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Abstract

Motion is a salient cue to recognize actions in video.
Modern action recognition models leverage motion infor-
mation either explicitly by using optical flow as input or im-
plicitly by means of 3D convolutional filters that simultane-
ously capture appearance and motion information. This pa-
per proposes an alternative approach based on a learnable
correlation operator that can be used to establish frame-to-
frame matches over convolutional feature maps in the dif-
ferent layers of the network. The proposed architecture en-
ables the fusion of this explicit temporal matching informa-
tion with traditional appearance cues captured by 2D con-
volution. Our correlation network compares favorably with
widely-used 3D CNNs for video modeling, and achieves
competitive results over the prominent two-stream network
while being much faster to train. We empirically demon-
strate that correlation networks produce strong results on a
variety of video datasets, and outperform the state of the art
on four popular benchmarks for action recognition: Kinet-
ics, Something-Something, Diving48 and SportsIM.

1. Introduction

After the breakthrough of AlexNet [30] on ImageNet [7],
convolutional neural networks (CNNs) have become the
dominant model for still-image classification [33, 47, 52,

]. In the video domain, CNNs were initially adopted as
image-based feature extractor on individual frames of the
video [27]. More recently, CNNs for video analysis have
been extended with the capability of capturing not only
appearance information contained in individual frames but
also motion information extracted from the temporal dimen-
sion of the image sequence. This is usually achieved by one
of two possible mechanisms. One strategy involves the use
of a two-stream network [40, 57, 16, 58, 42, 5] where one
stream operates on RGB frames to model appearance infor-
mation and the other stream extracts motion features from
optical flow provided as input. The representations obtained
from these two distinct inputs are then fused, typically in a
late layer of the network. An alternative strategy is to use

3D convolutions [1, 25, 53, 50, 55, 41, 63, 9] which couple
appearance and temporal modeling by means of spatiotem-
poral kernels.

In this paper we propose a new scheme based on a
novel correlation operator inspired by the correlation layer
in FlowNet [11]. While in FlowNet the correlation layer
is only applied once to convert the video information from
the RGB pixel space to the motion displacement space, we
propose a learnable correlation operator to establish frame-
to-frame matches over convolutional feature maps to cap-
ture different notions of similarity in different layers of the
network. Similarly to two-stream models, our model en-
ables the fusion of explicit motion cues with appearance in-
formation. However, while in two-stream models the mo-
tion and appearance subnets are disjointly learned and fused
only in a late layer of the model, our network enables the
efficient integration of appearance and motion information
throughout the network. Compared to 3D CNNs, which ex-
tract spatiotemporal features, our model factorizes the com-
putation of appearance and motion, and learns distinct fil-
ters capturing different measures of patch similarity. The
learned filters can match pixels moving in different direc-
tions. Through our extensive experiments on four action
recognition datasets (Kinetics, Something-Something, Div-
ing48 and Sports1M), we demonstrate that our correlation
network compares favorably with widely-used 3D CNNs
for video modeling, and achieves competitive results over
the prominent two-stream network while being much faster
to train. We summarize our contributions as follows:

e A new correlation operator with learnable filters. By
making use of dilation and grouping, the operator is
highly efficient to compute. Compared to 3D convolution
or optical flow, it provides an alternative way to model
temporal information in video.

e A new correlation network which is designed to integrate
motion and appearance information in every block. A
rigorous study of the new architecture and comparisons
with strong baselines provide insights for the different
design choices.

e Our correlation network outperforms the state-of-the-art
on four different video datasets without using optical
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Figure 1: An illustration of the proposed correlation operator. (a) Correlation operator used for optical flow and geometric
matching. (b) The introduction of filters renders the operator “learnable.” (c) Groupwise correlation increases the number of
output channels without adding computational cost. (d) Extending the correlation operator to work on a sequence of video

frames.

flow.

In the rest of the paper, we introduce related work in
Section 2, and detail the proposed correlation operator in
Section 3. We present the correlation network in Section 4.
Experimental setups are in Section 5. We discuss the ex-
perimental results in Section 6 and conclude the paper in
Section 7.

