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Abstract

The success of image perturbations that are designed to
fool image classifier is assessed in terms of both adversar-
ial effect and visual imperceptibility. The conventional as-
sumption on imperceptibility is that perturbations should
strive for tight Lp-norm bounds in RGB space. In this
work, we drop this assumption by pursuing an approach
that exploits human color perception, and more specifi-
cally, minimizing perturbation size with respect to percep-
tual color distance. Our first approach, Perceptual Color
distance C&W (PerC-C&W), extends the widely-used C&W
approach and produces larger RGB perturbations. PerC-
C&W is able to maintain adversarial strength, while con-
tributing to imperceptibility. Our second approach, Percep-
tual Color distance Alternating Loss (PerC-AL), achieves
the same outcome, but does so more efficiently by alternat-
ing between the classification loss and perceptual color dif-
ference when updating perturbations. Experimental evalu-
ation shows PerC approaches outperform conventional Lp

approaches in terms of robustness and transferability, and
also demonstrates that the PerC distance can provide added
value on top of existing structure-based methods to creating
image perturbations.

1. Introduction

Research on creating adversarial examples for deep vi-
sual classifiers has focused on perturbations that cause
misclassification while being imperceptible to the human
eye [7, 43, 49]. Larger image perturbations are known
to improve adversarial strength (i.e., the ability to fool a
classifier), but are also associated with visually noticeable
changes in the image. A commonly agreed-upon assump-
tion is that tight Lp-norm constraints on the size of ad-
versarial perturbations in RGB space are a good guaran-
tee of imperceptibility. Evaluation of adversarial exam-
ples has conventionally followed this assumption, consid-
ering perturbations with smaller Lp norms to be better (e.g.,

Figure 1: Comparison of (a) C&W [7] with (b) our PerC-
C&W. Perceptual color (PerC) distance allows larger RGB
perturbations (cf. L2 and L∞ norm in middle row), while
also contributing to imperceptibility (bottom row). (Setting:
untargeted with κ = 40; classifier Inception v3.)

L∞ [7, 19, 29], L2 [7, 41, 49] and L0 [7, 43]). Keeping with
this assumption, defense approaches are designed to be ef-
fective against adversarial perturbations under a specific Lp

bound [10, 39, 51, 54]. Our research is motivated by the
importance of questioning the necessity of small RGB per-
turbations for imperceptibility.

In this work, we propose to create adversarial exam-
ples by perturbing images with respect to perceptual color
(PerC) distance. Using PerC distance makes it possible
to move away from the assumption that it is necessary to
tightly constrain the Lp norm of the perturbations in RGB
space. Fig. 1 illustrates the difference between C&W [7],
a well-known approach that perturbs with respect to an
Lp norm in RGB space, and our own extension, PerC-
C&W, which perturbs with respect to a perceptual color dis-
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tance. PerC perturbations are less perceptible, especially in
smooth regions of saturated color (cf. Fig. 1 in bottom row).
Also, they are distributed strategically over the RGB color
channels (cf. downsized perturbation images in the middle
row). PerC distance effectively allows us to hide large per-
turbations in RGB space, in a way not readily noticeable to
the human eye. Our PerC-based approaches can increase
the Lp norm substantially (cf. Fig. 1, L2 and L∞ in middle
row), leading to a strong adversarial effect that maintains
imperceptibility.

Fig. 2 motivates the use of perceptual color distance for
creating adversarial images. Here, we have taken a solid
color image (left) and added the same perturbations to the
green channel (middle) and to the blue channel (right). Al-
though both RGB channels were perturbed identically, the
perturbations are only visible in the green channel. The rea-
son is that color as it is perceived by the human eye does
not change uniformly over distance in RGB space. Rela-
tively small perturbations in RGB space may correspond to
large difference in perceptual color space. Conversely, rela-
tively large changes in RGB space may remain unnoticeable
if they lead to small perceived color difference.

