
Split-Brain Autoencoders:
Unsupervised Learning by Cross-Channel Prediction

Richard Zhang Phillip Isola Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{rich.zhang,isola,efros}@eecs.berkeley.edu

Abstract

We propose split-brain autoencoders, a straightforward
modification of the traditional autoencoder architecture, for
unsupervised representation learning. The method adds a
split to the network, resulting in two disjoint sub-networks.
Each sub-network is trained to perform a difficult task –
predicting one subset of the data channels from another.
Together, the sub-networks extract features from the en-
tire input signal. By forcing the network to solve cross-
channel prediction tasks, we induce a representation within
the network which transfers well to other, unseen tasks.
This method achieves state-of-the-art performance on sev-
eral large-scale transfer learning benchmarks.

1. Introduction
A goal of unsupervised learning is to model raw data

without the use of labels, in a manner which produces a
useful representation. By “useful” we mean a represen-
tation that should be easily adaptable for other tasks, un-
known during training time. Unsupervised deep methods
typically induce representations by training a network to
solve an auxiliary or “pretext” task, such as the image re-
construction objective in a traditional autoencoder model,
as shown on Figure 1(top). We instead force the network to
solve complementary prediction tasks by adding a split in
the architecture, shown in Figure 1 (bottom), dramatically
improving transfer performance.

Despite their popularity, autoencoders have actually not
been shown to produce strong representations for transfer
tasks in practice [44, 35]. Why is this? One reason might
be the mechanism for forcing model abstraction. To prevent
a trivial identity mapping from being learned, a bottleneck
is typically built into the autoencoder representation. How-
ever, an inherent tension is at play: the smaller the bottle-
neck, the greater the forced abstraction, but the smaller the
information content that can be expressed.

Instead of forcing abstraction through compression, via
a bottleneck in the network architecture, recent work has
explored withholding parts of the input during training

Traditional	Autoencoder
Raw	Data Reconstructed

Data

X"X

Split-Brain	Autoencoder

X

Raw	Data
Channels

Predicted	Data
Channels

Predicted	
Data

X"

Raw	Data

X#

X$
X#%
X$%

Figure 1: Traditional vs Split-Brain Autoencoder ar-
chitectures. (top) Autoencoders learn feature representa-
tion F by learning to reconstruct input data X. (bottom)
The proposed split-brain autoencoder is composed of two
disjoint sub-networks F1,F2, each trained to predict one
data subset from another, changing the problem from re-
construction to prediction. The split-brain representation
F is formed by concatenating the two sub-networks, and
achieves strong transfer learning performance. The model is
publicly available on https://richzhang.github.
io/splitbrainauto.

[44, 35, 49]. For example, Vincent et al. [44] propose
denoising autoencoders, trained to remove iid noise added
to the input. Pathak et al. [35] propose context encoders,
which learn features by training to inpaint large, random
contiguous blocks of pixels. Rather than dropping data in
the spatial direction, several works have dropped data in
the channel direction, e.g. predicting color channels from
grayscale (the colorization task) [27, 49].

Context encoders, while an improvement over autoen-
coders, demonstrate lower performance than competitors
on large-scale semantic representation learning bench-
marks [49]. This may be due to several reasons. First, im-

1

ar
X

iv
:1

61
1.

09
84

2v
3 

 [
cs

.C
V

] 
 2

0 
A

pr
 2

01
7

https://richzhang.github.io/splitbrainauto
https://richzhang.github.io/splitbrainauto


auxiliary domain input
task type gap handicap

Autoencoder [20] reconstruction no no
Denoising autoencoder [44] reconstruction suffers no
Context Encoder [35] prediction no suffers
Cross-Channel Encoder [49, 28] prediction no suffers
Split-Brain Autoencoder prediction no no

Table 1: Qualitative Comparison We summarize various
qualitative aspects inherent in several representation learn-
ing techniques. Auxiliary task type: pretext task predi-
cated on reconstruction or prediction. Domain gap: gap
between the input data during unsupervised pre-training and
testing time. Input handicap: input data is systematically
dropped out during test time.

age synthesis tasks are known to be notoriously difficult to
evaluate [36] and the loss function used in [35] may not
properly capture inpainting quality. Second, the model is
trained on images with missing chunks, but applied, at test
time, to full images. This causes a “domain gap” between
training and deployment. Third, it could simply be that the
inpainting task in [35] could be adequately solved without
high-level reasoning, instead mostly just copying low and
mid-level structure from the surround.

On the other hand, colorization turns out to be a surpris-
ingly effective pretext task for inducing strong feature rep-
resentations [49, 28]. Though colorization, like inpainting,
is a synthesis task, the spatial correspondence between the
input and output pairs may enable basic off-the-shelf loss
functions to be effective. In addition, the systematic, rather
than stochastic nature of the input corruption removes the
pre-training and testing domain gap. Finally, while inpaint-
ing may admit reasoning mainly about textural structure,
predicting accurate color, e.g., knowing to paint a school-
bus yellow, may more strictly require object-level reason-
ing and therefore induce stronger semantic representations.
Colorization is an example of what we refer to as a cross-
channel encoding objective, a task which directly predicts
one subset of data channels from another.

In this work, we further explore the space of cross-
channel encoders by systematically evaluating various
channel translation problems and training objectives.
Cross-channel encoders, however, face an inherent hand-
icap: different channels of the input data are not treated
equally, as part of the data is used for feature extraction and
another as the prediction target. In the case of colorization,
the network can only extract features from the grayscale im-
age and is blind to color, leaving the color information un-
used. A qualitative comparison of the different methods,
along with their inherent strengths and weaknesses, is sum-
marized in Table 1.