2. Related Work

Architectures for video classification. Among the popular
video models, there are two major categories: two-stream
networks [46, 57, 16, 58, 42, 5] and 3D CNNs [, 25, 53,
, 55,41, 63,9, 14]. Since the introduction of two-stream
networks [46], further improvements have been achieved by
adding connections between the two streams [16], or in-
flating a 2D model to 3D [4]. 3D CNNs [1, 25, 53] learn
appearance and motion information simultaneously by con-
volving 3D filters in space and time. Successful image ar-
chitectures [47, 52, 21] have been extended to video using
3D convolution [4, 53, 63]. Recent research [50, 55, 41, 42]
shows that decomposing 3D convolution into 2D spatial
convolution and 1D temporal convolution leads to better
performance. Our correlation network goes beyond two-
stream networks and 3D convolution, and we propose a
new operator that can better learn the temporal dynamics
of video sequences.
Motion information for action recognition. Before the
popularity of deep learning, various video features [32, 45,
, 10, 56] were hand-designed to encode motion informa-
tion in video. Besides two-stream networks and 3D CNNs,

ActionFlowNet [39] proposes to jointly estimate optical
flow and recognize actions in one network. Fan et al. [12]
and Piergiovanni et al. [40] also introduced networks to
learn optical flow end-to-end for action recognition.

There is also work [51, 34, 22] seeking alternatives to

optical flow. Sun et al. [51] extracted features guided by
optical flow to capture the transformation between adjacent
frames. Lee et al. [34] designed motion filters by comput-
ing the difference of adjacent frames. Hommos et al. [22]
proposed to use phase instead of optical flow as the motion
representation for action recognition. Our paper is along
the line of designing architectures to directly learn motion
information from raw RGB pixels.
Applications of correlation operation. Deep match-
ing [61] computes the correlation of image patches to find
dense correspondence to improve optical flow. Unlike deep
matching using hand-crafted features, FlowNet [11] is a
network, where a correlation layer performs multiplicative
patch comparisons. Correlation layers were also used in
other CNN-based optical flow algorithms [49, 24]. Besides
optical flow, Rocco et al. [44] used it to estimate the ge-
ometric transformation of two images, whereas Feichten-
hofer et al. [17] applied it to object tracking.

In the context of action recognition, Zhao et al. [67]
utilize the correlation layer to compute a cost volume to
estimate the displacement map as in optical flow. The
Spatio-Temporal Channel Correlation Network [8] adapts
the Squeeze-and-Excitation block [23] to a ResNeXt [62]
backbone. The notion of correlation in [8] refers to the rela-
tionship among the spatial and temporal dimensions of the
feature maps, which is different from the matching of ad-



Operator Correlation 3D convolution

Input Cin x Lx HxW Cin xLxHxW

Filter LxCipxKxK Cout X Cip x Ky X Ky x K,
Output | (G+*xK+«K)XLxHxXxW Cout X Lx HxW
# params LxCiy,x K+ K Cout ¥ Cin * Ky x Ky x K
FLOPs Cin ¥ K Kx Lx HxW | Coup % Cipy x Ky x Ky x Ky x L« Hx W

Table 1: A comparison of the correlation operator with 3D convolution. When the size K of the filter is similar (i.e.,
K+ K ~ K; x K, * K,), the parameters of 3D convolution is about Cl,,; /L times more than the correlation operator, and

its FLOPs is about C,,,; times higher.

jacent frames studied in our work. We compare our results
with [8] in Section 6.3.

Our paper extends this line of ideas by introducing a
learnable operator based on correlation. Instead of trying to
explicitly or implicitly estimate optical flow, the correlation
operator is used repeatedly in combination with other oper-
ators to build a new architecture that can learn appearance
and motion information simultaneously and that achieves
state of the art accuracy on various video datasets.