Our work is in line with a growing awareness in the lit-
erature on adversarial examples that the difference between
two images as measured by an Lp norm in RGB space is
actually quite poorly aligned with human perception [45].
Building on this observation, researchers have attempted
to address imperceptibility by exploiting similarity defined
with respect to semantics [15, 17, 23, 24, 46] or structural
information [11, 16, 37, 55, 59] in the image. However,
little work on adversarial examples has questioned the wis-
dom of optimizing perturbations with respect to distance in
RGB space. The exceptions are a handful of approaches
that have proposed allowing only luminance change when
perturbing pixels [11, 16]. The approach that is closest
to our own is [3], which perturbs in CIELAB color space,
but carries out no investigation of the potential and limi-
tations of the idea. Our work is distinct from this initial
effort because we use a more accurate polar form (known
as CIELCH) of the CIELAB color space, and more impor-
tantly, use an actual perceptual color distance. The distance
is CIEDE2000 [1, 38], and will be discussed in detail in
Section 2. To our knowledge, ours is the first work that pro-
poses optimizing adversarial image perturbations directly
with respect to a perceptual color distance.

In order to fully appreciate our proposal, it is necessary
to understand two key aspects. First, we do not claim that
PerC approaches will always yield dramatically less percep-
tible perturbations than conventional RGB approaches. For
cases in which the perturbations are small, the difference
may not be so great. However, we find that there are two
cases in which PerC approaches are particularly important.
First, our experimental results (see Section 5.2.2) show that

Figure 2: Left: Original image (a 20× 20 8-bit RGB image
patch with color (15,240,15)). Middle: Image perturbed
by adding noise in the G channel, sampled from a uniform
distribution in the range [-15,15]. Right: Image perturbed
by adding the identical noise, but in the B channel. The
B-channel perturbations are imperceptible (best viewed on
screen).

as we attempt to create adversarial images that are misclas-
sified with high confidence (i.e., high-confidence adversar-
ial examples), it becomes important to perturb with respect
to perceptual color distance. Second, we demonstrate that
the effect of PerC approaches is additive and can be used in
combination with existing structural approaches to improve
imperceptibility.

The contributions of this paper are as follows:
• An in-depth study of the use of perceptual color (PerC)

distance to hide large RGB perturbations in images.
• PerC-C&W: a method for creating adversarial images

that introduces perceptual color distance into the joint
optimization of C&W.
• PerC-AL: an efficient method that optimizes alternat-

ing loss (AL) functions, switching between classifica-
tion loss and perceptual color difference.
• Experimental validation demonstrating that PerC per-

turbations in high-confidence settings yield more ro-
bust and transferable adversarial examples, without
sacrificing imperceptibility.
• Experimental results showing that PerC perturbations

can be used in combination with structural information
for further improvement of imperceptibility.

The code, which also includes a differentiable solution
compatible with PyTorch’s autograd to efficiently imple-
ment perceptual color distance (CIEDE2000), is available
at https://github.com/ZhengyuZhao/PerC-Adversarial.

2. Background on Perceptual Color Distance

Conventionally, computer vision research has intensively
explored color and human perception, but has paid surpris-
ingly little attention to distance in perceptual color spaces.
Here, we mention some key points about color in computer
vision history. Early on, research focused on intensity-
based descriptors, which then evolved to also capture color
information. Unsurprisingly, color boosted the performance

https://github.com/ZhengyuZhao/PerC-Adversarial


of object and scene recognition [26, 52] and semantic seg-
mentation [8]. Researchers extracted descriptors from op-
ponent color spaces, most notably HSV and CIELAB,
which separate luminance and chrominance. Most recently,
color is attracting more attention in the area of image syn-
thesis. Notable examples, such as style transfer [18] and
cross-domain image generation [50], find that color plays
an important role in preserving the look of an image. In
general, we observe that until now the focus has been on
the color space itself, and not on color distance, which we
explore here.

The perceptual color distance that we use is CIEDE2000,
which is the latest ∆E standard formula developed
by the CIE (International Commission on Illumination).
CIEDE2000 refined the definition of previous editions
by adding five corrections, and has been experimentally
demonstrated to better align with human visual percep-
tion [1, 38]. Specifically, the pixel-wise perceptual color
distance can be calculated as:

∆E00 =

√
(

∆L′

kLSL
)2 + (

∆C ′

kCSC
)2 + (

∆H ′

kHSH
)2 + ∆R,

∆R = RT (
∆C ′

kCSC
)(

∆H ′

kHSH
),

(1)
where ∆L′, ∆C ′, ∆H ′ denotes the distance between pixel
values of the three channels, L (lightness), C (chroma) and
H (hue) in the CIELCH space, and ∆R is an interactive
term between chroma and hue differences [38]. The weight-
ing functions SL, SC , SH and RT are determined based on
large-scale human studies and act as compensations to bet-
ter simulate human color perception. The kL, kC and kH
are usually unity for the application of graphic arts. De-
tailed definitions of all the parameters and relevant explana-
tions can be found in [38]. We note that it is also possible
to use an Lp norm to measure distance in CIELAB space.
However, this distance is not as close to human perceptual
distance as CIEDE2000 is.