Might there be a way to take advantage of the underly-
ing principle of cross-channel encoders, while being able to
extract features from the entire input signal? We propose

an architectural modification to the autoencoder paradigm:
adding a single split in the network, resulting in two dis-
joint, concatenated, sub-networks. Each sub-network is
trained as a cross-channel encoder, predicting one subset
of channels of the input from the other. A variety of aux-
iliary cross-channel prediction tasks may be used, such as
colorization and depth prediction. For example, on RGB
images, one sub-network can solve the problem of coloriza-
tion (predicting a and b channels from the L channel in Lab
colorspace), and the other can perform the opposite (syn-
thesizing L from a, b channels). In the RGB-D domain,
one sub-network may predict depth from images, while the
other predicts images from depth. The architectural change
induces the same forced abstraction as observed in cross-
channel encoders, but is able to extract features from the
full input tensor, leaving nothing on the table.

Our contributions are as follows:

• We propose the split-brain autoencoder, which is com-
posed of concatenated cross-channel encoders, trained
using raw data as its own supervisory signal.
• We demonstrate state-of-the-art performance on sev-

eral semantic representation learning benchmarks in
the RGB and RGB-D domains.
• To gain a better understanding, we perform exten-

sive ablation studies by (i) investigating cross-channel
prediction problems and loss functions and (ii) re-
searching alternative aggregation methods for combin-
ing cross-channel encoders.

2. Related Work
Many unsupervised learning methods have focused on

modeling raw data using a reconstruction objective. Au-
toencoders [20] train a network to reconstruct an input
image, using a representation bottleneck to force abstrac-
tion. Denoising autoencoders [44] train a network to undo
a random iid corruption. Techniques for modeling the
probability distribution of images in deep frameworks have
also been explored. For example, variational autoencoders
(VAEs) [24] employ a variational Bayesian approach to
modeling the data distribution. Other probabilistic models
include restricted Boltzmann machines (RBMs) [41], deep
Boltzmann machines (DBMs) [38], generative adversarial
networks (GANs) [16], autoregressive models (Pixel-RNN
[43] and Pixel-CNN [32]), bidirectional GANs (BiGANs)
[9] and Adversarially Learned Inference (ALI) [10], and
real NVP [7]. Many of these methods [20, 44, 9, 10, 38]
have been evaluated for representation learning.

Another form of unsupervised learning, sometimes re-
ferred to as “self-supervised” learning [5], has recently
grown in popularity. Rather than predicting labels an-
notated by humans, these methods predict pseudo-labels
computed from the raw data itself. For example, image
colorization [49, 27] has been shown to be an effective

2



pretext task. Other methods generate pseudo-labels from
egomotion [1, 23], video [46, 30], inpainting [35], co-
occurence [22], context [8, 31], and sound [33, 6, 5]. Con-
currently, Pathak et al. [34] use motion masks extracted
from video data. Also in these proceedings, Larsson et
al. [28] provide an in-depth analysis of colorization for self-
supervision. These methods generally focus on a single su-
pervisory signal and involve some engineering effort. In
this work, we show that simply predicting raw data chan-
nels with standard loss functions is surprisingly effective,
often outperforming previously proposed methods.

The idea of learning representations from multisen-
sory signals also shows up in structure learning [2], co-
training [3], and multi-view learning [47]. Our method is
especially related to [5, 6, 42], which use bidirectional data
prediction to learn representations from two sensory modal-
ities.

A large body of additional work in computer vision and
graphics focuses on image channel prediction as an end in
itself, such as colorization [49, 27, 21], depth prediction
[11], and surface normal prediction [11, 45]. In contrast,
rather than focusing on the graphics problem, we explore
its utility for representation learning.

3. Methods
In Section 3.1, we define the paradigm of cross-channel

encoding. In Section 3.2, we propose the split-brain au-
toencoder and explore alternatives methods for aggregating
multiple cross-channel encoders into a single network.

3.1. Cross-Channel Encoders
We would like to learn a deep representation on input

data tensor X ∈ RH×W×C , with C channels. We split
the data into X1 ∈ RH×W×C1 and X2 ∈ RH×W×C2 ,
where C1, C2 ⊆ C, and then train a deep representation
to solve the prediction problem X̂2 = F(X1). Function
F is learned with a CNN, which produces a layered repre-
sentation of input X1, and we refer to each layer l as F l.
By performing this pretext task of predicting X2 from X1,
we hope to achieve a representation F(X1) which contains
high-level abstractions or semantics.

This prediction task can be trained with various loss
functions, and we study whether the loss function affects
the quality of the learned representation. To begin, we ex-
plore the use of `2 regression, as shown in Equation 1.

`2(F(X1),X2) =
1
2

∑
h,w

‖X2h,w −F(X1)h,w‖22 (1)

We also study the use of a classification loss. Here, the
target output X2 ∈ RH×W×C2 is encoded with function
H into a distribution Y2 ∈ ∆H×W×Q, where Q is the
number of elements in the quantized output space. Net-
work F is then trained to predict a distribution, Ŷ2 =

F(X1) ∈ ∆H×W×Q. A standard cross-entropy loss be-
tween the predicted and ground truth distributions is used,
as shown Equation 2.

`cl(F(X1),X2) = −
∑
h,w

∑
q

H(X2)h,w,q log(F(X1)h,w,q)

(2)
In [49], the authors discover that classification loss is

more effective for the graphics task of automatic coloriza-
tion than regression. We hypothesize that for some tasks,
especially those with inherent uncertainty in the prediction,
the classification loss may lead to better representations as
well, as the network will be incentivized to match the whole
distribution, and not only predict the first moment.

Note that with input and output sets C1, C2 = C, and
an `2 regression loss, the objective becomes identical to the
autoencoder objective.

3.2. Split-Brain Autoencoders as Aggregated Cross-
Channel Encoders

We can train multiple cross-channel encoders, F1,
F2, on opposite prediction problems, with loss functions
L1, L2, respectively, described in Equation 3.