3. Correlation Operator

This section describes the proposed correlation opera-

tor. We start by reviewing the existing correlation opera-
tor over image pairs used in optical flow [1 1, 49] and geo-
metric matching [61, 44]. We then propose to inject filters
into the operator to make it learnable. We discuss how to
increase the number of output channels while retaining effi-
ciency and low number of parameters by means of a group-
wise variant. We finally generalize the operator to work on
sequences of video frames.
Correlation operator for matching. As shown in Fig-
ure 1 (a), each image is represented by a 3D tensor of size
C x H x W, where C is the number of channels and H x W
is the spatial resolution. Given a feature patch PZ(3, 5) in
image B, we compute the similarity of this patch with an-
other patch PA(i’,5) in image A, where (i, j) is the spa-
tial location of the patch. To make the computation more
tractable, the size of the feature patch can be reduced to
a single pixel, thus PA(i', ") and PB (i, j) becomes C-
dimensional vectors. The similarity is defined as the dot
product of the two vectors:

C
S, ,3) =1/Cx > (PP(i,§) = PA(,5), (1)

c=1

where 1/C is for normalization. (i, ") is often limited to
be within a K x K neighborhood of (i, j). K is the maximal
displacement for patch matching. Considering all possible
locations of (i,7) and (i',7 ) in Eq. 1, the output S is a
tensor of size K x K x H x W, where K x K can be

flattened to play the role of channel to generate a 3D feature
tensor (K2 x H x W) like the input image.

Learnable correlation operator. Computer vision has
achieved impressive results by moving from hand-crafted
features [37, 6] to learnable deep neural networks [30, 21].
The original correlation operator [1 1, 49, 61, 44] does not
include learnable parameters and thus it is quite limited in
terms of the types of representations it can generate. We
propose to endow the operator with a learnable filter as
shown in Figure 1 (b). Our motivation is to learn to select
informative channels during matching. To achieve this goal
we introduce a weight vector W_. to Eq. | in the dot product
computation: W,  PB (i, )« PA(i',j). The similarity of
two feature patches (i.e., PB(i, j) and PA(i',j')) is often
related to how close their spatial location is. We thus ap-
ply different weight vectors W, to different locations in the
K x K neighbor to take into account the spatial distribu-
tion of the matching disparity. Thus, the size of each filter
is C' x K x K as summarized in Table 1.

K indicates the maximal displacement when matching
two patches. Larger valued K can cover larger regions and
encode more information. The downside is that the compu-
tational cost grows quadratically w.r.t. K. Inspired by the
dilated convolution [64], we propose to perform dilated cor-
relation to handle large displacement without increasing the
computational cost. We enlarge the matching region in im-
age A by a dilation factor D. In practice, we set K = 7 with
a dilation factor of D = 2 to cover a region of 13 x 13 pix-
els. Besides dilation, we also apply the operator at different
spatial scales (as discussed in Section 4), which is a popular
strategy to handle large displacements in optical flow [43].
From Figure 4, filters do learn to select discriminative chan-
nels as filters from certain channels are more active than the
other. Having different weights in the K x K neighborhood
also enables the filter to learn pixel movements in different
directions.

Groupwise correlation operator. The correlation operator
converts a feature map from C' x H x Wto K2 x H x W.
In popular CNNs, C' can be one to two orders of magni-
tude larger than K2. This means that the correlation opera-
tor may cause a great reduction in the number of channels.



This is not a problem for applications such as optical flow or
geometric matching, where the correlation operator is only
applied once. If we want to design a network based on the
correlation operator and apply it repeatedly, it will reduce
the dimension of the channels dramatically, and degrade the
representation power of the learned features, as shown by
the results in Section 6.2.

Similar to [20], we propose a groupwise version of the

correlation operator that avoids shrinking the number of
channels while maintaining efficiency. Groupwise convo-
lution [30, 62] was introduced to reduce the computational
cost of convolution by constraining each kernel to span a
subset of feature channels. Here we utilize this idea to in-
crease the number of output channels without increasing the
computational cost. For the groupwise correlation operator,
all C' channels are split into G groups for both input images
and filters, and the correlation operation is computed within
each group. The outputs of all groups are stacked together
as shown in Figure 1 (c). This increases the number of out-
put channels by a factor of G, to a total of K2G channels.
The size of each group is ¢ = C'/G. By choosing the group
size properly, we can control the number of channels with-
out additional cost.
From two images to a video clip. The original correlation
operator is designed for matching a pair of images. In this
paper, we apply it for video classification where the input
is a sequence of L video frames. We extend the operator
to video by computing correlation for every pair of adjacent
frames of the input sequence. As the number of adjacent
frame pairs is L — 1 (i.e., one fewer than the number of
frames), we propose to compute self-correlation for the first
frame in addition to the cross-correlation of adjacent frame
pairs, shown in Figure 1 (d). It can keep the length L of the
output feature map consistent with the input, and make the
correlation operator easier to use when designing new archi-
tectures. The gradual change of filters within each column
of Figure 4 shows filters learn to follow the motion of pixels
across frames when extending the correlation operator to a
video clip.