We point out that a limited amount of previous research
has also adopted CIEDE2000. However, the goal has been
to evaluate the color similarity of image pairs. Examples
of such research include work on image quality assess-
ment [58] and image super-resolution [34]. In contrast, in
our work we use CIEDE2000 directly for optimization with
back propagation and not only for evaluation.

3. Related work
In this section, we cover the existing literature, which

focuses on creating Lp norm-bounded adversarial exam-
ples, and we also mention recent approaches that attempt
to move beyond Lp norms. We preface our discussion with
a short definition of an ‘adversary’, i.e., an approach that
generates an adversarial image example. Given a classifier

f(x) : x → y that predicts a label y for an image x, the
adversary attempts to induce a misclassification by modi-
fying the original x to create a new x′. In the untargeted
setting, the adversary is successful if the image is classified
into an arbitrary class other than y, i.e., meets the condi-
tion f(x′) 6= y. In the targeted setting, the adversary must
ensure that the image is classified into a class with a pre-
defined label t, i.e., meets the condition f(x′) = t. The
untargeted case is generally recognized to be less challeng-
ing than the targeted case [7].

3.1. Lp norm-bounded Adversarial Examples

Typically, adversaries [7, 19, 29, 41, 43, 44, 49] create
an adversarial image, x′, by adding a perturbation vector
δ ∈ Rn that is constrained by an Lp norm to the original
image, x. The first Lp norm-bounded approach [49] op-
timized an objective combining the classification loss and
the L2 norm of the perturbations, balanced by a constant λ.
Formally, the solution is expressed as:

minimize
δ

λ‖δ‖2 − J(x′, y), s.t. x′ ∈ [0, 1]n, (2)

where J(x′, y) is the cross-entropy loss w.r.t. x′. The au-
thors of [49] solved the problem by using box-constrained
L-BFGS (Limited memory Broyden-Fletcher-Goldfarb-
Shanno) method [33].

The C&W method [7] improves on [49] by introducing
a new variable using the tanh function to eliminate the box
constraint. Additionally, it introduces a more sophisticated
objective function that optimizes differences between the
logits, Z, which are output before the softmax layer. This
can be formulated as:

minimize
w

‖x′ − x‖22 + λf(x′),

where f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ),

and x′ =
1

2
(tanh(arctanh(x) +w) + 1),

(3)
where w is the new variable and Z(x′)i denotes the logit
with respect to the i-th class. In an untargeted setting, the
definition of f is modified to:

f(x′) = max(Z(x′)y −max{Z(x′)i : i 6= y},−κ). (4)

The parameter κ controls the confidence level of the mis-
classification. The first approach that we propose, PerC-
C&W, is built on C&W. In our experiments, we will vary κ
in order to assess the ability of an adversary to create strong
adversarial images, i.e., images that are misclassified with
high confidence.

Due to the need for line search in order to find the opti-
mal constant, λ, such an optimization approach is inevitably
time-consuming. For this reason, [19, 29, 44] propose a



more efficient solution that does not impose a penalty dur-
ing optimization. Instead, respect of the norm constraint
is ensured by projecting perturbations onto an ε-sphere
around the original image. Specifically, the fast gradient
sign method (FGSM) [19] was first proposed to achieve ad-
versarial effect with only one step, formulated as:

x′ = x+ ε · sign(∇xJ(x, y)), (5)

where the perturbation size is implicitly constrained by
specifying a small ε.

Subsequently, an extension of this method referred to as
I-FGSM [29] was introduced for leveraging finer gradient
information by iteratively updating the perturbations with a
smaller step size α:

x′0 = x, x′k = x′k−1 + α · sign(∇xJ(x′k−1, y)), (6)

where the intermediate perturbed image x′k is projected
onto a ε-sphere around the original x, to satisfy the L∞-
norm constraint. Note that I-FGSM constrains only the
maximum change of individual image coordinates without
considering the image-level accumulated difference. For
this reason, I-FGSM yields poor imperceptibility, especially
in high-confidence settings (cf. Fig. 3).

