
X3D: Expanding Architectures for Efficient Video Recognition

Christoph Feichtenhofer

Facebook AI Research (FAIR)

Abstract

This paper presents X3D, a family of efficient video net-
works that progressively expand a tiny 2D image classifi-
cation architecture along multiple network axes, in space,
time, width and depth. Inspired by feature selection methods
in machine learning, a simple stepwise network expansion
approach is employed that expands a single axis in each step,
such that good accuracy to complexity trade-off is achieved.
To expand X3D to a specific target complexity, we perform
progressive forward expansion followed by backward con-
traction. X3D achieves state-of-the-art performance while
requiring 4.8× and 5.5× fewer multiply-adds and parame-
ters for similar accuracy as previous work. Our most surpris-
ing finding is that networks with high spatiotemporal resolu-
tion can perform well, while being extremely light in terms of
network width and parameters. We report competitive accu-
racy at unprecedented efficiency on video classification and
detection benchmarks. Code will be available at: https:
//github.com/facebookresearch/SlowFast.

1. Introduction
Neural networks for video recognition have been largely

driven by expanding 2D image architectures [29, 47, 64, 71]
into spacetime. Naturally, these expansions often happen
along the temporal axis, involving extending the network
inputs, features, and/or filter kernels into spacetime (e.g.
[7, 13, 17, 42, 56, 75]); other design decisions—including
depth (number of layers), width (number of channels), and
spatial sizes—however, are typically inherited from 2D im-
age architectures. While expanding along the temporal axis
(while keeping other design properties) generally increases
accuracy, it can be sub-optimal if one takes into account the
computation/accuracy trade-off —a consideration of central
importance in applications.

In part because of the direct extension of 2D models
to 3D, video recognition architectures are computationally
heavy. In comparison to image recognition, typical video
models are significantly more compute-demanding, e.g. an
image ResNet [29] can use around 27× fewer multiply-add
operations than a temporally extended video variant [81].

T

C

H,W

prediction

Í
t

Í
Ü
Í
s

Í
d

Í
w

Í
b

Í
s

Input frames
res2 res3

res4

Figure 1. X3D networks progressively expand a 2D network across
the following axes: Temporal duration γt, frame rate γτ , spatial
resolution γs, width γw, bottleneck width γb, and depth γd.

This paper focuses on the low-computation regime in
terms of computation/accuracy trade-off for video recogni-
tion. We base our design upon the “mobile-regime" mod-
els [31, 32, 61] developed for image recognition. Our core
idea is that while expanding a small model along the tem-
poral axis can increase accuracy, the computation/accuracy
trade-off may not always be best compared with expanding
other axes, especially in the low-computation regime where
accuracy can increase quickly along different axes.

In this paper, we progressively “expand" a tiny base 2D
image architecture into a spatiotemporal one by expanding
multiple possible axes shown in Fig. 1. The candidate axes
are temporal duration γt, frame rate γτ , spatial resolution
γs, network width γw, bottleneck width γb, and depth γd.
The resulting architecture is referred as X3D (Expand 3D)
for expanding from the 2D space into 3D spacetime domain.

The 2D base architecture is driven by the MobileNet [31,
32,61] core concept of channel-wise1 separable convolutions,
but is made tiny by having over 10× fewer multiply-add
operations than mobile image models. Our expansion then
progressively increases the computation (e.g., by 2×) by
expanding only one axis at a time, train and validate the
resultant architecture, and select the axis that achieves the
best computation/accuracy trade-off. The process is repeated
until the architecture reaches a desired computational budget.
This can be interpreted as a form of coordinate descent [83]
in the hyper-parameter space defined by those axes.

1Also referred as “depth-wise". We use the term “channel-wise" to avoid
confusions with the network depth, which is also an axis we consider.

1

ar
X

iv
:2

00
4.

04
73

0v
1

 [
cs

.C
V

]
 9

 A
pr

 2
02

0

https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/SlowFast

Our progressive network expansion approach is inspired
by the history of image ConvNet design where popu-
lar architectures have arisen by expansions across depth,
[8,29,47,64,71,94], resolution [35,70,73] or width [88,93],
and classical feature selection methods [25, 41, 44] in ma-
chine learning. In the latter, progressive feature selection
methods [25, 44] start with either a set of minimum features
and aim to find relevant features to improve in a greedy fash-
ion by including (forward selection) a single feature in each
step, or start with a full set of features and aim to find irrele-
vant ones that are excluded by repeatedly deleting the feature
that reduces performance the least (backward elimination).

To compare to previous research, we use Kinetics-400
[43], Kinetics-600 [4], Charades [62] and AVA [24]. For
systematic studies, we classify our models into different
levels of complexity for small, medium and large models.

Overall, our expansion produces a sequence of spatiotem-
poral architectures, covering a wide range of computa-
tion/accuracy trade-offs. They can be used under differ-
ent computational budgets that are application-dependent
in practice. For example, across different computation and
accuracy regimes X3D performs favorably to state-of-the-
art while requiring 4.8× and 5.5× fewer multiply-adds and
parameters for similar accuracy as previous work. Further,
expansion is simple and cheap e.g. our low-compute model
is completed after only training 30 tiny models that accumu-
latively require over 25× fewer multiply-add operations for
training than one large state-of-the-art network [15, 81, 84].

Conceptually, our most surprising finding is that very
thin video architectures that are created by expanding spatio-
temporal resolution perform well, while being light in terms
of network width and parameters. X3D networks have lower
width than image-design [29, 64, 71] based video models,
making X3D similar to the high-resolution Fast pathway [15]
which has been designed in such fashion. We hope these
advances will facilitate future research and applications.

2. Related Work
Spatiotemporal (3D) networks. Video recognition archi-
tectures are favorably designed by extending image classifi-
cation networks with a temporal dimension, and preserving
the spatial properties. These extensions include direct trans-
formation of 2D models [29, 47, 64, 71] such as ResNet or
Inception to 3D [7, 26, 58, 74, 75, 89], adding RNNs on top
of 2D CNNs [13, 49, 50, 56, 67, 92], or extending 2D models
with an optical flow stream that is processed by an identical
2D network [7, 18, 63, 80] . While starting with a 2D image
based model and converting it to a spatiotemporal equivalent
by inflating filters [7, 17] allows pretraining on image classi-
fication tasks, it makes video architectures inherently biased
towards their image-based counterparts.

The SlowFast [15] architecture has explored the resolu-
tion trade-off across several axes, different temporal, spatial,

and channel resolution in the Slow and Fast pathway. Inter-
estingly the Fast pathway can be very thin and therefore only
adds a small computational overhead; however, performs low
in isolation. Further, these explorations were performed with
the architecture of the computationally heavy Slow pathway
held constant to a temporal extension of an image classifica-
tion design [29]. In relation to this previous effort, our work
investigates whether the heavy Slow pathway is required, or
if a lightweight network can be made competitive.

Efficient 2D networks. Computation-efficient architec-
tures have been extensively developed for the image clas-
sification task, with MobileNetV1&2 [32, 61] and Shuf-
fleNet [95] exploring channel-wise separable convolutions
and expanded bottlenecks. Several methods for neural archi-
tecture search in this setting have been proposed, also adding
Squeeze-Excitation (SE) [33] attention blocks to the design
space in [72] and more recently, MobileNetV3 [31] Swish
non-linearities [59]. MobileNets [32, 61, 72] were scaled
up and down by using a multiplier for width and input size
(resolution). Recently, MnasNet [72] is used to apply liner
scaling factors to spatial, width and depth axes for creating a
set of EfficientNets [73] for image classification.

Our expansion is related to this, but requires fewer sam-
ples and handles more axes as we only train a single model
for each axis in each step, while [73] performs a grid-search
on the initial regime which requires kd models to be trained
where k is the gridsize and d the number of axes. Moreover,
the model used for this search, MnasNet was found by sam-
pling around 8000 models [72]. For video, this is prohibitive
as datasets can have orders of magnitude more images than
image classification e.g. the largest version of Kinetics [5]
has ≈195M frames, 162.5× more images than ImageNet.
By contrast, our approach only requires to train 6 models,
one for each expansion axis, until a desired complexity is
reached, e.g. for 5 steps, it requires 30 models to be trained.

Efficient 3D networks. Several innovative architectures for
efficient video classification have been proposed, e.g. [3, 6,
10,12,14,19,36,45,48,55,57,68,69,76,78,79,85,89,97–99].
Channel-wise separable convolution as a key building block
for efficient 2D ConvNets [31, 32, 61, 73, 95] has been ex-
plored for video classification in [45,76], where 2D architec-
tures are extended to their 3D counterparts, e.g. ShuffleNet
and MobileNet in [45], or ResNet in [76] by using a 3×3×3
channel-wise separable convolution in the bottleneck of a
residual stage. Earlier, [10] adopt 2D ResNets and Mo-
bileNets from ImageNet and sparsifies connections inside
each residual block similar to separable or group convolu-
tion. A temporal shift module (TSM) is introduced in [51]
that extends a ResNet to capture temporal information using
memory shifting operations. There is also active research on
adaptive frame sampling techniques, e.g. [2,46,65,86,87,91],
which we think can be complementary to our approach.