Table | summarizes our final proposed correlation op-
erator and compares it with the standard 3D convolution.
Intuitively, 3D convolution seeks to learn both spatial and
temporal representation by convolving a 3D filter in space
and time. The correlation operator however, is intention-
ally designed to capture matching information between ad-
jacent frames. The correlation operator provides an alterna-
tive way to model temporal information for video classifi-
cation, and it has much fewer parameters and FLOPs than
the popular 3D convolution.

4. Correlation Network

The correlation operator is designed to learn temporal in-
formation, and needs to be combined with other operators

R(2+1)D-26
1x7x7, 64, stride 1,2,2
1x1x1, 64
3x1x1, 64
1x3x3, 64
I1x1x1,256
I1x1x1, 128
3x1x1, 128
1x3x3, 128
Ix1x1,512
1x1x1, 256
3x1x1,256
1x3x%x3, 256
Ix1x1, 1024
1x1x1,512
3x1x1,512
1x3x%x3,512
I1x1x1,2048
global average pool, fc

Output size
Lx112x112

Layers
convy

reso X2 Lx56x56

ress X2 Lx28x28

resy x2 | Sx14x14

ress X2 Lx7x7

# classes

Table 2: The R(2+1)D backbone for building correlation
network.

capturing appearance information in order to yield a com-
prehensive set of features for video classification. We first
briefly introduce the backbone architecture adapted from
R(2+1)D [55], then discuss how to build the correlation net-
work to leverage the matching information by incorporating
the correlation operator into the backbone.

R(2+1)D backbone. The R(2+1)D network [55] was re-
cently introduced and shown to yield state-of-the-art action
recognition results on several video datasets. R(2+1)D fac-
torizes the traditional 3D convolution (i.e., 3 X 3 X 3) into a
2D spatial convolution (i.e., 1 X 3 x 3) and an 1D temporal
convolution (i.e., 3 X 1 x 1). Decoupling the spatial and
temporal filtering is beneficial for both hand-crafted fea-
tures [56, 10] and 3D CNNs [55, 50, 41]. Compared with
the original R(2+1)D [55], we make a few changes to fur-
ther simplify and improve its efficiency, e.g., using bottle-
neck layers, supporting higher input resolution, keeping the
number of channels consistent, less temporal striding, etc.
Table 2 provides the details of the R(2+1)D backbone used
in this paper.

Correlation network. To incorporate the correlation oper-
ator into the backbone network, we propose the two types
of correlation blocks shown in Figure 2. The design of these
blocks is similar in spirit to that of the bottleneck block [21].
Figure 2 (a) illustrates the correlation-sum block. It first
uses an 1 x 1 x 1 convolution to reduce the number of chan-
nels, then applies a correlation operator for feature match-
ing. Finally another 1 x 1 x 1 is used to restore the original
number of channels. A shortcut connection [21] is applied
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Figure 2: Two types of correlation blocks. We mark the
number of channels for each operator.

for residual learning. The correlation-concat block in Fig-
ure 2 (b) has two branches within the block: one branch
with a correlation operator and another branch passing the
input feature maps through an 1 x 1 x 1. The output of the
two branches are combined together by concatenation in the
channel dimension. We compare the two different designs
in Section 6.2.

We obtain the final correlation network by inserting the
correlation block into the R(2+1)D backbone architecture.
In this paper, we insert one correlation block after reso, ress
and res, in Table 2. We omit ress as its spatial resolution is
low (i.e., 7 x 7). Note that the number of FLOPs of the cor-
relation operator is much lower than 3D convolution. The
correlation network only adds a small overhead to the com-
putational cost of the backbone network. Section 6.1 pro-
vides a more quantitative analysis.