A generalization of I-FGSM to the L2 norm can be
achieved by changing the sign operation in the updating to:

∇xJ(x′k−1, y)

‖∇xJ(x′k−1, y)‖
2

, (7)

where the projection is implemented by:

x′k = x+ ε
x′k − x
‖x′k − x‖2

. (8)

A recent method called the Decoupled Direction and Norm
(DDN) [44], which is based on the L2 norm-based I-FGSM,
yielded the best performance (smallest L2 norm) in the
untargeted track of NIPS 2018 Adversarial Vision Chal-
lenge [5], with substantially fewer iterations than the con-
ventional C&W. In DNN, the ε is designed to be adjustable
in each iteration based on whether the perturbed image is
adversarial or not, leading to a finer search for the minimal
norm. Our second approach, PerC-AL, follows a similar
strategy as DDN to improve efficiency by decoupling the
joint optimization.

3.2. Adversarial examples beyond Lp norms

Our work is part of the current movement away from
tightLp norms and towards conceptualization of image sim-
ilarity in terms of semantics or perceptual properties. Re-
search that defines similarity in terms of semantics, requires
the adversarial image to have the same content as the orig-
inal image from the point of view of the human viewer.

Some of the first work in this direction has explored geomet-
ric transformation [15, 56], global color shift [2, 4, 23, 31],
and image filters [9].

Such approaches are interesting, but we do not pursue
them here because they tend to be limited in their adversar-
ial strength, due to the restricted size of the search space for
possible adversarial image transformations.

Research that investigates similarity with respect to tex-
ture and structure [11, 16, 37, 55, 59], has focused on
hiding perturbations in image regions with visual varia-
tion. Such hiding can be achieved by either using existing
structure-aware metrics [16, 55], such as structural similar-
ity (SSIM) [53] and Wasserstein distance [25], or directly
allowing more perturbations in the high-variance image re-
gions [11, 37, 59]. All of these approaches share a common
challenge: They have difficulties in dealing with smooth re-
gions (e.g., sky, ground and artificial objects), which ap-
pear frequently in images taken in commonly occurring
real-world settings (referred to as natural images). In con-
trast, our PerC perturbations are applicable in smooth re-
gions in the case of saturated color. Our experiments show
that PerC perturbations can be combined productively with
a structure-based approach (see Section 5.5).

4. Proposed approaches
In this section, we present two approaches to using per-

ceptual color (PerC) distance for adversarial image pertur-
bations. We focus on image-level accumulated perceptual
color difference, i.e., the L2 norm of the color distance
vector, in which each component represents the perceptual
color distance (∆E00 in Eq. (1)) calculated for the corre-
sponding image pixel.

4.1. Perceptual color distance penalty (PerC-C&W)

Our first approach, PerC-C&W, adopts the joint opti-
mization of the well-known C&W, but replaces the original
penalty on the L2 norm with a new one based on perceptual
color difference. It can be formally expressed as:

minimize
w

‖∆E00(x,x′)‖2 + λf(x′), (9)

where w is the new introduced variable as in the Eq. (3) of
C&W. Like the original C&W, the optimization problem is
solved by binary search over the constant λ. By using the
gradient information from perceptual color difference, per-
turbation updating is translated into a perceptually uniform
color space. Large RGB perturbations, which have a strong
adversarial effect, remain hidden from the human eye, as
will be shown in Section 5.

4.2. Perceptual color distance alternating loss
(PerC-AL)

Although, Eq. 9 enjoys a concise expression, the joint
optimization of PerC-C&W faces difficulties in practice.



Algorithm 1 Perceptual Color Distance Alternating Loss
(PerC-AL)
Input:
x: original image, t: target label, K: number of iterations
αl: step size in minimizing classification loss
αc: step size in minimizing perceptual color difference

Output: x′: adversarial image
1: Initialize x′0 ← x, δ0 ← 0
2: for k ← 1 to K do
3: if x′k−1 is not adversarial then
4: g ← −∇xJ(x′k−1, t)
5: g ← αl · g