2

In relation to most of these works, our approach does
not assume a fixed inherited design from 2D networks, but
expands a tiny architecture across several axes in space, time,
channels and depth to achieve a good efficiency trade-off.

3. X3D Networks
Image classification architectures have gone through an

evolution of architecture design with progressively expand-
ing existing models along network depth [8,29,47,64,71,94],
input resolution [35, 70, 73] or channel width [88, 93]. Simi-
lar progress can be observed for the mobile image classifi-
cation domain where contracting modifications (shallower
networks, lower resolution, thinner layers, separable convo-
lution [31, 32, 37, 61, 95]) allowed operating at lower compu-
tational budget. Given this history in image ConvNet design,
a similar progress has not been observed for video architec-
tures as these were customarily based on direct temporal
extensions of image models. However, is single expansion
of a fixed 2D architecture to 3D ideal, or is it better to expand
or contract along different axes?

For video classification the temporal dimension exposes
an additional dilemma, increasing the number of possibilities
but also requiring it to be dealt differently than the spatial
dimensions [15, 63, 77]. We are especially interested in the
trade-off between different axes, more concretely:

• What is the best temporal sampling strategy for 3D
networks? Is a long input duration and sparser sampling
preferred over faster sampling of short duration clips?

• Do we require finer spatial resolution? Previous works
have used lower resolution for video classification
[42, 75, 77] to increase efficiency. Also, videos typi-
cally come at coarser spatial resolution than Internet
images; therefore, is there a maximum spatial resolu-
tion at which performance saturates?

• Is it better to have a network with high frame-rate but
thinner channel resolution, or to slowly process video
with a wider model? E.g. should the network have
heavier layers as typical image classification models
(and the Slow pathway [15]) or rather lighter layers
with lower width (as the Fast pathway [15]). Or is there
a better trade-off, possibly between these extremes?

• When increasing the network width, is it better to glob-
ally expand the network width in the ResNet block
design [29] or to expand the inner (“bottleneck”) width,
as is common in mobile image classification networks
using channel-wise separable convolutions [61, 95]?

• Should going deeper be performed with expanding in-
put resolution in order to keep the receptive field size
large enough and its growth rate roughly constant, or is
it better to expand into different axes? Does this hold
for both the spatial and temporal dimension?

stage filters output sizes T×S2

data layer stride γτ , 12 1γt×(112γs)2

conv1 1×32, 3×1, 24γw 1γt×(56γs)2

res2

 1×12, 24γbγw
3×32, 24γbγw

1×12, 24γw

×γd 1γt×(28γs)2

res3

 1×12, 48γbγw
3×32, 48γbγw

1×12, 48γw

×2γd 1γt×(14γs)2

res4

 1×12, 96γbγw
3×32, 96γbγw

1×12, 96γw

×5γd 1γt×(7γs)2

res5

 1×12, 192γbγw
3×32, 192γbγw

1×12, 192γw

×3γd 1γt×(4γs)2

conv5 1×12, 192γbγw 1γt×(4γs)2

pool5 1γt×(4γs)2 1×1×1
fc1 1×12, 2048 1×1×1
fc2 1×12, #classes 1×1×1

Table 1. X3D architecture. The dimensions of kernels are denoted
by {T×S2, C} for temporal, spatial, and channel sizes. Strides
are denoted as {temporal stride, spatial stride2}. This network is
expanded using factors {γτ , γt, γs, γw, γb, γd} to form X3D.
Without expansion (all factors equal to one), this model is referred
to as X2D, having 20.67M FLOPS and 1.63M parameters.

This section first introduces the basis X2D architecture
in Sec. 3.1 which is expanded with operations defined in
Sec. 3.2 by using the progressive approach in Sec. 3.3.

3.1. Basis instantiation

We begin by describing the instantiation of the basis
network architecture, X2D, that serves as baseline to be
expanded into spacetime. The basis network instantiation
follows a ResNet [29] structure and the Fast pathway design
of SlowFast networks [15] with degenerated (single frame)
temporal input. X2D is specified in Table 1, if all expansion
factors {γτ , γt, γs, γw, γb, γd} are set to 1.

We denote spatiotemporal size by T×S2 where T is the
temporal length and S is the height and width of a square
spatial crop. The X2D architecture is described next.

Network resolution and channel capacity. The model
takes as input a raw video clip that is sampled with frame-
rate 1/γτ in the data layer stage. The basis architecture only
takes a single frame of size T×S2=1×1122 as input and
therefore can be seen as an image classification network.
The width of the individual layers is oriented at the Fast
pathway design in [15] with the first stage, conv1, filters
the 3 RGB input channels and produces 24 output features.
This width is increased by a factor of 2 after every spatial
sub-sampling with a stride = 1, 22 at each deeper stage from
res2 to res5. Spatial sub-sampling is performed by the center
(“bottleneck”) filter of the first res-block of each stage.

3

Similar to the SlowFast pathways [15], the model pre-
serves the temporal input resolution for all features through-
out the network hierarchy. There is no temporal downsam-
pling layer (neither temporal pooling nor time-strided con-
volutions) throughout the network, up to the global pooling
layer before classification. Thus, the activations tensors con-
tain all frames along the temporal dimension, maintaining
full temporal frequency in all features.

Network stages. X2D consists of a stage-level and bottle-
neck design that is inspired by recent 2D mobile image clas-
sification networks [31, 32, 61, 95] which employ channel-
wise separable convolution that are a key building block
for efficient ConvNet models. We adopt stages that follow
MobileNet [31, 61] design by extending every spatial 3×3
convolution in the bottleneck block to a 3×3×3 (i.e. 3×32)
spatiotemporal convolution which has also been explored for
video classification in [45, 76]. Further, the 3×1 temporal
convolution in the first conv1 stage is channel-wise.

Discussion. X2D can be interpreted as a Slow pathway
since it only uses a single frame as input, while the network
width is similar to the Fast pathway in [15] which is much
lighter than typical 3D ConvNets (e.g., [7, 15, 17, 75, 81])
that follow an ImageNet design. Concretely, it only requires
20.67M FLOPs which amounts to only 0.0097% of a recent
state-of-the-art SlowFast network [15].

As shown in Table 1 and Fig. 1, X2D is expanded across
6 axes, {γτ , γt, γs, γw, γb, γd}, described next.

3.2. Expansion operations

We define a basic set of expansion operations that are
used for sequentially expanding X2D from a tiny spatial
network to X3D, a spatiotemporal network, by performing
the following operations on temporal, spatial, width and
depth dimensions.

• X-Fast expands the temporal activation size, γt, by
increasing the frame-rate, 1/γτ , and therefore temporal
resolution, while holding the clip duration constant.

• X-Temporal expands the temporal size, γt, by sampling
a longer temporal clip and increasing the frame-rate
1/γτ , to expand both duration and temporal resolution.

• X-Spatial expands the spatial resolution, γs, by increas-
ing the spatial sampling resolution of the input video.

• X-Depth expands the depth of the network by increas-
ing the number of layers per residual stage by γd times.

• X-Width uniformly expands the channel number for all
layers by a global width expansion factor γw.

• X-Bottleneck expands the inner channel width, γb, of
the center convolutional filter in each residual block.

3.3. Progressive Network Expansion

We employ a simple progressive algorithm for network
expansion, similar to forward and backward algorithms for
feature selection [25, 39, 41, 44]. Initially we start with X2D,
the basis model instantiation with a set of unit expanding
factors X0 of cardinality a. We use a = 6 factors, X ={γτ ,
γt, γs, γw, γb, γd}, but other axes are possible.

Forward expansion. The network expansion criterion func-
tion, which measures the goodness for the current expansion
factors X , is represented as J(X). Higher scores of this mea-
sure represent better expanding factors, while lower scores
would represent worse. In our experiments, this corresponds
to the accuracy of a model expanded by X . Furthermore, let
C(X) be a complexity criterion function that measures the
cost of the current expanding factors X . In our experiments,
C is set to the floating point operations of the underlying
network instantiation expanded by X , but other measures
such as runtime, parameters, or memory are possible. Then,
the network expansion tries to find expansion factors X with
the best trade-off X = argmaxZ,C(Z)=c = J(Z) where Z
are the possible expansion factors to be explored and c is
the target complexity. In our case we perform expansion
that only changes a single one of the a expansion factors
while holding the others constant; therefore there are only a
different subsets of Z to evaluate, where each of them alters
in only one dimension from X . The expansion with the best
computation/accuracy trade-off is kept for the next step. This
is a form of coordinate descent [83] in the hyper-parameter
space defined by those axes.