5. Experimental Setups

Video Datasets. We evaluate our model on four video
datasets that have rather different properties, emphasizing
distinct aspects of action recognition. Kinetics [28] is
among the most popular datasets for video classification. It
consists of about 300K YouTube videos covering 400 cat-
egories. Something-Something [19] is created by crowd-
sourcing. This dataset focuses on humans performing pre-
defined basic actions with everyday objects. The same ac-
tion is performed with different objects (“something”) so
that models are forced to understand the basic actions in-
stead of recognizing the objects. It includes about 100K
videos covering 174 classes. We note this dataset as Some-
thing for short. Diving48 [35] was recently introduced and
includes videos from diving competitions. The dataset is
designed to reduce the bias of scene and object context in
action recognition, and force the model to focus on under-
standing temporal dynamics of video data. It has a fine-

grained taxonomy covering 48 different types of diving with
18K videos in total. The annotations of Sports1M [27]
are produced automatically by analyzing the text metadata
surrounding the videos. As there are many long videos in
Sports1M, we cut them into shorter clips to better utilize
the data and end up with a training set of about SM sam-
ples. For Kinetics and Something, annotations on the test-
ing set are not public available, so we report accuracy on
the validation set like others. For Diving48 and Sports1M,
we report accuracy on the testing set following the setup by
the authors [35, 27].

Training and Testing. To train the correlation network, we
sample a clip of L (16 or 32) frames with a resolution of
224 x 224 from a given video. Some videos in Something
do not have enough frames. We simply repeat each frame
twice for those videos. For data augmentation, we resize the
input video to have shorter side randomly sampled in [256,
320] pixels, following [59, 47], and apply temporal jittering
when sampling clips for training. For the default configu-
ration of our correlation network, we use the correlation-
sum block, and set the filter size to K = 7 and group size
to g = 32. Training is done with synchronous distributed
SGD on GPU clusters using Caffe2 [3] with a cosine learn-
ing rate schedule [36]. We train the model for 250 epochs
in total with the first 40 epochs for warm-up [18] on Kinet-
ics. As Something and Diving48 are smaller datasets, we
reduce the training epochs from 250 to 150 on them. For
Sports1M, we train 500 epochs since it is the largest dataset.
For testing, we sample 10 clips uniformly spaced out in the
video and average the clip-level predictions to generate the
video-level results. Except in Section 6.3, all reported re-
sults are obtained by training from scratch without pretrain-
ing on ImageNet [7] or other large-scale video datasets. We
only use RGB as the input to our model, unlike two-stream
networks [46, 57, 16, 58] which use both RGB and optical
flow.

6. Experimental Evaluation

To demonstrate the advantages of the proposed correla-
tion network, we first compare the correlation operator with
temporal convolution in Section 6.1. We evaluate the corre-
lation network under different settings to justify our design
choices and compare with the two-stream network in Sec-
tion 6.2. We show that our correlation network outperforms
the state of the art on all four datasets in Section 6.3. Fi-
nally, we visualize the learned filters in Section 6.4.

6.1. Correlation network vs baseline backbones

Table 3 compares the correlation network with different
baselines. We denote the backbone architecture from Ta-
ble 2 as R(2+1)D-26. To demonstrate the importance of
temporal learning on different datasets, we create R2D-26,
which is obtained by removing all 1D temporal convolu-



Top-1 accuracy (%)

Model Length | GFLOPs | Kinetics | Something | Diving

R2D-26 16 27.5 67.8 15.8 17.5
R(2+1)D-26 16 36.0 69.9 354 2277
CorrNet-26 16 37.4 73.4 38.5 27.0

R2D-26 32 55.0 70.1 28.1 29.2
R(2+1)D-26 32 71.9 72.3 45.0 322
CorrNet-26 32 74.8 75.1 474 35.5

Datasets Kinetics | Something
CorrNet-26 75.1 47.4
w/o filter 73.9 46.5
w/o grouping 74.2 46.1
correlation-concat 73.2 459

Table 3: Correlation networks vs baselines. Our CorrNet
significantly outperforms the two baseline architectures on
three datasets, at a very small increase in FLOPs compared
to R(2+1)D. Using longer clip length L leads to better ac-
curacy on all three datasets.
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Figure 3: Effect of filter size K on classification accuracy.

tions (i.e., 3 x 1 x 1), and adding a 3 x 1 x 1 max pool-
ing when we need to do temporal striding. CorrNet-26 is
obtained by inserting one correlation-sum block after resa,
ress and resy of R(2+1)D-26 as described in Section 4. As
the correlation block adds a small overhead to the FLOPs,
we further reduce the number of filters for conv, from 64 to
32, and remove the 3 x 1 x 1 temporal convolutions from
reso for CorrNet. This reduces the accuracy of CorrNet only
slightly (less than 0.5%). The resulting CorrNet-26 has sim-
ilar FLOPs as R(2+1)D-26, as shown in Table 3.