‖g‖2
6: δk ← δk−1 + g . Update δ in the direc-

tion of g
7: else
8: C2 ← −‖∆E00(x,x′k−1)‖

2
9: gc ← ∇xC2

10: gc ← αc · gc
‖gc‖2

11: δk ← δk−1 + gc . Update δ in the di-
rection of gc

12: end if
13: x′k ← clip(x+ δk, 0, 1)
14: x′k ← quantize(x′k) . Ensure x′k is valid
15: end for
16: return x′ ← x′k that is adversarial and has smallest C2

Adversarial training [29, 39], for example, presents chal-
lenges. The reason is that PerC-C&W requires time-
consuming binary search in order to find an optimal λ,
which normally varies substantially among different im-
ages [44]. To address the inefficiency, we propose PerC-AL,
which decouples the joint optimization by alternately up-
dating the perturbations with respect to either classification
loss or perceptual color difference. Our strategy is inspired
by DDN, which is basically a projected gradient descent
(PGD) method with a dynamic L2-norm bound. However,
PerC-AL goes beyond this idea to alternate two gradient de-
scents.

The full PerC-AL method is described in Algorithm 1.
We start from an original image x with the perturbation δ
initialized as 0, and iteratively update it to create an ad-
versarial image. In each iteration, the perturbation is either
enlarged to achieve stronger adversarial effect based on the
gradients from the classification loss, or shrunk to minimize
perceptual color differences. These two operations are alter-
nated based on whether the intermediate perturbed image
x′k is adversarial or not, leading to a finer search of a min-
imal perceptual color difference by repeatedly crossing the
decision boundary. To ensure the adversarial image is valid,
the output is clipped into the range [0,1] and quantized into
255 levels (corresponding to 8-bit image encoding).

5. Experiments

In this section, we first provide a picture of the differ-
ences between RGB and PerC approaches (Section 5.2).
Then, we carry out experiments that compare different ap-
proaches in terms of robustness (Section 5.3) and trans-
ferability (Section 5.4) by considering the case of high-
confidence adversarial examples. Finally, in Section 5.5,
we show that structural information can be elegantly inte-
grated into our efficient decoupled approach, PerC-AL, for
further improvement in the imperceptibility of images that
contain areas with rich visual variation.

5.1. Experimental setup

Dataset and Networks. Following recent work [13, 56,
59], we conduct our experiments on the development set
(1000 RGB natural images with the size of 299 × 299) of
the ImageNet-Compatible dataset1. This dataset was intro-
duced by the NIPS 2017 Competition on Adversarial At-
tacks and Defenses [30] and consists of 6000 images la-
beled with 1000 ImageNet classes. We choose this dataset
because we would like to study imperceptibility under real-
world conditions. In contrast, some other work [11, 37] on
addressing imperceptibility mainly focuses on the tiny im-
ages from MNIST [32] and CIFAR-10 [28]. As in the com-
petition, the Inception V3 [48] model pre-trained on Image-
Net is used as the target classifier.
Baselines. Three well-known baselines, I-FGSM [29],
C&W [7], and the state-of-the-art DDN [44], are compared
with our approaches. Among them, I-FGSM targets mini-
mum L∞ norm, while C&W and DDN target minimum L2

norm. Note that I-FGSM is not designed for imperceptibil-
ity, but we consider it here for completeness.
Parameters. I-FGSM is repeated multiple rounds with
increased L∞-norm bound, where in each round, a large
enough iteration budget (100 in our implementation) is
specified with the step size α = 1/255.

C&W and PerC-C&W use the Adam optimizer [27] with
a learning rate of 0.01 for updating the perturbations. We
impose a budget on the number of search steps used to find
the optimal λ. The initialization of λ is particularly impor-
tant for small budgets. We perform grid search for the ini-
tialization value of λ over the range [0.01, 0.1, 1, 10, 100],
and adopt the value that yields the smallest average pertur-
bation size. The selected initialization values are shown in
Table 4 of the appendix.

For DDN and PerC-AL, we decrease the step size (α in
DDN and αl in PerC-AL) that is used for updating the per-
turbations with respect to the classification loss from 1 to
0.01 with cosine annealing. The L2-norm constraint ε in
DDN is initialized to 1 and adjusted iteratively by γ = 0.05,

1https://github.com/tensorflow/cleverhans/tree/master/examples/
nips17 adversarial competition/dataset.