The expansion is performed in a progressive manner with
an expansion-rate ĉ that corresponds to the stepsize at which
the model complexity c is increased in each expansion step.
We use a multiplicative increase of ĉ ≈ 2 of the model
complexity in each step that corresponds to the complexity-
increase for doubling the number of frames of the model.
The stepwise expansion is therefore simple and efficient as it
only requires to train a few models until a target complexity
is reached, since we exponentially increase the complexity.
Details on the expansion are in §A.3.

Backward contraction. Since the forward expansion only
produces models in discrete steps, we perform a backward
contraction step to meet a desired target complexity, if the
target is exceeded by the forward expansion steps. This
contraction is implemented as a simple reduction of the last
expansion, such that it matches the target. For example, if
the last step has increased the frame-rate by a factor of two,
the backward contraction will reduce the frame-rate by a
factor < 2 to roughtly match the desired target complexity.

4. Experiments: Action Classification
Datasets. We perform our expansion on Kinetics-400 [43]
(K400) with ∼240k training, 20k validation and 35k testing

4

τ

sd

b

t

w

X3D

d

d

t

t

b

τ

τ

X3D-LX3D-M
X3D-S

X3D-XS

s

ss

X2D

w
X3D-XL

Model capacity in GFLOPs (# of multiply-adds x 109)
0 5 15 25 3510 20 30

80

75

70

65

60

55

50

K
in

et
ic

s
to

p-
1

ac
cu

ra
cy

 (%
)

Figure 2. Progressive network expansion of X3D. The X2D base
model is expanded 1st across bottleneck width (γb), 2nd tempo-
ral resolution (γτ), 3rd spatial resolution (γs), 4th depth (γd), 5th

duration (γt), etc. The majority of models are trained for small
computation cost, making the expansion economical in practice.

videos in 400 human action categories. We report top-1
and top-5 classification accuracy (%). As in previous work,
we train and report ablations on the train and val sets. We
also report results on test set as the labels have been made
available [4]. We report the computational cost (in FLOPs)
of a single, spatially center-cropped clip.2

Training. All models are trained from random initialization
(“from scratch”) on Kinetics, without using ImageNet [11]
or other pre-training. Our training recipe follows [15]. All
implementation details and dataset specifics are in §A.3.

For the temporal domain, we randomly sample a clip
from the full-length video, and the input to the network
are γt frames with a temporal stride of γτ ; for the spatial
domain, we randomly crop 112γs×112γs pixels from a
video, or its horizontal flip, with a shorter side randomly
sampled in [128γs, 160γs] pixels which is a linearly scaled
version of the augmentation used in [15, 64, 81].

Inference. To be comparable with previous work and eval-
uate accuracy/complexity trade-offs we apply two test-
ing strategies: (i) K-Center: Temporally, uniformly sam-
ples K clips (e.g. K=10) from a video and spatially
scales the shorter spatial side to 128γs pixels and takes
a γt×112γs×112γs center crop, comparable to [46, 51, 76,
84]. (ii) K-LeftCenterRight is the same as above temporally,
but takes 3 crops of γt×128γs×128γs to cover the longer
spatial axis, as an approximation of fully-convolutional test-
ing, following [15, 81]. We average the softmax scores for
all individual predictions.

2We use single-clip, center-crop FLOPs as a basic unit of computational
cost. Inference-time computational cost is roughly proportional to this, if a
fixed number of clips and crops is used, as is for our all models.

model top-1 top-5
regime FLOPs Params
FLOPs (G) (G) (M)

X3D-XS 68.6 87.9 X-Small ≤ 0.6 0.60 3.76
X3D-S 72.9 90.5 Small ≤ 2 1.96 3.76
X3D-M 74.6 91.7 Medium ≤ 5 4.73 3.76
X3D-L 76.8 92.5 Large ≤ 20 18.37 6.08
X3D-XL 78.4 93.6 X-Large ≤ 40 35.84 11.0
X3D-XXL 80.0 94.5 XX-Large ≤ 150 143.5 20.3

Table 2. Expanded instances on K400-val. 10-Center clip testing is
used. We show top-1 and top-5 classification accuracy (%), as well
as computational complexity measured in GFLOPs (floating-point
operations, in # of multiply-adds ×109) for a single clip input.
Inference-time computational cost is proportional to 10× of this,
as a fixed number of 10 of clips is used per video.

4.1. Expanded networks

The accuracy/complexity trade-off curve for the expan-
sion process on K400 is shown in Fig. 2. Expansion starts
from X2D that produces 47.75% top-1 accuracy (vertical
axis) with 1.63M parameters 20.67M FLOPs per clip (hori-
zontal axis), which is roughly doubled in each progressive
step. We use 10-Center clip testing as our default test setting
for expansion, so the overall cost per video is ×10. We
will ablate different number of testing clips in Sec. 4.3. The
expansion in Fig. 2 provides several interesting observations:

(i) First of all, expanding along any one of the candidate
axes increases accuracy. This justifies our motivation of
taking multiple axes (instead of just the temporal axis) into
account when designing spatiotemporal models.

(ii) Surprisingly, the first step selected by the expansion
algorithm is not along the temporal axis; instead, it is a factor
that grows the “bottleneck" width γb in the ResNet block
design [29]. This echoes the inverted bottleneck design
in [61] (called “inverted residual" [61]). This is possibly
because these layers are lightweight (due to the channel-wise
design of MobileNets) and thus are economical to expand at
first. Another interesting observation is that accuracy varies
strongly, with the bottleneck expansion γb providing the
highest top-1 accuracy of 55.0% and depth expansion γd the
lowest with 51.3% at same complexity of 41.4M FLOPs.

(iii) The second step extends the temporal size of the
model from one to two frames (expanding γτ and γt is
identical for this step as there exists only a single frame in
the previous one). This is what we expected to be the most
effective expansion already in the first step as it enables the
network to model temporal information for recognition.

(iv) The third step increases the spatial resolution γs and
starts to show a pattern that is interesting. The expansion
increases spatial and temporal resolution followed by depth
(γd) in the fourth step. This is followed by multiple temporal
expansions that increase temporal resolution (i.e. frame-rate)
and input duration (γτ & γt), followed by two more expan-
sions across the spatial resolution, γs, in steps 8 and 9, while
step 10 increases the depth of the network, γd. An expansion
of the depth after increasing input resolution is intuitive, as
it allows to grow the filter receptive field resolution and size
within each residual stage.

5

stage filters output sizes T×H×W
data layer stride 6, 12 13×160×160

conv1 1×32, 3×1, 24 13×80×80

res2

 1×12, 54
3×32, 54
1×12, 24

×3 13×40×40

res3

 1×12, 108
3×32, 108
1×12, 48

×5 13×20×20

res4

 1×12, 216
3×32, 216
1×12, 96

×11 13×10×10

res5

 1×12, 432
3×32, 432
1×12, 192

×7 13×5×5

conv5 1×12, 432 13×5×5
pool5 13×5×5 1×1×1

fc1 1×12, 2048 1×1×1
fc2 1×12, #classes 1×1×1

(a) X3D-S with 1.96G FLOPs, 3.76M param, and
72.9% top-1 accuracy using expansion of γτ= 6,
γt= 13, γs=

√
2, γw= 1, γb= 2.25, γd= 2.2.

stage filters output sizes T×H×W
data layer stride 5, 12 16×224×224

conv1 1×32, 3×1, 24 16×112×112

res2

 1×12, 54
3×32, 54
1×12, 24

×3 16×56×56

res3

 1×12, 108
3×32, 108
1×12, 48

×5 16×28×28

res4

 1×12, 216
3×32, 216
1×12, 96

×11 16×14×14

res5

 1×12, 432
3×32, 432
1×12, 192

×7 16×7×7

conv5 1×12, 432 16×7×7
pool5 16×7×7 1×1×1

fc1 1×12, 2048 1×1×1
fc2 1×12, #classes 1×1×1

(b) X3D-M with 4.73G FLOPs, 3.76M param, and
74.6% top-1 accuracy using expansion of γτ= 5,
γt= 16, γs= 2, γw= 1, γb= 2.25, γd= 2.2.

stage filters output sizes T×H×W
data layer stride 5, 12 16×312×312

conv1 1×32, 3×1, 32 16×156×156

res2

 1×12, 72
3×32, 72
1×12, 32

×5 16×78×78

res3

 1×12, 162
3×32, 162
1×12, 72

×10 16×39×39

res4

 1×12, 306
3×32, 306
1×12, 136

×25 16×20×20

res5

 1×12, 630
3×32, 630
1×12, 280

×15 16×10×10

conv5 1×12, 630 16×10×10
pool5 16×10×10 1×1×1

fc1 1×12, 2048 1×1×1
fc2 1×12, #classes 1×1×1

(c) X3D-XL with 35.84G FLOPs & 10.99M param,
and 78.4% top-1 acc. using expansion of γτ= 5,
γt= 16, γs= 2

√
2, γw= 2.9, γb= 2.25, γd= 5.