F∗1 = argmin
F1

L1(F1(X1),X2)

F∗2 = argmin
F2

L2(F2(X2),X1)
(3)

By concatenating the representations layer-wise, F l =
{F l

1,F l
2}, we achieve a representation F which is pre-

trained on full input tensor X. Example split-brain au-
toencoders in the image and RGB-D domains are shown in
Figures 2(a) and (b), respectively. If F is a CNN of a de-
sired fixed size, e.g., AlexNet [26], we can design the sub-
networks F1,F2 by splitting each layer of the network F in
half, along the channel dimension. Concatenated represen-
tation F will then have the appropriate dimensionality, and
can be simply implemented by setting the group param-
eter to 2 in most deep learning libraries. As each channel
in the representation is only connected to half of the chan-
nels in the preceding layer, the number of parameters in the
network is actually halved, relative to a full network.

Note that the input and the output to the network F is the
full input X, the same as an autoencoder. However, due to
the split nature of the architecture, the network F is trained
to predict X = {X1,X2}, rather than simply reconstruct
it from the input. In essence, an architectural change in the
autoencoder framework induces the same forced abstraction
achieved by cross-channel encoding.

Alternative Aggregation Technique We found the
split-brain autoencoder, which aggregates cross-channel en-
coders through concatenation, to be more effective than sev-
eral alternative strategies. As a baseline, we also explore
an alternative: the same representation F can be trained to
perform both mappings simultaneously. The loss function
is described in Equation 4, with a slight abuse of notation:

3



Input	Image X Predicted	Image X"

L Grayscale	Channel X#

ab Color	Channels X$ Predicted	Grayscale	Channel X#%

Predicted	Color	Channels X$%

(a) Lab Images

Input
RGB-HHA
image

RGB	Channels

HHA	Channels

Predicted	HHA	channels

Predicted	RGB	Channels

Predicted	
RGB-HHA
image

X

X$

X#

X#%

X$%

X"

(b) RGB-D Images

Figure 2: Split-Brain Autoencoders applied to various domains (a) Lab images Input images are divided into the L
channel, which contains grayscale information, and the a and b channels, which contain color information. Network F1

performs automatic colorization, whereas network F2 performs grayscale prediction. (b) RGB-D images Input data X
contains registered RGB and depth images. Depth images are encoded using the HHA encoding [18]. Image representation
F1 is trained by predicting HHA channels. Representation F2 on HHA images is learned by predicting images in Lab space.
Note that the goal of performing these synthesis tasks is to induce representations F1,F2 that transfer well to other tasks.

here, we redefine X1 to be the same shape as original in-
put X ∈ RH×W×C , with channels in set C\C1 zeroed out
(along with the analogous modification to X2).

F∗ = argmin
F

L1(F(X1),X2) + L2(X1,F(X2)) (4)

The network only sees data subsets but never full input X.
To alleviate this problem, we mix in the autoencoder objec-
tive, as shown in Equation 5, with λ ∈ [0, 12 ].

F∗ = argmin
F

λL1(F(X1),X2) + λL2(F(X2),X1)

+ (1− 2λ)L3(X,F(X))

(5)

Note that unlike the split-brain architecture, in these objec-
tives, there is a domain gap between the distribution of pre-
training data and the full input tensor X.

4. Experiments
In Section 4.1, we apply our proposed split-brain autoen-

coder architecture to learn unsupervised representations on
large-scale image data from ImageNet [37]. We evaluate on
established representation learning benchmarks and demon-
strate state-of-the-art performance relative to previous unsu-
pervised methods [25, 8, 46, 35, 33, 9, 30]. In Section 4.2,
we apply the proposed method on the NYU-D dataset [39],
and show performance above baseline methods.

4.1. Split-Brain Autoencoders on Images

We work with image data X in the Lab color space, and
learn cross-channel encoders with X1 representing the L,
or lightness channel, and X2 containing the ab channels, or
color information. This is a natural choice as (i) networks
such as Alexnet, trained with grouping in their architec-
ture, naturally separate into grayscale and color [26] even

in a fully-supervised setting, and (ii) the individual cross-
channel prediction problem of colorization, L to ab, has
produced strong representations [49, 27]. In preliminary
experiments, we have also explored different cross-channel
prediction problems in other color spaces, such as RGB and
YUV. We found the L and ab to be most effective data split.

To enable comparisons to previous unsupervised tech-
niques, all of our trained networks use AlexNet architec-
tures [26]. Concurrent work from Larsson et al. [28] shows
large performance improvements for the colorization task
when using deeper networks, such as VGG-16 [40] and
ResNet [19]. Because we are training for a pixel-prediction
task, we run the network fully convolutionally [29]. Using
the 1.3M ImageNet dataset [37] (without labels), we train
the following aggregated cross-channel encoders:

• Split-Brain Autoencoder (cl,cl) (Our full method):
A split-brain autoencoder, with one half performing
colorization, and the other half performing grayscale
prediction. The top-level architecture is shown in Fig-
ure 2(a). Both sub-networks are trained for classifi-
cation (cl), with a cross-entropy objective. (In Figure
2(a), the predicted output is a per-pixel probability dis-
tribution, but is visualized with a point estimate using
the annealed-mean [49].)
• Split-Brain Autoencoder (reg,reg): Same as above,

with both sub-networks trained with an `2 loss (reg).
• Ensembled L→ab: Two concatenated disjoint sub-

networks, both performing colorization (predicting ab
from L). One subnetwork is trained with a classifica-
tion objective, and the other with regression.
• (L,ab)→(ab,L): A single network for both coloriza-

tion and grayscale prediction, with regression loss, as
described in Equation 4. This explores an alternative
method for combining cross-channel encoders.
• (L,ab,Lab)→(ab,L,Lab): λ = 1

3 using Equation 5.