R2D vs R(2+1)D. The gap between R2D and R(2+1)D
varies dramatically on different datasets. On Kinetics and
Diving48, R(2+1)D is only 2-5% better than R2D, but the
gap widens up to 20% on Something. This is consistent with
findings in [63] and is due to the design of Something where
objects are not predictive of the action label. This also high-
lights the challenges of designing new architectures that can
generalize well to different types of datasets.

R(2+1)D vs CorrNet. We observe a consistent improve-
ment of over 3% on three datasets when comparing CorrNet
with R(2+1)D in Table 3. We achieve the most significant
gain on Diving48, i.e., 4.3%, using 16 frames. Note that
our improved R(2+1)D is a very strong baseline and its per-
formance is already on par with the best results (listed in

Table 4: Action recognition accuracy (%) for different con-

figurations of CorrNet.

Datasets Kinetics | Something
CorrNet-26 75.1 47.4
R(2+1)D-26 (RGB) 72.3 45.0
R(2+1)D-26 (OF) 66.5 42.5
R(2+1)D-26 (Two-stream) 74.4 47.9

Table 5: Action recognition accuracy (%) of CorrNet vs
two-stream network.

Table 6 and 7) reported. A significant 3% improvement on
three datasets shows the power of the information learned
from pixel matching and the general applicability of the cor-
relation network to model video of different characteristics.
Moreover, CorrNet only increases the GFLOPs of the net-
work by a very small margin, from 71.9 to 74.8, comparing
with R(2+1)D.

Input clip length. Table 3 also compares different models
using different input length L. As expected, increasing L
from 16 to 32 frames can boost the performance across all
datasets. Something and Diving48 benefit more from using
longer inputs. It is noteworthy that the improvements of
CorrNet over R(2+1)D are largely carried over when using
32 frames. To simplify, we use L = 32 frames in all the
following experiments.

6.2. Evaluating design choices and comparison to
two-stream network

To justify our design choices, we experimentally com-
pare different configurations of CorrNet-26 in Table 4. We
consider the following modifications: 1) remove filters in
the correlation operator; 2) remove grouping to reduce the
number of channels from C to K?2; 3) swap the correlation-
sum block with correlation-concat. Note that we only
change one thing at a time.

Removing filters results in an accuracy drop of 1% on
both datasets, as it significantly reduces the power of the
learned representations. Similarly, the aggressive channel
reduction introduced by removing grouping also causes an
accuracy drop of about 1%. The correlation-concat block
performs worse than correlation-sum, which leverages the
shortcut connection to ease optimization.

Figure 3 shows the performance of CorrNet-26 for K €
{3,5,7,9}. As expected, a larger K can cover a larger



Two GFLOPs

Two

Methods Pretrain Kinetics Methods Pretrain Something  Diving
stream X crops stream
STC-ResNext-101 [8] X X N/A 68.7 RQ2+1)D [55] X X 21.4
RQ+1)D [55] X X 152x115 72.0 TRN [68] X X 34.4
MARS+RGB [5] X X N/A 74.8 MFNet-C101 [34] X X 439
ip-CSN-152 [54] X X 109%30 71.8 NL 13D-50 [59] ImageNet X 44.4
DynamoNet [9] X X N/A 71.9 R(2+1)D [55] Sports 1M X 45.7 28.9
SlowFast-101 [15] X X 213x30 78.9 NL I3D-50+GCN [60]  ImageNet X 46.1
SlowFast-101+NL [15] X X 234 %30 79.8 DiMoFs [2] Kinetics X 31.4
13D [4] ImageNet X 108 xXN/A 72.1 Attention-LSTM [26]  ImageNet X 35.6
RQ2+1)D [55] SportsIM X 152x 115 74.3 GST-50 [38] ImageNet X 48.6 38.8
NL I3D-101 [ ] ImageNet X 359%30 77.7 MARS+RGB [ ] Kinetics X 51.7
ip-CSN-152 [54] Sports 1M X 109%30 79.2 S3DG 0] TmageNet 183
LGD-3D-101 [42] ImageNet X N/A 79.4 TRN [64] ImageNet 420 23
R(Z+1)D [55] Sports1M 304x115 75.4 MARS+RGB+Flow [5]  Kinetics 53.0
13D [4] ImageNet 216XN/A 75.7
S$3D-G [63] ImageNet 142.8xN/A 772 CorrNet-50 X X 49.3 37.9
LGD-3D-101 [42] ImageNet N/A 81.2 gorfge:-igi j(‘ § 2(1)3 ggé
orriNet- . .
((}:().;'rrli\ll\leettls()ol ; i {égi }8 ;;g CorrNet-101 SportsIM X 533 447
CorrNet-101 X X 224 %30 79.2
CorrNet-101 SportsIM X 22430 81.0 Table 7: Compare with the state-of-the-art on Something-