Table 3. Three instantiations of X3D with varying complexity. The top-1 accuracy corresponds to 10-Center view testing on K400. The
models in (a) and (b) only differ in spatiotemporal resolution of the input and activations (γt, γτ , γs), and (c) differs from (b) in spatial
resolution, γs, width, γw, and depth, γd. See Table 1 for X2D. Surprisingly X3D-XL has a maximum width of 630 feature channels.

(v) Even though we start from a base model that is in-
tentionally made tiny by having very few channels, the ex-
pansion does not choose to globally expand the width up to
the 10th step of the expansion process, making X3D similar
to the Fast pathway design [16] with high spatiotemporal
resolution but low width. The last expansion step shown in
the top-right of Fig. 2 increases the width γw. The final two
steps, not shown in Fig. 2, expand γτ and γd.

In the spirit of VGG models [8, 64] we define a set of
networks based on their target complexity. We use FLOPs as
this reflects a hardware agnostic measure of model complex-
ity. Parameters are also possible, but as they would not be
sensitive to the input and activation tensor size, we only re-
port them as secondary metric. To cover the models from our
expansion, Table 2 defines complexity regimes by FLOPs,
ranging from extra small (XS) to extra extra large (XXL).

Expanded instances. The smallest instance, X3D-XS is
the output after 5 expansion steps. Expansion is simple and
efficient as it requires to train few models that are mostly at
a low compute regime. For X3D-XS each step trains models
of around 0.04, 0.08, 0.15, 0.30, 0.60 GFLOPs. Since we
train one model for each of the 6 axes the approximate cost
for these five steps is roughly equal to training a single model
of 6 ×1.17 GFLOPS (to be fair, this ignores overhead cost
for data loading etc. as 6×5=30 models are trained overall).

The next larger model is X3D-S which is defined by one
backward contraction step after the 7th expansion step. The
contraction step simply reduces the expansion (γt) propor-
tionally to roughly match the target regime of ≤ 2 GFLOPs.
For this model we also tried to contract each other axis to
match the target and found that γt is best among the others.

The next models in Table 2 is X3D-M (≤ 2 GFLOPs)
that achieves 74.6% top-1 accuracy, X3D-L (≤ 20 GFLOPs)
with 76.8% top-1 and X3D-XL (≤ 40 GFLOPs) with 78.4%
and X3D-XXL (≤ 150 GFLOPs) with 80.0% top-1 accuracy

by expansion in the consecutive steps.
Further speed/accuracy comparisons are provided in §B.

Table 3 shows three instantiations of X3D with varying com-
plexity. It is interesting to inspect the differences of the
models, X3D-S in Table 3a is just a lower spatiotemporal
resolution (γt, γτ , γs) version of Table 3b; therefore has
the same number of parameters, and X3D-XL in Table 3c is
created by expanding X3D-M 3b in spatial resolution (γs)
and width (γw). See Table 1 for X2D.

4.2. Main Results

Kinetics-400. Table 4 shows the comparison with state-of-
the-art results for three X3D instantiations.To be comparable
to previous work, we use the same testing strategy, that is 10-
LeftCenterRight (i.e. 30-view) inference. For each model, the
table reports (from-left-to-right) ImageNet pretraining (pre),
top-1 and top-5 validation accuracy, average test accuracy as
(top-1+ top-5)/2 (i.e. official test-server metric), inference
cost (GFLOPs×views) and parameters.

In comparison to the state-of-the-art, SlowFast [15],
X3D-XL, provides comparable (slightly lower) performance
(-0.7% top-1 and identical top-5 accuracy), while requiring
4.8× fewer multiply-add operations (FLOPs) and 5.5× fewer
parameters than SlowFast 16×8, R101 + NL blocks [81],
and better accuracy than SlowFast 8×8, R101+NL with
2.4× fewer multiply-add operations and 5.5× fewer param-
eters. When comparing X3D-L, we observe similar perfor-
mance as Channel-Separated Networks (ip-CSN-152) [76]
and SlowFast 8×8, at 4.3× fewer FLOPs and 5.4× fewer
parameters. Finally, in the lower compute regime X3D-M is
comparable to SlowFast 4×16, R50 and Oct-I3D + NL [9]
while having 4.7× fewer FLOPs and 9.1× fewer parameters.
We observe consistent results on the test set with the largest
(and least efficient) X3D-XXL producing 86.7% average
top1/5 accuracy, showing good generalization performance.

6

model pre top-1 top-5 test GFLOPs×views Param
I3D [7]

Im
ag

eN
et

71.1 90.3 80.2 108 × N/A 12M
Two-Stream I3D [7] 75.7 92.0 82.8 216 × N/A 25M
Two-Stream S3D-G [89] 77.2 93.0 143 × N/A 23.1M
MF-Net [10] 72.8 90.4 11.1 × 50 8.0M
TSM R50 [51] 74.7 N/A 65 × 10 24.3M
Nonlocal R50 [81] 76.5 92.6 282 × 30 35.3M
Nonlocal R101 [81] 77.7 93.3 83.8 359 × 30 54.3M
Two-Stream I3D [7] - 71.6 90.0 216 × NA 25.0M
R(2+1)D [77] - 72.0 90.0 152 × 115 63.6M
Two-Stream R(2+1)D [77] - 73.9 90.9 304 × 115 127.2M
Oct-I3D + NL [9] - 75.7 N/A 28.9 × 30 33.6M
ip-CSN-152 [76] - 77.8 92.8 109 × 30 32.8M
SlowFast 4×16, R50 [15] - 75.6 92.1 36.1 × 30 34.4M
SlowFast 8×8, R101 [15] - 77.9 93.2 84.2 106 × 30 53.7M
SlowFast 8×8, R101+NL [15] - 78.7 93.5 84.9 116 × 30 59.9M
SlowFast 16×8, R101+NL [15] - 79.8 93.9 85.7 234 × 30 59.9M
X3D-M - 76.0 92.3 82.9 6.2 × 30 3.8M
X3D-L - 77.5 92.9 83.8 24.8 × 30 6.1M
X3D-XL - 79.1 93.9 85.3 48.4 × 30 11.0M
X3D-XXL - 80.4 94.6 86.7 194.1 × 30 20.3M
Table 4. Comparison to the state-of-the-art on K400-val & test.
We report the inference cost with a single “view" (temporal clip with
spatial crop) × the numbers of such views used (GFLOPs×views).
“N/A” indicates the numbers are not available for us. The “test”
column shows average of top1 and top5 on the Kinetics-400 testset.

model pretrain top-1 top-5 GFLOPs×views Param
I3D [4] - 71.9 90.1 108 × N/A 12M
Oct-I3D + NL [9] ImageNet 76.0 N/A 25.6 × 30 12M
SlowFast 4×16, R50 [15] - 78.8 94.0 36.1 × 30 34.4M
SlowFast 16×8, R101+NL [15] - 81.8 95.1 234 × 30 59.9M
X3D-M - 78.8 94.5 6.2 × 30 3.8M
X3D-XL - 81.9 95.5 48.4 × 30 11.0M

Table 5. Comparison with the state-of-the-art on Kinetics-600.
Results are consistent with K400 in Table 4 above.

Kinetics-600 is a larger version of Kinetics that shall
demonstrate further generalization of our approach. Re-
sults are shown in Table 5. Our variants demonstrate similar
performance as above, with the best model now providing
slightly better performance than the previous state-of-the-
art SlowFast 16×8, R101+NL [15], again for 4.8× fewer
FLOPs (i.e. multiply-add operations) and 5.5× fewer param-
eter. In the lower computation regime, X3D-M is compara-
ble to SlowFast 4×16, R50 but requires 5.8× fewer FLOPs
and 9.1× fewer parameters.

Charades [62] is a dataset with longer range activities. Ta-
ble 6 shows our results. X3D-XL provides higher perfor-
mance (+0.9 mAP with K400 and +1.9mAP under K600
pretraining), while requiring 4.8× fewer multiply-add op-
erations (FLOPs) and 5.5× fewer parameters than previous
highest system, SlowFast [15] with+ NL blocks [81].

4.3. Ablation Experiments

This section provides ablation studies on K400 val and
test sets, comparing accuracy and computational complexity.