4



Task Generalization on ImageNet Classification [37]

Method conv1 conv2 conv3 conv4 conv5
ImageNet-labels [26] 19.3 36.3 44.2 48.3 50.5
Gaussian 11.6 17.1 16.9 16.3 14.1
Krähenbühl et al. [25] 17.5 23.0 24.5 23.2 20.6
1Noroozi & Favaro [31] 19.2 30.1 34.7 33.9 28.3
Doersch et al. [8] 16.2 23.3 30.2 31.7 29.6
Donahue et al. [9] 17.7 24.5 31.0 29.9 28.0
Pathak et al. [35] 14.1 20.7 21.0 19.8 15.5
Zhang et al. [49] 13.1 24.8 31.0 32.6 31.8
Lab→Lab 12.9 20.1 18.5 15.1 11.5
Lab(drop50)→Lab 12.1 20.4 19.7 16.1 12.3
L→ab(cl) 12.5 25.4 32.4 33.1 32.0
L→ab(reg) 12.3 23.5 29.6 31.1 30.1
ab→L(cl) 11.6 19.2 22.6 21.7 19.2
ab→L(reg) 11.5 19.4 23.5 23.9 21.7
(L,ab)→(ab,L) 15.1 22.6 24.4 23.2 21.1
(L,ab,Lab)→(ab,L,Lab) 15.4 22.9 24.0 22.0 18.9
Ensembled L→ab 11.7 23.7 30.9 32.2 31.3
Split-Brain Auto (reg,reg) 17.4 27.9 33.6 34.2 32.3
Split-Brain Auto (cl,cl) 17.7 29.3 35.4 35.2 32.8

Table 2: Task Generalization on ImageNet Classification
To test unsupervised feature representations, we train linear
logistic regression classifiers on top of each layer to perform
1000-way ImageNet classification, as proposed in [49]. All
weights are frozen and feature maps spatially resized to be
∼9000 dimensions. All methods use AlexNet variants [26],
and were pre-trained on ImageNet without labels, except
for ImageNet-labels. Note that the proposed split-brain au-
toencoder achieves the best performance on all layers across
unsupervised methods.

Single cross-channel encoders are ablations of our main
method. We systematically study combinations of loss
functions and cross-channel prediction problems.
• L→ab(reg): Automatic colorization using an `2 loss.
• L→ab(cl): Automatic colorization using a classifica-

tion loss. We follow the quantization procedure pro-
posed in [49]: the output ab space is binned into grid
size 10×10, with a classification loss over the 313 bins
that are within the ab gamut.
• ab→L(reg): Grayscale prediction using an `2 loss.
• ab→L(cl): Grayscale prediction using a classification

loss. The L channel, which has values between 0 and
100, is quantized into 50 bins of size 2 and encoded.
• Lab→Lab: Autoencoder objective, reconstructing
Lab from itself using an `2 regression loss, with the
same architecture as the cross-channel encoders.
• Lab(drop50)→Lab: Same as above, with 50% of the

input randomly dropped out during pre-training. This
is similar to denoising autoencoders [44].

We compare to the following methods, which all use
variants of Alexnet [26]. For additional details, refer to Ta-
ble 3 in [49]. Note that one of these modifications resulted
in a large deviation in feature map size1.

1The method from [31] uses stride 2 instead of 4 in the conv1 layer,

Dataset & Task Generalization on Places Classification [50]

Method conv1 conv2 conv3 conv4 conv5
Places-labels [50] 22.1 35.1 40.2 43.3 44.6
ImageNet-labels [26] 22.7 34.8 38.4 39.4 38.7
Gaussian 15.7 20.3 19.8 19.1 17.5
Krähenbühl et al. [25] 21.4 26.2 27.1 26.1 24.0
1Noroozi & Favaro [31] 23.0 32.1 35.5 34.8 31.3
Doersch et al. [8] 19.7 26.7 31.9 32.7 30.9
Wang & Gupta [46] 20.1 28.5 29.9 29.7 27.9
Owens et al. [33] 19.9 29.3 32.1 28.8 29.8
Donahue et al. [9] 22.0 28.7 31.8 31.3 29.7
Pathak et al. [35] 18.2 23.2 23.4 21.9 18.4
Zhang et al. [49] 16.0 25.7 29.6 30.3 29.7
L→ab(cl) 16.4 27.5 31.4 32.1 30.2
L→ab(reg) 16.2 26.5 30.0 30.5 29.4
ab→L(cl) 15.6 22.5 24.8 25.1 23.0
ab→L(reg) 15.9 22.8 25.6 26.2 24.9
Split-Brain Auto (cl,cl) 21.3 30.7 34.0 34.1 32.5

Table 3: Dataset & Task Generalization on Places Clas-
sification We train logistic regression classifiers on top of
frozen pre-trained representations for 205-way Places clas-
sification. Note that our split-brain autoencoder achieves
the best performance among unsupervised learning meth-
ods from conv2-5 layers.

• ImageNet-labels [26]: Trained on ImageNet labels for
the classification task in a fully supervised fashion.
• Gaussian: Random Gaussian initialization of weights.
• Krähenbühl et al. [25]: A stacked k-means initializa-

tion method.
• Doersch et al. [8], Noroozi & Favaro [31], Pathak et

al. [35], Donahue et al. [9], and Zhang et al. [49] all
pre-train on the 1.3M ImageNet dataset [37].
• Wang & Gupta [46] and Owens et al. [33] pre-train

on other large-scale data.

4.1.1 Transfer Learning Tests

How well does the pre-text task of cross-channel prediction
generalize to unseen tasks and data? We run various estab-
lished large-scale representation learning benchmarks.

ImageNet [26] As proposed in [49], we test the task
generalization of the representation by freezing the weights
and training multinomial logistic regression classifiers on
top of each layer to perform 1000-way ImageNet classifi-
cation. Note that each classifier is a single learned linear
layer, followed by a softmax. To reduce the effect of differ-
ences in feature map sizes, we spatially resize feature maps
through bilinear interpolation, so that the flattened feature
maps have approximately equal dimensionality (9600 for

resulting in 4× denser feature maps throughout all convolutional layers.
While it is unclear how this change affects representational quality, exper-
iments from Larsson et al. [28] indicate that changes in architecture can
result in large changes in transfer performance, even given the same train-
ing task. The network uses the same number of parameters, but 5.6× the
memory and 7.4× the run-time.

5



conv1
pool1

conv2
pool2

conv3
conv4

conv5
pool5

Layer

10

15

20

25

30

35

40

45

50

55

To
p-

1 
Ac

cu
ra

cy

ImageNet-labels
Kraehenbuehl et al.
Gauss
Doersch et al.