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset


Approach Budget Success Perturbation Size
Rate (%) L2 L∞ C2

I-FGSM [29] - 100.0 2.51 1.59 317.96

C&W [7]
3×100 100.0 1.32 8.84 159.85
5×200 100.0 1.09 8.20 132.86
9×1000 100.0 0.92 8.45 114.36

PerC-C&W (ours)
3×100 100.0 2.77 14.29 150.44
5×200 100.0 1.48 12.06 83.93
9×1000 100.0 1.22 15.57 67.79

DDN [44]
100 100.0 1.00 7.84 136.11
300 100.0 0.88 7.58 120.12
1000 100.0 0.82 7.62 111.65

PerC-AL (ours)
100 100.0 1.30 11.98 69.49
300 100.0 1.17 13.97 61.21
1000 100.0 1.13 17.04 57.10

Table 1: Success rates and perturbation sizes on the 1000
images from the ImageNet-Compatible dataset, with varied
budgets in the targeted setting. Perturbation size is quan-
tified in terms of L2 and L∞ norms of the perturbations
in RGB space (L2 and L∞) and also in terms of image-
level accumulated perceptual color difference (C2). Note
that C&W and PerC-C&W actually need more (here, 5×)
iterations to find the optimal initialization of λ. The budget
for I-FGSM varies on different images.

as in the original work DDN [44]. The αc in PerC-AL is
gradually reduced from 0.5 to 0.05 with cosine annealing.

Evaluation Protocol. We investigate a set of reasonable
operating points, based on pre-defined budgets. Note that
our goal is to show the relative behavior of PerC vs. RGB
approaches. For this purpose, we only need to create a
fair comparison, and it is not necessary to drive all ap-
proaches to an absolute optimum. For each image, an ap-
proach is considered successful if the perturbed image can
achieve adversarial effect with the given budget. Specifi-
cally, I-FGSM requires varied repetitions for different im-
ages. For C&W and PerC-C&W, the budget refers to
N(search steps) × N(iterations of gradient descent). We
apply relatively high budget (9 × 1000), and are also in-
terested in lower budgets (5× 200 and 3× 100), which are
more directly comparable with more efficient approaches,
namely, DDN and PerC-AL. We test DDN and our PerC-AL
with three different iteration budgets (100, 300 and 1000),
adopted from the original work [44].

Adversarial strength is evaluated by the success rate, i.e.,
the proportion of successful cases over the whole dataset.
The averaged perturbation size over all successful images is
reported. It is measured in terms of the L2 and L∞ norm in
RGB space (L2 and L∞) and also in terms of image-level
accumulated perceptual color difference (C2).

Approach κ = 20 κ = 40
Suc. (%) C2 Suc. (%) C2

I-FGSM [29] 100.0 375.74 99.9 576.06
C&W [7] 100.0 159.00 100.0 241.92
DDN [44] 100.0 150.68 98.1 238.37
PerC-C&W (ours) 100.0 90.86 100.0 136.22
PerC-AL (ours) 100.0 75.43 100.0 115.17

Table 2: Evaluation of the success rate and perceptual
color difference achieved by different approaches in high-
confidence settings.

5.2. Adversarial strength and imperceptibility

In this section, we investigate the adversarial strength
and imperceptibility of the perturbed images generated by
different approaches in a white-box scenario, where the full
information of the network is accessible.

5.2.1 Sufficient-confidence adversarial examples

We first present, in Table 1, a comparison demonstrating
how PerC approaches relax Lp norms. Our comparison
uses adversarial examples created under a commonly used
condition where the aim is to achieve a just sufficient ad-
versarial effect. Sufficient-confidence adversarial examples
just cross the decision boundary without pursuing a higher
confidence score for the adversarial label. As expected, all
approaches achieve 100% success rate and the resulting per-
turbation size gets smaller as the budget increases.

Table 1, which reports the targeted results, confirms that
PerC approaches, PerC-C&W and PerC-AL, show the be-
havior they are designed for, i.e., decreasing the average
accumulated perceptual color difference C2. More impor-
tantly, PerC approaches do this without tightly constraining
the Lp norms in RGB space as the other approaches do,
as reflected by L2 and L∞. Moreover, PerC-AL achieves
lower C2 than PerC-C&W (57.10 vs. 67.79) with notably
fewer iterations. For comparison, we provide C2 for the
RGB approaches. The untargeted results follow a similar
pattern and can be found in Table 5 of the appendix.