Table 6: Compare with the state-of-the-art on Kinetics-400.

neighborhood while matching pixels, thus yields a higher
accuracy. But the improvements become marginal beyond
K = 7, possibly due to the low resolution of the feature
maps.

We compare CorrNet-26 with the two-stream network
using the R(2+1)D backbone in Table 5. We use the
Farneback [13] algorithm for computing optical flow. The
two-stream network of R(2+1)D is implemented by con-
catenating the features after global average pooling. For
R(2+1)D, the accuracy gap between RGB and optical flow
is smaller on Something, as Kinetics is arguably more
biased towards appearance information. Our CorrNet-26
alone is on par with R(2+1)D-26 using two streams. Note
that two-stream network effectively doubles the FLOPs of
the backbone and the cost of computing optical flow (not
considered here) can be very high as well. This shows that
our correlation network is more efficient by learning motion
information from RGB pixels directly.

6.3. Comparison to the state of the art

The correlation network discussed in the previous sec-
tions is based on R(2+1)D-26 with a block configuration of
[2, 2, 2, 2] for ress, ress, resy and ress. To compare with
the state-of-the-art, we simply add more layers to the back-
bone. Following the design of ResNet [21], CorrNet-50
uses a block configuration of [3, 4, 6, 3], whereas CorrNet-
101 wses [3, 4, 23, 3]. Like in CorrNet-26, a correlation
block is inserted after ress, ress and res, for CorrNet-50.
For CorrNet-101, we insert an additional correlation block
in the middle of resy, so there are 4 correlation blocks in
total. Table 6, 7 and 8 compare the accuracy of CorrNet-
50 and CorrNet-101 with several recently published results
under different settings. For CorrNet-101 (the last two rows

Something v1 and Diving48.

of Table 6 and 7) at test time, we sample more clips (30
instead of 10), as done in [59, 60] .

As expected, using deeper models or sampling more
clips can further improve the accuracy. Comparing with
CorrNet-26 in Table 3, CorrNet-101 is 4.1%, 4.3% and
3.1% better on Kinetics, Something and Diving48, respec-
tively. As Diving48 is the smallest dataset among the four,
increasing model capacity may lead to overfitting, thus the
improvement is less significant. We also experiment with
pre-training CorrNet-101 using the Sports1M dataset [27].
This time we achieve the most significant improvement on
Diving48, i.e., 6.1%. Smaller datasets are likely to bene-
fit more from pre-training, as we have seen in the case of
UCF101 [48] and HMDBS51 [31]. On both Kinetics and
Something, we observe a modest improvement of 1-2% by
pre-training on Sports1 M.

On Kinetics, CorrNet-101 significantly outperforms the
previous models using the same setup (i.e., no pretraining
and only using RGB) except for the recently introduced
SlowFast network [15] augmented with non-local network
(NL) [59]. In fact, compared to SlowFast-101, CorrNet-101
achieves slightly higher accuracy (79.2% vs 78.9%), and it
is only 0.6% lower in accuracy when SlowFast-101 is com-
bined with NL. Comparing with results using pre-training,
CorrNet-101 is 1.6% better than LGD-3D [42], i.e., 81.0%
vs 79.4%. The two-stream LGD-3D improves the accuracy
to 81.2% by extracting the computationally expensive TV-
L1 optical flow [66].