Pathak et al.
Donahue et al.
Zhang et al.
Split-Brain Auto(cl,cl)

(a) ImageNet Classification

conv1
pool1

conv2
pool2

conv3
conv4

conv5
pool5

Layer

15

20

25

30

35

40

45

50

T
o
p
-1

 A
cc

u
ra

cy

Places-labels

ImageNet-labels

Kraehenbuehl et al.

Gauss

Doersch et al.

Wang & Gupta

Pathak et al.

Zhang et al.

Owens et al.

Donahue et al.

Split-Brain Auto(cl,cl)

(b) Places Classification

Figure 3: Comparison to Previous Unsupervised Methods We compare our proposed Split-Brain Autoencoder on the tasks
of (a) ImageNet classification and (b) Places Classification. Note that our method outperforms other large-scale unsupervised
methods [8, 46, 35, 49, 33, 9] on all layers in ImageNet and from conv2-5 on Places.

conv1
pool1

conv2
pool2

conv3
conv4

conv5
pool5

Layer

10

15

20

25

30

35

40

To
p-

1 
Ac

cu
ra

cy

Kraehenbuehl et al.
Gauss
Lab→Lab

Lab(drop50)→Lab
Split-Brain Auto(reg,reg)
Split-Brain Auto(cl,cl)

(a) Autoencoder Objective

conv1
pool1

conv2
pool2

conv3
conv4

conv5
pool5

Layer

10

15

20

25

30

35

40

To
p-

1 
Ac

cu
ra

cy

Kraehenbuehl et al.
Gauss
L→ab(cl)
L→ab(reg)

ab→L(cl)
ab→L(reg)
Split-Brain Auto(cl,cl)

(b) Cross-Channel Encoders

conv1
pool1

conv2
pool2

conv3
conv4

conv5
pool5

Layer

10

15

20

25

30

35

40

To
p-

1 
Ac

cu
ra

cy

Kraehenbuehl et al.
Gauss
Ensembled L→ab

(L,ab)→(ab,L)
(L,ab,Lab)→(ab,L,Lab)
Split-Brain Auto(cl,cl)

(c) Aggregation Methods

Figure 4: Ablation Studies We conduct various ablation studies on our proposed method, using the ImageNet classification
benchmark proposed in [49]. Specifically, we compare (a) variations using an autoencoder objective (b) different cross-
channel problems and loss functions (c) different methods for aggregating multiple cross-channel encoders.

conv1,3,4 and 9216 for conv2,5). The results are
shown in Table 2 and Figures 3(a) and 4.

Places [50] In the previous test, we evaluated the rep-
resentation on the same input training data, the ImageNet
dataset, with a different task than the pretraining tasks. To
see how well the network generalizes to new input data as
well, we run the same linear classification task on the large-
scale Places dataset [50]. The dataset contains 2.4M images
for training and 20.5k for validation from 205 scene cate-
gories. The results are shown in Table 3 and Figure 3(b).

PASCAL [12] To further test generalization, we fine-
tune the learned representation on standard representation
learning benchmarks on the PASCAL dataset, as shown in
Table 4, using established testing frameworks in classifica-
tion [25], detection [15], and segmentation [29]. Classifi-
cation involves 20 binary classification decisions, regard-
ing the presence or absence of 20 object classes. Detec-
tion involves drawing an accurately localized bounding box
around any objects in the image, and is performed using
the Fast R-CNN [15] framework. Segmentation is pixel-

6



Task and Data Generalization on PASCAL VOC [12]

Classification [25] Detection [15] Seg. [29]
(%mAP) (%mAP) (%mIU)

frozen layers conv5 none none none
fine-tuned layers Ref fc6-8 all Ref all Ref all
ImageNet labels [26] [49] 78.9 79.9 [25] 56.8 [29] 48.0
Gaussian [35] – 53.3 [35] 43.4 [35] 19.8
Autoencoder [9] 16.0 53.8 [35] 41.9 [35] 25.2
Krähenbühl et al. [25] [9] 39.2 56.6 [25] 45.6 [9] 32.6
Jayaraman & Grauman [23] – – – [23] 41.7 – –
Agrawal et al. [1] [25] – 52.9 [25] 41.8 – –
Agrawal et al. [1]† [9] 31.0 54.2 [25] 43.9 – –
Wang & Gupta [46] [25] – 62.8 [25] 47.4 – –
Wang & Gupta [46]† [25] – 63.1 [25] 47.2 – –
Doersch et al. [8] [25] – 55.3 [25] 46.6 – –
Doersch et al. [8]† [9] 55.1 65.3 [25] 51.1 – –
Pathak et al. [35] [35] – 56.5 [35] 44.5 [35] 29.7
Donahue et al. [9]† [9] 52.3 60.1 [9] 46.9 [9] 35.2
Misra et al. [30] – – – [30] 42.4 – –
Owens et al. [33] . 54.6 54.4 [33] 44.0 – –
Owens et al. [33]† . 52.3 61.3 – – – –
Zhang et al. [49]† [49] 61.5 65.9 [49] 46.9 [49] 35.6
Larsson et al. [28]� [28] – 65.9 – – [28] 38.4
Pathak et al. [34]� [34] – 61.0 [34] 52.2 – –
Split-Brain Auto (cl,cl)† . 63.0 67.1 . 46.7 . 36.0

Table 4: Task and Dataset Generalization on PASCAL
VOC Classification and detection on PASCAL VOC 2007
[13] and segmentation on PASCAL VOC 2012 [14], using
mean average precision (mAP) and mean intersection over
union (mIU) metrics for each task, with publicly available
testing frameworks from [25], [15], [29]. Column Ref doc-
uments the source for a value obtained from a previous pa-
per. Character . indicates that value originates from this
paper. †indicates that network weights have been rescaled
with [25] before fine-tuning, as is common practice. Char-
acter � indicates concurrent work in these proceedings.

wise labeling of the object class, either one of the 20 objects
of interest or background. Here, the representation is fine-
tuned through multiple layers of the network, rather than
frozen. Prior to fine-tuning, we follow common practice
and use the rescaling method from [25], which rescales the
weights so that the layers learn at the same “rate”, using the
ratio of expected gradient magnitude over feature activation
magnitude as a heuristic.