Comparison with EfficientNet3D. We first aim to com-
pare X3D with a 3D extension of EfficientNet [73]. This
architecture uses exactly the same implementation extras
such as channel-wise separable convolution [32] as as X3D,

model pretrain mAP GFLOPs×views Param
Nonlocal [81] ImageNet+Kinetics400 37.5 544 × 30 54.3M
STRG, +NL [82] ImageNet+Kinetics400 39.7 630 × 30 58.3M
Timeception [36] Kinetics-400 41.1 N/A×N/A N/A
LFB, +NL [84] Kinetics-400 42.5 529 × 30 122M
SlowFast, +NL [15] Kinetics-400 42.5 234 × 30 59.9M
SlowFast, +NL [15] Kinetics-600 45.2 234 × 30 59.9M
X3D-XL Kinetics-400 43.4 48.4 × 30 11.0M
X3D-XL Kinetics-600 47.1 48.4 × 30 11.0M
Table 6. Comparison with the state-of-the-art on Charades.
SlowFast variants are based on T×τ = 16×8.

model data top-1 top-5 FLOPs (G) Params (M)
EfficientNet3D-B0

K400

66.7 86.6 0.74 3.30
X3D-XS

val

68.6 (+1.9) 87.9 (+1.3) 0.60 (−1.4) 3.76 (+0.5)
EfficientNet3D-B3 72.4 89.6 6.91 8.19
X3D-M 74.6 (+2.2) 91.7 (+2.1) 4.73 (−2.2) 3.76 (−4.4)
EfficientNet3D-B4 74.5 90.6 23.80 12.16
X3D-L 76.8 (+2.3) 92.5 (+1.9) 18.37 (−5.4) 6.08 (−6.1)
EfficientNet3D-B0

K400

64.8 85.4 0.74 3.30
X3D-XS

test

66.6 (+1.8) 86.8 (+1.4) 0.60 (−1.4) 3.76 (+0.5)
EfficientNet3D-B3 69.9 88.1 6.91 8.19
X3D-M 73.0 (+2.1) 90.8 (+2.7) 4.73 (−2.2) 3.76 (−4.4)
EfficientNet3D-B4 71.8 88.9 23.80 12.16
X3D-L 74.6 (+2.8) 91.4 (+2.5) 18.37 (−5.4) 6.08 (−6.1)

Table 7. Comparison to EfficientNet3D: We compare to a 3D
version of EfficientNet on K400-val and test. 10-Center clip testing
is used. EfficientNet3D has the same mobile components as X3D.

but was found by searching a large number of models for op-
timal trade-off on image-classification. This ablation studies
if a direct extension of EfficientNet to 3D is comparable to
X3D (which is expanded by only training few models). Effi-
cientNet models are provided for various complexity ranges.
We ablate three versions, B0, B3 and B4 that are extended
in 3D using uniform scaling coefficients [73] for the spatial
and temporal resolution.

In Table 7, we compare three X3D models of similar
complexity to EfficientNet3D on two sets, K400-val and
K400-test (from top-to-bottom). Starting with K400-val (top
rows), our model X3D-XS, corresponding to only 4 expan-
sion steps in Fig. 2. is comparable in FLOPs (slightly lower)
and parameters (slightly higher), to EfficientNet3D-B0, but
achieves 1.9% higher top-1 and 1.3% higher top-1 accuracy.

Next, comparing X3D-M to EfficientNet3D-B3 shows
a gain of 2.0% top-1 and 2.1% top-5, despite using 32%
fewer FLOPs and 54% fewer parameters. Finally, comparing
X3D-L to EfficientNet3D-B4 shows a gain of 2.3% top-1
and 1.9% top-5, while having 23% and 50% fewer FLOPs
and parameters, respectively. Seeing larger gains for larger
models underlines the benefit of progressive expansion, as
more expansion steps have been performed for these.

Since our expansion is measured by validation set perfor-
mance, it is interesting to see if this provides a benefit for
X3D. Therefore, we investigate potential differences on the
K400-test set, in the lower half of Table 7, where similar,
even slightly higher improvements in accuracy can be ob-
served when comparing the same models as above, showing
that our models generalize well to the test set.

7

76

74

72

70

68

66

K
in

et
ic

s
to

p-
1

ac
cu

ra
cy

 (%
)

78

80

Inference cost per video in TFLOPs (# of multiply-adds x 1012)
0.0 0.25 1.00 1.25 1.750.5 0.75 1.50

X3D-XL
X3D-M
X3D-S
SlowFast 16x8, R101+NL
SlowFast 8x8, R101+NL
SlowFast 8x8, R101
CSN (Channel-Separated Networks)
TSM (Temporal Shift Module)

Figure 3. Accuracy/complexity trade-off on Kinetics-400 for dif-
ferent number of inference clips per video. The top-1 accuracy
(vertical axis) is obtained by K-Center clip testing where the num-
ber of temporal clips K ∈ {1, 3, 5, 7, 10} is shown in each curve.
The horizontal axis shows the full inference cost per video.

Inference cost. In many cases, like the experiments before,
the inference procedure follows a fixed number of clips for
testing. Here, we aim to ablate the effect of using fewer
testing clips for video-level inference. In Fig. 3 we show the
trade-off for the full inference of a video, when varying the
number of temporal clips used. The vertical axis shows the
top-1 accuracy on K400-val and the horizontal axis the over-
all inference cost in FLOPs for different models. Each model
experiences a large performance increment when going from
K = 1 clip to 3-clip testing (which triples the FLOPs); this
is expected as the 1-clip only covers the temporal center
of an input video, while 3-clip covers start, center and end.
Increasing the number of clips beyond 3 only marginally in-
creases performance, signaling that efficient video inference
can be performed with sparse clip sampling if highest accu-
racy is not crucial. Lastly, when comparing different models
we observe that X3D architectures can achieve similar accu-
racy as SlowFast [15], CSN [76] or TSM [51] (for the latter
two, only 10-clip testing results are available to us), while
requiring 3-20× fewer multiply-add operations. Notably, the
SlowFast 16×8 variant does not benefit from increasing 7 to
10 temporal clips, showing that the expensive per clip cost of
longer-term models does not reflect full inference efficiency
as they allow sparser temporal sampling. A log-scale version
of Fig. 3 and similar plots on K400-test are in §B.

5. Experiments: AVA Action Detection
Dataset. The AVA dataset [24] comes with bounding box
annotations for spatiotemporal localization of (possibly mul-
tiple) human actions. There are 211k training and 57k val-
idation video segments. We follow the standard protocol
reporting mean Average Precision (mAP) on 60 classes [24].
Detection architecture. We exactly follow the detection
architecture in [15] to allow direct comparison of X3D with
SlowFast networks as a backbone. The detector is similar to
Faster R-CNN [60] with minimal modifications adapted for
video. Details on implementation and training are in §A.1.

model AVA pre val mAP GFLOPs Param
LFB, R50+NL [84]

v2.1 K400
25.8 529 73.6M

LFB, R101+NL [84] 26.8 677 122M
X3D-XL 26.1 48.4 11.0M
SlowFast 4×16, R50 [15]

v2.2 K600

24.7 52.5 33.7M
SlowFast, 8×8 R101+NL [15] 27.4 146 59.2M
X3D-M 23.2 6.2 3.1M
X3D-XL 27.4 48.4 11.0M
Table 8. Comparison with the state-of-the-art on AVA. All meth-
ods use single center crop inference; full testing cost is directly
proportional to the the floating point operations (GFLOPs) by multi-
plying with the number of validation segments (57k) in the dataset.

Inference. We perform inference on a single clip with
γt frames sampled with stride γτ centered at the frame that
is to be evaluated. Spatially we use a single center crop of
128γs×128γs pixels as in [84], to have a comparable mea-
sure for overall test costs, since fully-convolutional inference
has variable cost depending on the input video size.

5.1. Main Results

We compare with state-of-the-art methods on AVA in
Table 8. To be comparable to previous work, we report
results on the older AVA version 2.1 and newer 2.2 (which
provides more consistent annotations), for our models pre-
trained on K400 or K600. We compare against long-term
feature banks (LFB) [84] and SlowFast [15] as these are state-
of-the art and use the same detection architecture as ours,
varying the backbone from LFB, SlowFast and X3D. Note
there are other recent works on AVA e.g., [20, 66, 90, 96].

In the upper part of Table 8 we compare X3D-XL with
LFB, that uses a heavy backbone architecture for short and
long-term modeling. X3D-XL provides comparable accu-
racy (+0.3 mAP vs. LFB R50 and -0.7mAP vs. LFB R101)
at greatly reduced cost by 10.9×/14× fewer multiply-adds
and 6.7×/11.1× fewer parameters than LFB R50/R101.

Comparing to SlowFast [15] in the lower portion of the
table we observe that X3D-M is lower than SlowFast 4×16,
R50 by 1.5mAP, but requiring 8.5× less multiply-adds and
10.9×less parameters for this result. Comparing the larger
X3D-XL to SlowFast 8×8 + NL we observe the same perfor-
mance at 3× and 5.4× fewer multiply-adds and parameters.

6. Conclusion
This paper presents X3D, a spatiotemporal architecture

that is progressively expanded from a tiny spatial network.
Multiple candidate axes, in space, time, width and depth are
considered for expansion under good computation/accuracy
trade-off. A surprising finding of our progressive expansion
is that networks with thin channel dimension and high spa-
tiotemporal resolution can be effective for video recognition.
X3D achieves competitive efficiency, and we hope that it can
foster future research and applications in video recognition.