Comparing CorrNet-101 with other approaches trained
from scratch in Table 7, we observe a significant improve-
ment of 7.8% on Something (51.7% for CorrNet-101 vs.
43.9% for MFNet-C101 [34]). On Diving48 [35], the im-
provement is even more substantial, i.e., over 17% (38.6%
from CorrNet-101 vs. 21.4% from R(2+1)D). With pre-



Methods Pretrain Two stream Sports1M
C3D [53] X X 61.1
P3D [41] X X 66.4
R(2+D)D [55] X X 73.0
ip-CSN-152 [54] X X 75.5
Conv Pool [65] X 71.7
R(2+1)D [55] X 73.3
CorrNet-101 X X 77.1

Table 8: Comparison with the state-of-the-art on Sports1M.

training, CorrNet-101 is still 1.6% and 5.9% better on
Something and Diving48. CorrNet-101 even slightly out-
performs MARS [5] augmented with RGB and optical flow
streams on Something, i.e., 53.3 vs 53.0.

Table 8 provides a comparison with the state of the art
on SportsIM. We only evaluate our best model CorrNet-
101 to limit the training time. All the methods in Table 8
are trained from scratch since SportsIM is already a very
large scale video dataset. Our CorrNet-101 established a
new state of the art, i.e. 77.1%, outperforming the very re-
cent ip-CSN-152 [54] by 1.6%. CorrNet-101 also signifi-
cantly outperforms R(2+1)D [55] by 3.8% which uses both
RGB and optical flow.

To sum up, CorrNet is a new versatile backbone that
outperforms the state-of-the-art on a wide variety of video
datasets. Thanks to the efficient design of the correlation
operator and our improved R(2+1)D backbone, the FLOPs
of CorrNet is also lower than those of previous models, such
as NL I3D [59]. FLOPs can further be significantly reduced
(i.e., 3x decrease) by sampling fewer clips during testing
with only a small drop in accuracy, as shown in the third
last row of Table 6 and 7.

6.4. Visualizing Correlation Filters

In this section, we visualize the filters (i.e., the yellow
tensor in Fig. 1) from the correlation operator to better un-
derstand the model. We choose the CorrNet-101 trained
from scratch on Kinetics from Table 6, and the correla-
tion operator with the highest output resolution, i.e., from
the correlation block after res,. The size of the filter is
L xCx K x K aslisted in Table 1, whichis 32 x64 x7x 7
in this case. We visualize filters for [ = 0,...,7 and
c = 0,...,7in Figure 4. The color coding indicates the
weights in the learned filters, and the white arrows point to
the directions with largest weights.

Zooming into filters in Figure 4, we observe that each
filter learns a specific motion pattern (i.e., the 7 x 7 grid)
for matching. The filters in each column are sorted in time
and exhibit similar patterns. The white arrows often point
to similar directions for the filters in the same column. This
suggests that our network learns the temporal consistency
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correlation filters

Figure 4: Visualization of CorrNet-101 trained on Kinetics.
We visualize the correlation filters, which is a 4D tensor of
shape L x C'x K x K. Filters in each column are aligned in
time, and each column represents a different channel dimen-
sion. White arrows point to locations with highest weights,
showing that different filters learn to match pixels moving
in different directions.

of motion, i.e., pixels usually move in the same direction
across frames. Comparing filters in different columns, we
observe that some columns are more active than others,
which indicates that our filters learns which channels are
more discriminative for matching. Filter weights for these
channels can be larger than channels that are less informa-
tive for matching.

7. Conclusions

This paper explores a novel way to learn motion informa-
tion from video data. Unlike previous approaches based on
optical flow or 3D convolution, we propose a learnable cor-
relation operator which establishes frame-to-frame matches
over convolutional feature maps in the different layers of the
network. Differently from the standard 3D convolution, the
correlation operator makes the computation of motion in-
formation explicit. We design the correlation network based
on this novel operator and demonstrate its superior perfor-
mance on various video datasets for action recognition. Po-
tential future work includes the application of the learnable
correlation operator to other tasks, such as action localiza-
tion, optical flow, and geometry matching.
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