4.1.2 Split-Brain Autoencoder Performance

Our primary result is that the proposed method, Split-Brain
Auto (cl,cl), achieves state-of-the-art performance on al-
most all established self-supervision benchmarks, as seen
in the last row on Tables 2, 3, 4, over previously pro-
posed self-supervision methods, as well as our ablation
baselines. Figures 3(a) and (b) shows our split brain autoen-
coder method compared to previous self-supervised meth-
ods [8, 46, 35, 49, 9, 33] on the ImageNet and Places classi-
fication tests, respectively. We especially note the straight-
forward nature of our proposed method: the network simply
predicts raw data channels from other raw data channels, us-
ing a classification loss with a basic 1-hot encoding scheme.

As seen in Figure 4(a) and Table 2, the autoencoder
objective by itself, Lab→Lab, does not lead to a strong
representation. Performance is near Gaussian initialization
through the initial layers, and actually falls below in the
conv5 layer. Dropping 50% of the data from the input
randomly during training, Lab(drop50)→Lab, in the style
of denoising autoencoders, adds a small performance boost
of approximately 1%. A large performance boost is ob-
served by adding a split in the architecture, Split-Brain
Auto (reg,reg), even with the same regression objective.
This achieves 5% to 20% higher performance throughout
the network, state-of-the-art compared to previous unsu-
pervised methods. A further boost of approximately 1-2%
throughout the network observed using a classification loss,
Split-Brain Auto (cl,cl), instead of regression.

4.1.3 Cross-Channel Encoding Objectives

Figure 4(b) compares the performance of the different
cross-channel objectives we tested on the ImageNet classifi-
cation benchmark. As shown in [49] and further confirmed
here, colorization, L→ab(cl), leads to a strong represen-
tation on classification transfer tasks, with higher perfor-
mance than other unsupervised representations pre-trained
on ImageNet, using inpainting [35], relative context [8], and
adversarial feature networks [9] from layers from conv2
to pool5. We found that the classification loss produced
stronger representations than regression for colorization,
consistent with the findings from concurrent work from
Larsson et al. [28].

Interestingly, the task of predicting grayscale from color
can also learn representations. Though colorization lends
itself closely to a graphics problem, the application of
grayscale prediction from color channels is less obvious. As
seen in Tables 2 and 3 and Figure 4(b), grayscale prediction
objectives ab→L(cl) and ab→L(reg) can learn represen-
tations above the Gaussian baseline. Though the learned
representation by itself is weaker than other self-supervised
methods, the representation is learned on a and b channels,
which makes it complementary to the colorization network.
For grayscale prediction, regression results in higher per-
formance than classification. Choosing the appropriate loss
function for a given channel prediction problem is an open
problem. However, note that the performance difference is
typically small, indicating that the cross-channel prediction
problem is often times an effective method, even without
careful engineering of the objective.

4.2. Split-Brain Autoencoders on RGB-D

We also test the split-brain autoencoder method on reg-
istered images and depth scans from NYU-D [39]. Because
RGB and depth images are registered spatially, RGB-D data
can be readily applied in our proposed framework. We split
the data by modality, predicting RGB from D and vice-
versa. Previous work in the video and audio domain [6]

7



Method Data Label RGB D RGB-D
Gupta et al. [18] 1M ImNet [37] X 27.8 41.7 47.1
Gupta et al. [17] 1M ImNet [37] X 27.8 34.2 44.4
Gaussian None – 28.1 –
Krähenbühl et al. [25] 20 NYU-D [39] 12.5 32.2 34.5
Split-Brain Autoencoder 10k NYU-D [39] 18.9 33.2 38.1

Table 5: Split-Brain Autoencoder Results on RGB-D
images We perform unsupervised training on 10k RGB-D
keyframes from the NYU-D [39] dataset, extracted by [18].
We pre-train representations on RGB images using `2 loss
on depth images in HHA space. We pre-train HHA repre-
sentations on L and ab channels using `2 and classification
loss, respectively. We show performance gains above Gaus-
sian and Krähenbühl et al. [25] initialization baselines. The
methods proposed by Gupta et al. [17, 18] use 1.3M labeled
images for supervised pre-training. We use the test proce-
dure from [18]: Fast R-CNN [15] networks are first trained
individually in the RGB and D domains separately, and then
ensembled together by averaging (RGB-D).

suggest that separating modalities, rather than mixing them,
provides more effective splits. This choice also provides
easy comparison to the test procedure introduced by [17].

Dataset & Detection Testbed The NYUD dataset con-
tains 1449 RGB-D labeled images and over 400k unla-
beled RGB-D video frames. We use 10k of these unlabeled
frames to perform unsupervised pre-training, as extracted
from [18]. We evaluate the representation on the 1449 la-
beled images for the detection task, using the framework
proposed in [18]. The method first trains individual detec-
tors on the RGB and D domains, using the Fast R-CNN
framework [15] on an AlexNet architecture, and then late-
fuses them together through ensembling.

Unsupervised Pre-training We represent depth images
using the HHA encoding, introduced in [17]. To learn im-
age representation FHHA, we train an Alexnet architecture
to regress from RGB channels to HHA channels, using an
`2 regression loss.

To learn depth representations, we train an Alexnet on
HHA encodings, using `2 loss on L and classification loss
on ab color channels. We chose this combination, as these
objectives performed best for training individual cross-
channel encoders in the image domain. The network ex-
tracts features up to the conv5 layer, using an Alexnet
architecture, and then splits off into specific branches for
the L and ab channels. Each branch contains AlexNet-
type fc6-7 layers, but with 512 channels each, evaluated
fully convolutionally for pixel prediction. The loss on the
ab term was weighted 200× with respect to the L term,
so the gradient magnitude on the pool5 representation
from channel-specific branches were approximately equal
throughout training.