Acknowledgements: I thank Kaiming He, Jitendra Malik,
Ross Girshick, and Piotr Dollár for valuable discussions and
encouragement.

8

Appendix

This appendix provides further details as referenced in
the main paper: Sec. A contains additional implementation
details for: AVA Action Detection (§A.1), Charades Action
Classification (§A.2), and Kinetics Action Classification
(§A.3). Sec. B contains further results and ablations on
Kinetics-400.

A. Additional Implementation Details

A.1. Details: AVA Action Detection

Detection architecture. We exactly follow the detection
architecture in [15] to allow direct comparison of X3D with
SlowFast networks as a backbone. The detector is similar
to Faster R-CNN [60] with minimal modifications adapted
for video. Since our paper focuses on efficiency, by default,
we do not increase the spatial resolution of res5 by 2× [15].
Region-of-interest (RoI) features [21] are extracted at the
last feature map of res5 by extending a 2D proposal at a
frame into a 3D RoI by replicating it along the temporal axis,
similar as done in previous work [24, 40, 66], followed by
application of frame-wise RoIAlign [27] and temporal global
average pooling. The RoI features are then max-pooled and
fed to a per-class, sigmoid classifier for prediction.

Training. For direct comparison, the training procedure and
hyper-parameters for AVA follow [15] without modification.
The network weights are initialized from the Kinetics models
and we use step-wise learning rate decay, that is reduced
by 10× when validation error saturates. We train for 14k
iterations (68 epochs for ∼211k data), with linear warm-up
[23] for the first 1k iterations and use a weight decay of 10−7,
as in [15]. All other hyper-parameters are the same as in the
Kinetics experiments. Ground-truth boxes, and proposals
overlapping with ground-truth boxes by IoU > 0.9, are used
as the samples for training. The inputs are instantiation-
specific clips of size γt×112γs×112γswith time stride γτ .

The region proposal extraction also follows [15] and is
summarized here for completeness. We follow previous
works that use pre-computed proposals [24, 40, 66]. Our
region proposals are computed by an off-the-shelf person de-
tector, i.e., that is not jointly trained with the action detection
models. We adopt a person-detection model trained with
Detectron [22]. It is a Faster R-CNN with a ResNeXt-101-
FPN [52, 88] backbone. It is pre-trained on ImageNet and
the COCO human keypoint images [53]. We fine-tune this
detector on AVA for person (actor) detection. The person
detector produces 93.9 AP@50 on the AVA validation set.
Then, the region proposals for action detection are detected
person boxes with a confidence of > 0.8, which has a recall
of 91.1% and a precision of 90.7% for the person class.

A.2. Details: Charades Action Classification

For Charades, we fine-tune the Kinetics models. All
settings are the same as those of Kinetics, except the fol-
lowing. A per-class sigmoid output is used to account for
the mutli-class nature. We train on a single machine for
24k iterations using a batch size of 16 and a base learning
rate of 0.02 with 10× step-wise decay if the validation error
saturates. We use weight decay of 10-5. We also increase
the model temporal stride by ×2 as this dataset benefits
from longer clips. For inference, we temporally max-pool
prediction scores [15, 81].

A.3. Details: Kinetics Action Classification

Training details. We use the initialization in [28]. We
adopt synchronized SGD training on 128 GPUs following
the recipe in [23]. The mini-batch size is 8 clips per GPU
(so the total mini-batch size is 1024). We train with Batch
Normalization (BN) [38], and the BN statistics are computed
within each 8 clips, unless noted otherwise. We adopt a half-
period cosine schedule [54] of learning rate decaying: the
learning rate at the n-th iteration is η · 0.5[cos(n

nmax
π) + 1],

where nmax is the maximum training iterations and the base
learning rate η is set as 1.6. We also use a linear warm-up
strategy [23] in the first 8k iterations. Unless specified, we
train for 256 epochs (60k iterations with a total mini-batch
size of 1024, in ∼240k Kinetics videos). We use momentum
of 0.9, weight decay of 5×10-5 and dropout [30] of 0.5 is
used before the final classifier.

For Kinetics-600, we extend the training epochs (and
schedule) of above by 2×. All other hyper-parameters are
exactly as for Kinetics-400.

Implementation details. Non-Local (NL) blocks [81] are
not used for X3D. For SlowFast results, we use exactly the
same implementation details as in [15]. Specifically, for
SlowFast models involving NL, we initialize them with the
counterparts that are trained without NL, to facilitate conver-
gence. We only use NL on the (fused) Slow features of res4
(instead of res3+res4 [81]). For X3D and EfficientNet3D, we
follow previous work on 2D mobile architectures [31,72,73],
using SE blocks [33] (also found beneficial for efficient
video classification in [89]) and swish non-linearity [59]. To
conserve memory, we use SE with original reduction ratio of
1/16 only in every other residual block after the 3×32 conv;
swish is only used before and after these layers and all other
weight layers are followed by ReLU non-linearity [47]. We
do not employ the “linear-bottleneck” design used in mobile
image networks [31, 61, 72, 73], as we found it to sometimes
cause instability in distributed training, as it does not allow
to zero-initialize the final BN scaling [23] of residual blocks.

Expansion details. To expand the model specified in Ta-
ble 1, we set all initial expansion factors, X0, to one i.e.
γt=γs=γw=γb=γd=1 resulting in the X2D base model.

9

A temporal sampling rate γτ is not defined for the X2D
model as it does not have multiple frames. The smallest
possible common expansion for this model is defined by
increasing the number of frames from 1 to two; therefore we
set the expansion-rate ĉ to match the cost of increasing the
temporal input length of the model by a factor of two (the
smallest possible common increase in the first expansion
step), which roughly doubles the cost of the model, ĉ = 2.

Then, in every step of our expansion we train a models,
one for expanding each axis, such that its complexity doubles
(ĉ = 2). For the individual axes this roughly3 equals to the
following operations:

• X-Fast: γτ← 0.5γτ , reduces the sampling stride to
double frame-rate while sampling the same input dura-
tion, this doubles the temporal size γt←2γt.

• X-Temporal: Increases frame-rate by γτ← 0.75γτ and
input duration to double the input size γt←2γt (i.e.
1.5× higher frame-rate and 1.5×longer input duration).

• X-Spatial: Expands the spatial resolution proportionally
γs←

√
2γs.

• X-Depth: Expands the depth of the network by around
γd← 2.2γd.

• X-Width: Expands the global width for all layers by
γw← 2γw.

• X-Bottleneck: Expands the bottleneck width by roughly
γb← 2.25γb.

The exact scaling factors slightly differ from one expan-
sion step to the other due to rounding effects in network
geometry (layers stride, activation size etc.).

Since the stepwise expansion also allows to elegantly in-
tegrate regularization (which is typically increased for larger
models), we perform a regularization expansion if the train-
ing error of the previous expansion step starts to deviate from
the validation error. Specifically, we start the expansion with
double the batch-size and half learning schedule than de-
scribed above, then the BN statistics are computed within
each 16 clips which lowers regularization and improves per-
formance on small models. The batch-size is then decreased
by 2× at the 8th step of expansion which increases general-
ization. We perform another regularization expansion at the
11th/13th step by using drop-connect with rate 0.1/0.2 [34].

B. Additional Results
Fig. A.4 shows a series of extra plots on Kinetics-400,

analyzed next (this extends Sec. 4 of the main paper):

3The exact expansion factors slightly vary across steps to match the
complexity increase, ĉ (which is observable in Fig. 2 of the main paper).

Inference cost. Here we aim to provide further ablations
for the effect of using fewer testing clips for efficient video-
level inference. In Fig. A.4 we show the trade-off for the full
inference of a video, when varying the number of temporal
clips used. The vertical axis shows the top-1 accuracy on
K400-val and the horizontal axis the overall inference cost
in FLOPs for different models.

First, for comparison, the plot on top-left is the same as
the one shown in Fig. 3. The plot on top-right shows this
same plot with a logarithmic scale applied to the FLOPs axis.
Using this scaling it is clearer to observe that smaller models
(X3D-S and X3D-M) can provide up to 20× reduction in
terms of multiply-add operations used during inference.

For example, 3-clip X3D-S produces 71.4% top-1 at 5.9
GFLOPs, whereas 10-clip CSN-50 [76] produces 70.8 top-1
at 119 GFLOPs (20.2× higher cost), or 10-clip X3D-S 72.9%
top-1 at 19.6 GFLOPs, and 10-clip CSN-101 [76] 71.8%
top-1 at 159 GFLOPs (8.1× higher cost).

The lower two plots in Fig. A.4 show the identical results
on the test set of Kinetics-400 (which has been publicly
released with Kinetics-600 [4]). Note that the test set is more
challenging which leads to overall lower accuracy for all
approaches [1]. We observe consistent results on the test set,
illustrating good generalization of the models.