5.2.2 High-confidence adversarial examples

In order to gain deeper insight into the performance of our
approaches, we investigate adversarial examples that have a
high confidence score for the adversarial label. High con-
fidence was initially investigated by [7] in order to achieve
more transferable adversarial examples, and also been ex-
plored in the “Unrestricted Adversarial Examples” con-
test [6]. In the untargeted setting, an approach is regarded
as successful only if the logit with respect to the original
class becomes lower than the maximum of the other logits



Figure 3: Examples of adversarial images generated by five different approaches with high confidence level κ = 40

by a pre-defined margin κ. For C&W and PerC-C&W, this
requirement can be directly implemented by specifying the
factor κ in Eq. (4). For I-FGSM, DDN and PerC-AL, this
can be achieved by running the iterations until the required
logit difference is satisfied. For this experiment, we adopt
the settings generating the smallest perturbations for each
approach in Section 5.2.1.

Fig. 3 shows some adversarial examples generated by
different approaches at κ = 40. The images produced by
our PerC approaches look more visually acceptable than
those of the other approaches (best viewed on screen). The
good visual appearance of the PerC examples is consistent
with their low averaged aggregated perceptual color differ-
ence, C2, as seen in Table 2, which shows both κ = 40 and
κ = 20 values. The challenge of the high-confidence set-
ting is seen in the success rates, which are not longer perfect
for all conditions.

5.3. Robustness

In order to gain additional practical insight, we test the
robustness of the adversarial examples against two com-
monly studied image transformation-based defense meth-
ods, i.e., JPEG compression [12, 13, 14, 20] and bit-depth
reduction [20, 22, 57].

The results are shown in Fig. 4. Overall, increasing κ
from 20 to 40 leads to improved robustness. For a specific
κ, unsurprisingly, I-FGSM outperforms other approaches
since it greedily perturbs all the pixels, but at the cost of
worse image quality (see Fig. 3). Among the other four ap-
proaches that target minimal image-level accumulated im-
age difference with sparse perturbations, the best results are
consistently achieved by either our PerC-C&W or PerC-AL.
Specifically, PerC-C&W outperforms the original C&W in
all cases, while PerC-AL consistently outperforms DDN.
Recall that our PerC approaches cause fewer visual distor-
tions, as shown in Fig. 3, contributing to imperceptibility.

Figure 4: Evaluation of robustness of high-confidence ad-
versarial examples at (a) κ = 20 and (b) κ = 40, against
two types of image transformations: JPEG compression
(top row) and bit-depth reduction (bottom row).

5.4. Transferability

Existing research [35, 51] has demonstrated that the ad-
versarial effect of images optimized with respect to a spe-
cific network may transfer to another network. We test
the transferability of different approaches from the original
Inception V3 to other three pre-trained networks, namely,
GoogLeNet [48], ResNet-152 [21], and VGG-16 [47].
Specifically, an untargeted adversarial example generated
for the original model is regarded to be transferable to a new
model if it can also induce misclassification of that model.

We report results on a subset of our data containing im-



GoogLeNet VGG-16 ResNet-152
κ = 20 κ = 40 κ = 20 κ = 40 κ = 20 κ = 40

I-FGSM [29] 4.2 6.3 5.6 10.6 2.4 4.2
C&W [7] 2.5 3.1 3.0 5.1 0.9 1.7
DDN [44] 2.1 3.1 3.3 5.7 1.2 2.4
PerC-C&W (ours) 2.9 4.7 3.9 6.9 1.2 2.5
PerC-AL (ours) 2.6 4.3 4.8 7.2 1.2 2.4

Table 3: Success rates of adversarial examples at two high
confidence levels κ = 20 and κ = 40 in the transfer sce-
nario, from the source model Inception V3 to three others.

ages that all four models originally classify correctly. Ta-
ble 3 reports the success rates under transferability on these
images (767 in total). I-FGSM again outperforms the other
approaches, but uses excessive perturbations (and for this
reason is shown in italics). Among the other approaches,
we can observe that the best results are always achieved by
one of our two PerC approaches2.