Across all methods, weights up to the conv5 layer are
copied over during fine-tuning time, and fc6-7 layers are
randomly initialized, following [17].

Results The results are shown in Table 5 for detec-
tors learned in RGB and D domains separately, as well
as the ensembled result. For a Gaussian initialization, the
RGB detector did not train using default settings, while the
depth detector achieved performance of 28.1%. Using the
stacked k-means initialization scheme from Krähenbühl et
al. [25], individual detectors on RGB and D perform at
12.5% and 32.2%, while achieving 34.5% after ensembling.
Pre-training with our method reaches 18.9% and 33.2% on
the individual domains, above the baselines. Our RGB-D
ensembled performance was 38.1%, well above the Gaus-
sian and Krähenbühl et al. [25] baselines. These results
suggest that split-brain autoencoding is effective not just on
Lab images, but also on RGB-D data.

5. Discussion

We present split-brain autoencoders, a method for un-
supervised pre-training on large-scale data. The split-brain
autoencoder contains two disjoint sub-networks, which are
trained as cross-channel encoders. Each sub-network is
trained to predict one subset of raw data from another. We
test the proposed method on Lab images, and achieve state-
of-the-art performance relative to previous self-supervised
methods. We also demonstrate promising performance on
RGB-D images. The proposed method solves some of the
weaknesses of previous self-supervised methods. Specifi-
cally, the method (i) does not require a representational bot-
tleneck for training, (ii) uses input dropout to help force
abstraction in the representation, and (iii) is pre-trained on
the full input data.

An interesting future direction of is exploring the con-
catenation of more than 2 cross-channel sub-networks.
Given a fixed architecture size, e.g. AlexNet, dividing the
network into N disjoint sub-networks results in each sub-
network becoming smaller, less expressive, and worse at
its original task. To enable fair comparisons to previous
large-scale representation learning methods, we focused on
learning weights for a fixed AlexNet architecture. It would
also be interesting to explore the regime of fixing the sub-
network size and allowing the full network to grow with
additional cross-channel encoders.

Acknowledgements

We thank members of the Berkeley Artificial Intelli-
gence Research Lab (BAIR), in particular Andrew Owens,
for helpful discussions, as well as Saurabh Gupta for help
with RGB-D experiments. This research was supported, in
part, by Berkeley Deep Drive (BDD) sponsors, hardware
donations by NVIDIA Corp and Algorithmia, an Intel re-
search grant, NGA NURI, and NSF SMA-1514512. Thanks
Obama.

8



Appendix

In Section A, we provide additional analysis. In Section B,
we provide implementation details.

A. Additional analysis

Cross-Channel Encoder Aggregation Analysis In Figure
4(c), we show variations on aggregated cross-channel en-
coders. To begin, we hypothesize that the performance
improvement of split-brain autoencoders Split-Brain Auto
(cl,cl) over single cross-channel encoders L→ab is due to
the merging of complementary signals, as each sub-network
in Split-Brain Auto has been trained on different portions
of the input space. However, the improvement could be
simply due to an ensembling effect. To test this, we train
a split-brain autoencoder, comprising of two L→ab net-
works, Ensemble L→ab. As seen in Figure 4(c) and Table
2, the ensembled colorization network achieves lower per-
formance than the split-brain autoencoder, suggesting that
concatenating signals learned on complementary informa-
tion is beneficial for representation learning.

We find that combining cross-channel encoders through
concatenation is effective. We also test alternative ag-
gregation techniques. As seen in Figure 4(c), training
a single network to perform multiple cross-channel tasks
(L,ab)→(ab,L) is not effective for representation learning
on full Lab images. Adding in the autoencoder objective
during training, (L,ab,Lab)→(ab,L,Lab), in fact lowers
performance in higher layers.

Our proposed methods outperform these alternatives,
which indicates that (i) our choice of aggregating comple-
mentary signals improves performance (ii) concatenation
is an appropriate choice of combining cross-channel en-
coders.

B. Implementation Details

Here, we describe the pre-training and feature evaluation
architectures. For pre-training, we use an AlexNet architec-
ture [26], trained fully convolutionally [29]. The network
is trained with 180×180 images, cropped from 256 × 256
resolution, and predicts values at a heavily downsampled
12×12 resolution. One can add upsampling-convolutional
layers or use a trous [4]/dilated [48] convolutions to predict
full resolution images at the expense of additional memory
and run-time, but we found predicting at a lower resolu-
tion to be sufficient for representation learning. See Table
6 for feature map and parameter sizes during pre-training
time. We remove LRN layers and add BatchNorm lay-
ers after every convolution layer. After pre-training, we re-
move BatchNorm layers by absorbing the parameters into
the preceding conv layers. The pre-training network pre-
dicts a downsampled version of the desired output, which
we found to be adequate for feature learning.

During feature evaluation time (such as the ImageNet
[26], Places [50], and PASCAL [12] tests), the parame-
ters are copied into an AlexNet classification architecture,
shown in Table 7. During the linear classification tests, we
downsample feature maps spatially, so that each layer has
approximately the same number of features.

Quantization procedure Zhang et al. [49] use a class-

Fully Convolutional AlexNet [26] Architecture

Layer X C K S D P
data 180 * – – – –

conv1 45 96 11 4 1 5
pool1 23 96 3 2 1 1
conv2 23 256 5 1 1 2
pool2 12 256 3 2 1 1
conv3 12 384 3 1 1 1
conv4 12 384 3 1 1 1
conv5 12 256 3 1 1 1
pool5 12 256 3 1 1 1

fc6 12 4096 6 1 2 6
fc7 12 4096 1 1 1 0
fc8 12 * 1 1 1 0

Table 6: Fully Convolutional AlexNet architecture used
for pre-training. X spatial resolution of layer, C number
of channels in layer; K conv or pool kernel size; S com-
putation stride; D kernel dilation [4, 48]; P padding; * first
and last layer channel sizes are dependent on the pre-text
task, last layer is removed during transfer evaluation.