Mobile components. Finally, we ablate the effect of
mobile components employed in X3D and EfficientNet3D.
Since the components can have different effects of models
from the small and large computation regime, we ablate the
effects on a small (X3D-S) and a large model (X3D-XL).

First, we ablate channel-wise separable convolution [32],
a key component in mobile ConvNets. We ablate two ver-
sions: (i) A version that reduces the bottleneck ratio (γb)
accordingly, such that the overall architecture preserves the
multiple-add operations (FLOPs), and (ii) a version that
keeps the originally, expanded bottleneck ratio.

Table A.1 shows the results. For case (i) we see that
performance drops significantly by 4% top-1 accuracy for
X3D-S and by 2.4% for X3D-XL. For case (ii), we see that
the performance of the baselines increases by 0.3% and
0.8% top-1 accuracy for X3D-S and X3D-XL, respectively.
This shows that separable convolution is important for small-
computation budgets, however, for best-performance a non-
separable convolution can provide gains (at high cost).

Second, we ablate swish non-linearities [59] (that are only
implemented before and after the “bottleneck” convolution,
to conserve memory). We observe that removing swish has
a smaller performance decrease of 0.9% for X3D-S and
0.4% for X3D-XL, and therefore could be changed to ReLU
(which can be implemented in-place) if memory is priority.

Third, we ablate SE blocks [33] (that are only used in ev-
ery other residual block, to conserve memory). We observe
that removing SE has a larger effect on performance, decreas-
ing accuracy by 1.6% for X3D-S and 1.3% for X3D-XL.

10

Inference cost per video in TFLOPs (# of multiply-adds x 1012)
0.0 0.2 0.4 0.6 0.8

76

74

72

70

68

66

64

K
in

et
ic

s
to

p-
1

va
l a

cc
ur

ac
y

(%
) 78

80

SlowFast 8x8, R101+NL
SlowFast 8x8, R101

X3D-XL
X3D-M

EfficientNet3D-B4
EfficientNet3D-B3

X3D-S

CSN (Channel-Separated Networks)
TSM (Temporal Shift Module)

Inference cost per video in FLOPs (# of multiply-adds), log-scale

SlowFast 8x8, R101+NL
SlowFast 8x8, R101

X3D-XL
X3D-M

EfficientNet3D-B4
EfficientNet3D-B3

X3D-S

CSN (Channel-Separated Networks)
TSM (Temporal Shift Module)

75

70

65

60

55

50

45

K
in

et
ic

s
to

p-
1

va
l a

cc
ur

ac
y

(%
)

80

40
1010 1011 1012

76

74

72

70

68

66

64

K
in

et
ic

s
to

p-
1

te
st

 a
cc

ur
ac

y
(%

)

78

Inference cost per video in TFLOPs (# of multiply-adds x 1012)
0.0 0.2 0.4 0.6 0.8

SlowFast 8x8, R101+NL
SlowFast 8x8, R101

X3D-XL
X3D-M

EfficientNet3D-B4
EfficientNet3D-B3

X3D-S
SlowFast 8x8, R101+NL
SlowFast 8x8, R101

X3D-XL
X3D-M

EfficientNet3D-B4
EfficientNet3D-B3

X3D-S

75

70

65

60

55

50

45

K
in

et
ic

s
to

p-
1

te
st

 a
cc

ur
ac

y
(%

)

80

40

Inference cost per video in FLOPs (# of multiply-adds), log-scale
1010 1011 1012

Figure A.4. Accuracy/complexity trade-off on K400-val (top) & test (bottom) for varying # of inference clips per video. The top-1
accuracy (vertical axis) is obtained by K-Center clip testing where the number of temporal clips K ∈ {1, 3, 5, 7, 10} is shown in each curve.
The horizontal axis measures the full inference cost per video. The left-sided plots show a linear and the right plots a logarithmic (log) scale.

These observed effects on performance are similar to the
ones that have been shown Non-local (NL) attention blocks
[81], and also in line with [89], where SE attention blocks
have been found beneficial for efficient video classification.

References

[1] ActivityNet-Challenge. http://activity-net.org/
challenges/2017/evaluation.html, 2017. 10

[2] Humam Alwassel, Fabian Caba Heilbron, and Bernard
Ghanem. Action search: Spotting actions in videos and its
application to temporal action localization. In Proc. ECCV,
2018. 2

[3] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould.
Dynamic image networks for action recognition. In Proc.
CVPR, 2016. 2

[4] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about Kinetics-
600. arXiv:1808.01340, 2018. 2, 5, 7, 10

[5] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisser-
man. A short note on the kinetics-700 human action dataset.
arXiv preprint arXiv:1907.06987, 2019. 2

[6] Joao Carreira, Viorica Patraucean, Laurent Mazare, Andrew
Zisserman, and Simon Osindero. Massively parallel video
networks. In Proc. ECCV, 2018. 2

[7] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Proc.
CVPR, 2017. 1, 2, 4, 7

[8] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convolu-
tional nets. In Proc. BMVC., 2014. 2, 3, 6

[9] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan, Yan-
nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi

11

http://activity-net.org/challenges/2017/evaluation.html
http://activity-net.org/challenges/2017/evaluation.html

model top-1 top-5 FLOPs (G) Param (M)
X3D-S 72.9 90.5 1.96 3.76
− CW conv γb= 0.6 68.9 88.8 1.95 3.16

− CW conv 73.2 90.4 17.6 22.1
− swish 72.0 90.4 1.96 3.76
− SE 71.3 89.9 1.96 3.60

(a) Ablating mobile components on a Small model.

model top-1 top-5 FLOPs (G) Param (M)
X3D-XL 78.4 93.6 35.84 11.0
− CW conv, γb= 0.56 76.0 92.6 34.80 9.73

− CW conv 79.2 93.5 365.4 95.1
− swish 78.0 93.4 35.84 11.0
− SE 77.1 93.0 35.84 10.4

(b) Ablating mobile components on an X-Large model.

Table A.1. Ablations of mobile components for video classification on K400-val. We show top-1 and top-5 classification accuracy (%),
parameters, and computational complexity measured in GFLOPs (floating-point operations, in # of multiply-adds ×109) for a single clip
input of size γt×112γs×112γx. Inference-time computational cost is reported GFLOPs×10, as a fixed number of 10-Center views is used.
The results show that removing channel-wise separable convolution (CW conv) with unchanged bottleneck expansion ratio, γb, drastically
increases mutliply-adds and parameters at slightly higher accuracy, while swish has a smaller effect on performance than SE.

Feng. Drop an octave: Reducing spatial redundancy in con-
volutional neural networks with octave convolution. arXiv
preprint arXiv:1904.05049, 2019. 6, 7

[10] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan,
and Jiashi Feng. Multi-fiber networks for video recognition.
In Proc. ECCV, 2018. 2, 7

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale hierarchical image database. In Proc.
CVPR, 2009. 5

[12] Ali Diba, Mohsen Fayyaz, Vivek Sharma, M Mahdi Arzani,
Rahman Yousefzadeh, Juergen Gall, and Luc Van Gool.
Spatio-temporal channel correlation networks for action clas-
sification. In Proc. ECCV, 2018. 2

[13] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Mar-
cus Rohrbach, Subhashini Venugopalan, Kate Saenko, and
Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. In Proc. CVPR, 2015.
1, 2

[14] Lijie Fan, Wenbing Huang, Chuang Gan, Stefano Ermon,
Boqing Gong, and Junzhou Huang. End-to-end learning
of motion representation for video understanding. In Proc.
CVPR, 2018. 2

[15] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
Proc. ICCV, 2019. 2, 3, 4, 5, 6, 7, 8, 9

[16] Christoph Feichtenhofer, Haoqi Fan, Jitendra Ma-
lik, and Kaiming He. SlowFast networks for
video recognition in ActivityNet challenge 2019.
http://static.googleusercontent.com/
media/research.google.com/en//ava/2019/
fair_slowfast.pdf, 2019. 6

[17] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spa-
tiotemporal residual networks for video action recognition.
In NIPS, 2016. 1, 2, 4

[18] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proc. CVPR, 2016. 2

[19] Basura Fernando, Efstratios Gavves, Jose M Oramas, Amir
Ghodrati, and Tinne Tuytelaars. Modeling video evolution for
action recognition. In IEEE PAMI, pages 5378–5387, 2015. 2

[20] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew
Zisserman. Video action transformer network. In Proc. CVPR,
2019. 8

[21] Ross Girshick. Fast R-CNN. In Proc. ICCV, 2015. 9
[22] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 9

[23] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. arXiv:1706.02677, 2017.
9

[24] Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia
Schmid, and Jitendra Malik. AVA: A video dataset of spatio-
temporally localized atomic visual actions. In Proc. CVPR,
2018. 2, 8, 9

