
ceed. For example, it can fail when multiple rooms
are connected via featureless straight corridors and
when rooms that are nearly (but not exactly) rectan-
gular (Figure 11). Failures of the second type are rare
– since the weight of enforcing parallelism and orthog-
onality constraints is low for pairs of planes at off-

Figure 10: Qualitative examples of our ablation studies. Only our
full method, using both fine-to-coarse strategy and structural model
is able to align the region with red chairs correctly (see zoom-in)

Figure 11: Failure cases of our method. Left: the real world room
is a trapezoid. Our structural model introduces error, attempting to
create a rectangular room. Right: Sliding along the corridor (in blue)
causes failure in detecting loop closures. Note the misaligned wall
on the right marked by an arrow.

angles, we are able to reconstruct most scenes with
non-Manhattan geometry correctly (as in the third row
of Figure 7).

Timing. All our tests took less than an hour to finish
on a machine with 3.0GHz processor and 128Gb of
RAM. The shortest sequence of 875 frames took 108
seconds to complete, while the longest took 2,909 sec-
onds for 14,915 frames.

6. Conclusions
This paper describes a method for global registra-

tion of RGB-D scans captured with a hand-held cam-
era in a typical indoor environment. The key idea is a
fine-to-coarse scheme that detects and enforces con-
straints (planar relationships and feature correspon-
dences) within windows of gradually increasing scales
in an iterative global optimization algorithm. The ben-
efits of the proposed approach are demonstrated in ex-
periments with a new benchmark for RGB-D registra-
tion, which contains 10,401 manually specified cor-
respondences across 25 SUN3D scenes. This bench-
mark and all code will be publicly released to facilitate
evaluation and comparison of future algorithms.
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