AlexNet Classification [26] Architecture

Layer X Xd C Fd K S D P
data 227 – * – – – – –

conv1 55 10 96 9600 11 4 1 0
pool1 27 10 96 9600 3 2 1 0
conv2 27 6 256 9216 5 1 1 2
pool2 13 6 256 9216 3 2 1 0
conv3 13 5 384 9600 3 1 1 1
conv4 13 5 384 9600 3 1 1 1
conv5 13 6 256 9216 3 1 1 1
pool5 6 6 256 9216 3 2 1 0

fc6 1 – 4096 – 6 1 1 0
fc7 1 – 4096 – 1 1 1 0

Table 7: AlexNet architecture used for feature evalua-
tion. X spatial resolution of layer, Xd downsampled spatial
resolution for feature evaluation, C number of channels in
layer; Fd = X2

dC downsampled feature map size for fea-
ture evaluation (kept approximately constant throughout),
K conv or pool kernel size; S computation stride; D ker-
nel dilation [4, 48]; P padding; * first layer channel size
is dependent on the pre-text task e.g., 3 for the split-brain
autoencoder or 1 for the L→ ab(cl) cross-channel encoder

9



rebalancing term, to over-sample rare colors in the train-
ing set, and a soft-encoding scheme for H. These choices
were made from a graphics perspective, to produce more
vibrant colorizations. In our classification colorization net-
work, L→ab(cl), our objective is more straightforward, as
we do not use class-rebalancing. In addition, we use a
1-hot encoding representation of classes, rather than soft-
encoding. The simplification in the objective function
achieves higher performance on ImageNet and Places clas-
sification, as shown on Tables 2 and 3.

C. Change Log
v1 Initial Release.
v2 Paper accepted to CVPR 2017. Updated Table 4 with
results for Misra et al. [30] and Donahue et al. [9] with
112× 112 resolution model. Updated Table 2, rows L→ab
(cl) and Zhang et al. [49] with corrected values. Supple-
mental material added.
v3 CVPR 2017 Camera Ready. Added references to con-
current work [34, 28]. Various changes to text.

References
[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 37–45, 2015.

[2] R. K. Ando and T. Zhang. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data.
Journal of Machine Learning Research, 6(Nov):1817–1853,
2005.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh an-
nual conference on Computational learning theory, pages
92–100. ACM, 1998.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. ICLR, 2015.

[5] V. R. de Sa. Learning classification with unlabeled data. Ad-
vances in neural information processing systems, pages 112–
112, 1994.

[6] V. R. De Sa. Sensory modality segregation. NIPS, 2003.
[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estima-

tion using real nvp. arXiv preprint arXiv:1605.08803, 2016.
[8] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-

sual representation learning by context prediction. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1422–1430, 2015.

[9] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-
ture learning. ICLR, 2017.

[10] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky,
O. Mastropietro, and A. Courville. Adversarially learned in-
ference. ICLR, 2017.

[11] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2650–2658, 2015.

[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303–
338, 2010.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[15] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680, 2014.

[17] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learn-
ing rich features from rgb-d images for object detection and
segmentation. In European Conference on Computer Vision,
pages 345–360. Springer, 2014.

[18] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation
for supervision transfer. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, 2016.

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[21] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be
Color!: Joint End-to-end Learning of Global and Local Im-
age Priors for Automatic Image Colorization with Simulta-
neous Classification. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2016), 35(4), 2016.

[22] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Learn-
ing visual groups from co-occurrences in space and time. In-
ternational Conference on Learning Representations, Work-
shop, 2016.

[23] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to ego-motion. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1413–1421,
2015.

[24] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. International Conference on Learning Representa-
tions, 2014.

[25] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell.
Data-dependent initializations of convolutional neural net-
works. International Conference on Learning Representa-
tions, 2016.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[27] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-
resentations for automatic colorization. European Confer-
ence on Computer Vision, 2016.

10



[28] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization
as a proxy task for visual understanding. CVPR, 2017.

[29] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015.

[30] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn:
unsupervised learning using temporal order verification. In
European Conference on Computer Vision, pages 527–544.
Springer, 2016.

[31] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. European Con-
ference on Computer Vision, 2016.

[32] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,
A. Graves, and K. Kavukcuoglu. Conditional image gen-
eration with pixelcnn decoders. NIPS, 2016.

[33] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and
A. Torralba. Ambient sound provides supervision for visual
learning. In ECCV, 2016.

[34] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariha-
ran. Learning features by watching objects move. CVPR,
2017.

[35] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and
A. Efros. Context encoders: Feature learning by inpainting.
In CVPR, 2016.

[36] G. Ramanarayanan, J. Ferwerda, B. Walter, and K. Bala. Vi-
sual equivalence: towards a new standard for image fidelity.
ACM Transactions on Graphics (TOG), 26(3):76, 2007.

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[38] R. Salakhutdinov and G. E. Hinton. Deep boltzmann ma-
chines. In AISTATS, volume 1, page 3, 2009.

[39] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
European Conference on Computer Vision, pages 746–760.
Springer, 2012.

[40] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[41] P. Smolensky. Information processing in dynamical systems:
Foundations of harmony theory. Technical report, DTIC
Document, 1986.

[42] K. Sohn, W. Shang, and H. Lee. Improved multimodal
deep learning with variation of information. In Advances in
Neural Information Processing Systems, pages 2141–2149,
2014.

[43] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu.
Pixel recurrent neural networks. ICML, 2016.

[44] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In Proceedings of the 25th international confer-
ence on Machine learning, pages 1096–1103. ACM, 2008.

[45] X. Wang, D. Fouhey, and A. Gupta. Designing deep net-
works for surface normal estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 539–547, 2015.

[46] X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2794–2802,
2015.

[47] C. Xu, D. Tao, and C. Xu. A survey on multi-view learning.
arXiv preprint arXiv:1304.5634, 2013.

[48] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. International Conference on Learning
Representations, 2016.

[49] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. European Conference on Computer Vision, 2016.

[50] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In Advances in neural information processing sys-
tems, pages 487–495, 2014.

11