[25] Isabelle Guyon and André Elisseeff. An introduction to vari-
able and feature selection. Journal of machine learning re-
search, 3(Mar):1157–1182, 2003. 2, 4

[26] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet? In Proc. CVPR, 2018. 2

[27] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proc. ICCV, 2017. 9

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proc. CVPR, 2015. 9

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. CVPR,
2016. 1, 2, 3, 5

[30] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580, 2012. 9

[31] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for MobileNetV3. arXiv:1905.02244, 2019.
1, 2, 3, 4, 9

[32] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1, 2, 3, 4, 7, 10

12

http://static.googleusercontent.com/media/research.google.com/en//ava/2019/fair_slowfast.pdf
http://static.googleusercontent.com/media/research.google.com/en//ava/2019/fair_slowfast.pdf
http://static.googleusercontent.com/media/research.google.com/en//ava/2019/fair_slowfast.pdf
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

[33] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proc. CVPR, 2018. 2, 9, 10

[34] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Proc.
ECCV, 2016. 10

[35] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, and Zhifeng Chen. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. arXiv preprint arXiv:1811.06965, 2018. 2, 3

[36] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Timeception for complex action recognition. In
Proc. CVPR, 2019. 2, 7

[37] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and <0.5mb model size. arXiv:1602.07360, 2016. 3

[38] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proc. ICML, 2015. 9

[39] Anil Jain and Douglas Zongker. Feature selection: Eval-
uation, application, and small sample performance. IEEE
transactions on pattern analysis and machine intelligence,
19(2):153–158, 1997. 4

[40] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang,
Erik Learned-Miller, and Jan Kautz. Super slomo: High
quality estimation of multiple intermediate frames for video
interpolation. In Proc. CVPR, 2018. 9

[41] George H John, Ron Kohavi, and Karl Pfleger. Irrelevant fea-
tures and the subset selection problem. In Machine Learning
Proceedings 1994, pages 121–129. Elsevier, 1994. 2, 4

[42] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014. 1, 3

[43] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. arXiv:1705.06950, 2017. 2, 4

[44] Ron Kohavi and George H John. Wrappers for feature subset
selection. Artificial intelligence, 97(1-2):273–324, 1997. 2, 4

[45] Okan Köpüklü, Neslihan Kose, Ahmet Gunduz, and Gerhard
Rigoll. Resource efficient 3d convolutional neural networks.
arXiv preprint arXiv:1904.02422, 2019. 2, 4

[46] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:
Sampling salient clips from video for efficient action recogni-
tion. In Proc. ICCV, 2019. 2, 5

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
geNet classification with deep convolutional neural networks.
In NIPS, 2012. 1, 2, 3, 9

[48] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park,
and Nojun Kwak. Motion feature network: Fixed motion
filter for action recognition. In Proc. ECCV, 2018. 2

[49] Dong Li, Zhaofan Qiu, Qi Dai, Ting Yao, and Tao Mei. Re-
current tubelet proposal and recognition networks for action
detection. In Proc. ECCV, 2018. 2

[50] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,
and Cees GM Snoek. VideoLSTM convolves, attends and
flows for action recognition. Computer Vision and Image
Understanding, 166:41–50, 2018. 2

[51] Ji Lin, Chuang Gan, and Song Han. Temporal shift module
for efficient video understanding. In Proc. ICCV, 2019. 2, 5,
7, 8

[52] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proc. CVPR, 2017. 9

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proc. ECCV, 2014. 9

[54] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. arXiv:1608.03983, 2016. 9

[55] Chenxu Luo and Alan L. Yuille. Grouped spatial-temporal
aggregation for efficient action recognition. In Proc. ICCV,
2019. 2

[56] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijaya-
narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici.
Beyond short snippets: Deep networks for video classification.
In Proc. CVPR, 2015. 1, 2

[57] AJ Piergiovanni and Michael S. Ryoo. Representation flow
for action recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 2

[58] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-
temporal representation with pseudo-3d residual networks. In
Proc. ICCV, 2017. 2

[59] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching
for activation functions. arXiv preprint arXiv:1710.05941,
2017. 2, 9, 10

[60] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 8, 9

[61] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In Proc. CVPR, 2018. 1, 2,
3, 4, 5, 9

[62] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In ECCV, 2016. 2, 7

[63] Karen Simonyan and Andrew Zisserman. Two-stream convo-
lutional networks for action recognition in videos. In NIPS,
2014. 2, 3

[64] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Proc.
ICLR, 2015. 1, 2, 3, 5, 6

[65] Yu-Chuan Su and Kristen Grauman. Leaving some stones
unturned: dynamic feature prioritization for activity detection
in streaming video. In Proc. ECCV, 2016. 2

[66] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. In ECCV, 2018. 8, 9

[67] Lin Sun, Kui Jia, Kevin Chen, Dit-Yan Yeung, Bertram E
Shi, and Silvio Savarese. Lattice long short-term memory for
human action recognition. In Proc. ICCV, 2017. 2

13

[68] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram Shi. Human
action recognition using factorized spatio-temporal convolu-
tional networks. In Proc. ICCV, 2015. 2

[69] Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang,
and Wei Zhang. Optical flow guided feature: A fast and robust
motion representation for video action recognition. In Proc.
CVPR, 2018. 2

[70] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.
Inception-v4, inception-resnet and the impact of residual con-
nections on learning. arXiv:1602.07261, 2016. 2, 3

[71] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015. 1, 2, 3

[72] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. MnasNet:
Platform-aware neural architecture search for mobile. In Proc.
CVPR, 2019. 2, 9

[73] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019. 2, 3, 7, 9

[74] Graham W Taylor, Rob Fergus, Yann LeCun, and Christoph
Bregler. Convolutional learning of spatio-temporal features.
In Proc. ECCV, 2010. 2

[75] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3D convolutional networks. In Proc. ICCV, 2015. 1, 2, 3, 4

[76] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli.
Video classification with channel-separated convolutional net-
works. In Proc. ICCV, 2019. 2, 4, 5, 6, 7, 8, 10

[77] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proc. CVPR, 2018. 3,
7

[78] Heng Wang, Du Tran, Lorenzo Torresani, and Matt Feiszli.
Video modeling with correlation networks. arXiv preprint
arXiv:1906.03349, 2019. 2

[79] Limin Wang, Wei Li, Wen Li, and Luc Van Gool. Appearance-
and-relation networks for video classification. In Proc. CVPR,
2018. 2

[80] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Val Gool. Temporal segment networks:
Towards good practices for deep action recognition. In Proc.
ECCV, 2016. 2

[81] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming
He. Non-local neural networks. In Proc. CVPR, 2018. 1, 2,
4, 5, 6, 7, 9, 11

[82] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In Proc. ECCV, 2018. 7

[83] Stephen J Wright. Coordinate descent algorithms. Mathemat-
ical Programming, 151(1):3–34, 2015. 1, 4

[84] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krähenbühl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In Proc.
CVPR, 2019. 2, 5, 7, 8

[85] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha,
Alexander J Smola, and Philipp Krähenbühl. Compressed
video action recognition. In CVPR, 2018. 2

[86] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and
Shilei Wen. Multi-agent reinforcement learning based frame
sampling for effective untrimmed video recognition. In Proc.
ICCV, 2019. 2

[87] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,
and Larry S Davis. Adaframe: Adaptive frame selection for
fast video recognition. In Proc. CVPR, 2019. 2

[88] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proc. CVPR, 2017. 2, 3, 9

[89] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding. arXiv:1712.04851, 2017. 2, 7, 9, 11

[90] Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao,
Larry S Davis, and Jan Kautz. Step: Spatio-temporal progres-
sive learning for video action detection. In Proc. CVPR, 2019.
8

[91] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei.
End-to-end learning of action detection from frame glimpses
in videos. In Proc. CVPR, 2016. 2

[92] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and
Hod Lipson. Understanding neural networks through deep
visualization. In ICML Workshop, 2015. 2

[93] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Proc. BMVC., 2016. 2, 3

[94] Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv:1212.5701, 2012. 2, 3

[95] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proc. CVPR, 2018. 2, 3, 4

[96] Yubo Zhang, Pavel Tokmakov, Martial Hebert, and Cordelia
Schmid. A structured model for action detection. In Proc.
CVPR, 2019. 8

[97] Linchao Zhu, Laura Sevilla-Lara, Du Tran, Matt Feiszli, Yi
Yang, and Heng Wang. Faster recurrent networks for video
classification. arXiv preprint arXiv:1906.04226, 2019. 2

[98] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G
Hauptmann. Hidden two-stream convolutional networks for
action recognition. arXiv preprint arXiv:1704.00389, 2017. 2

[99] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas
Brox. ECO: efficient convolutional network for online video
understanding. In Proc. ECCV, 2018. 2

14