5.5. Assembling structural information

We explore the possibility of assembling structural infor-
mation for further improving imperceptibility without im-
pacting adversarial strength. Specifically, we introduce a
texture complexity vector σ, which has the same size as the
image, as a weighting term into our PerC-AL framework.
Following existing work [11, 37] on addressing impercepti-
bility with respect to image structure, this vector is obtained
by calculating the standard deviation of the pixel values in
each 3 × 3 square per channel. The components with top
5% highest values in the map are clipped for stability and
the map is normalized into the range [0,1] before use. Con-
cretely, step 8 in Algorithm 1 is adjusted to:

C2 ← −‖(1− σ) ·∆E00(x,x′k−1)‖
2
, (10)

where C2 also becomes sensitive to image differences in
terms of local visual variation. As shown in Fig. 5, with
the help of additional structural information, perturbations
in the smooth regions are suppressed, while more changes,
which are barely perceptible, are triggered in the area with
rich visual variation. It is worthwhile for future work to
investigate this combined approach in more detail.

6. Conclusion and Outlook
This paper has demonstrated the usefulness of perceptual

color distance for creating large yet imperceptible adversar-
ial image perturbations. We have proposed two approaches
for creating adversarial images, PerC-C&W and PerC-AL.
Our experimental investigation of these approaches shows
that perceptual color distance is able to improve impercepti-
bility, especially in smooth, saturated regions. We show that

2Results in Table 3 are different from those in previous arXiv version
due to changed normalization implementations, while the claims still hold.

Figure 5: Adversarial examples of an image at κ = 40. Top:
Generated by PerC-AL (Algorithm 1). Bottom: Generated
by PerC-AL plus structure (Algorithm 1 plus Eq. (10)).

these approaches have perturbations with larger RGB Lp

norms than approaches that perturb directly in RGB space.
This effect translates into adversarial strength, i.e., the abil-
ity of the perturbations to fool a classifier.

Our work has made a contribution to recent work that
seeks to create adversarial images that are imperceptible to
the eye of the human observer. This work has been carried
out in the area of security [7, 17, 16, 29, 43] (defend infer-
ence of a legitimate classifier) and privacy [9, 36, 40, 42]
(prevent inference of an illegitimate classifier). In the se-
curity area, imperceptible perturbations can mean that ad-
versarial images can poison the training data without being
noticed by human annotators. In the privacy area, imper-
ceptible perturbations mean wider acceptance of the use of
adversarial images to protect against classification attacks.

In the future, we will continue to consider perceptual
color in adversarial images from both the privacy and the
security angle. Our first direction will be related to the
fact that neither conventional RGB perturbations nor PerC
perturbations perform well in smooth regions with low sat-
uration. We would like to develop techniques that can
make perturbations imperceptible, or unnecessary, in such
regions. Our future work will also look at model robustness
specifically against our PerC adversaries. On one hand, ad-
versarial training on images perturbed by PerC is worth ex-
ploring to complement current research on Lp robustness.
On the other hand, it would be interesting to investigate
ways to detect whether PerC has been applied to an image,
or design countering methods that can mitigate PerC-based
perturbations by, for example, applying bit-depth reduction
directly in perceptual color space.
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Appendix

Approach Budget λ
Targeted Untargeted

C&W [7]
3×100 1 0.1
5×200 1 1
9×1000 1 1

PerC-C&W (ours)
3×100 10 100
5×200 10 100
9×1000 10 10

Table 4: Selected initializations of λ via grid search.

Approach Budget Success Perturbation Size
Rate (%) L2 L∞ C2

I-FGSM [29] - 100.0 1.94 1.02 255.92

C&W [7]
3×100 100.0 0.69 3.61 88.76
5×200 100.0 0.45 3.79 59.88
9×1000 100.0 0.41 3.74 54.17

PerC-C&W (ours)
3×100 100.0 1.47 6.78 78.25
5×200 100.0 0.90 6.71 51.35
9×1000 100.0 0.56 6.58 33.00

DDN [44]
100 100.0 0.35 4.03 49.43
300 100.0 0.33 4.08 47.58
1000 100.0 0.32 4.11 46.51

PerC-AL (ours)
100 100.0 0.53 5.58 30.39
300 100.0 0.50 6.93 27.65
1000 100.0 0.51 8.92 26.62

Table 5: Success rates and perturbation sizes on the 1000
images from the ImageNet-Compatible dataset, with varied
budgets in the targeted setting. Perturbation size is quan-
tified in terms of L2 and L∞ norms of the perturbations
in RGB space (L2 and L∞) and also in terms of image-
level accumulated perceptual color difference ( C2). For
this relatively easy untargeted case, PerC-AL is initialized
with αc = 0.1.


