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Abstract

Reconstructing 3D models from 2D images is one of the
fundamental problems in computer vision. In this work,
we propose a deep learning technique for 3D object recon-
struction from a single image. Contrary to recent works that
either use 3D supervision or multi-view supervision, we use
only single view images with no pose information during
training as well. This makes our approach more practi-
cal requiring only an image collection of an object category
and the corresponding silhouettes. We learn both 3D point
cloud reconstruction and pose estimation networks in a self-
supervised manner, making use of differentiable point cloud
renderer to train with 2D supervision. A key novelty of the
proposed technique is to impose 3D geometric reasoning
into predicted 3D point clouds by rotating them with ran-
domly sampled poses and then enforcing cycle consistency
on both 3D reconstructions and poses. In addition, using
single-view supervision allows us to do test-time optimiza-
tion on a given test image. Experiments on the synthetic
ShapeNet and real-world Pix3D datasets demonstrate that
our approach, despite using less supervision, can achieve
competitive performance compared to pose-supervised and
multi-view supervised approaches.

1. Introduction

3D object reconstruction is a long standing problem in
the field of computer vision. With the success of deep learn-
ing based approaches, the task of single image based 3D ob-
ject reconstruction has received significant attention in the
recent years. The problem has several applications such as
view synthesis and grasping and manipulation of objects.

Early works [4, 2, 3] on single image based 3D recon-
struction utilize full 3D supervision in the form of 3D vox-
els, meshes or point clouds. However, such approaches re-
quire large amounts of 3D data for training, which is hard
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Figure 1. Single-image 3D Reconstructions. Input image and
corresponding projection from reconstructed 3D point clouds. We
reconstruct the 3D output from a single input image using a com-
pletely self-supervised approach.

and expensive to obtain. Several recent works [23, 21] have
focused on utilizing multi-view 2D supervision in the form
of color images and object silhouettes as an effective alter-
native training protocol. A key component in these tech-
niques is the differentiable rendering module that enables
the use of 2D observations as supervision using reprojec-
tion consistency based losses. However, most of these ap-
proaches require multiple 2D view of the same 3D model
along with the associated camera pose information in the
training stage. This is a major limitation in applying these
techniques in a practical setting where such supervisory
data is difficult to obtain.

In this work, we set out to tackle a more challenging
problem of learning 3D object reconstructions from image
and corresponding silhouette collections. Given a collection
of images and corresponding object silhouettes belonging
to the same object category such as car, with just a single
view from each object instance and no ground truth camera
pose information, our goal is to learn 3D object reconstruc-
tions (Fig. 1). The proposed approach is practically useful
and enables us to make effective use of the large amounts
of 2D training data for learning 3D reconstructions. Since
it is possible to easily obtain object silhouettes in the ab-
sence of ground truth masks, here we make the reasonable
assumption that the image collection contains correspond-
ing silhouettes. A key challenge in our training setting is to
simultaneously learn both camera pose estimation and 3D



reconstruction while avoiding degenerate solutions. For in-
stance, a degenerate solution for 3D reconstruction would
be to just lift 2D pixels in a given image onto a 3D plane.
Although such a flat 3D reconstruction perfectly explains a
given image, that is obviously not a desired 3D shape. In
this work, we introduce loss functions that are tailored to-
wards simultaneous learning of the pose and reconstruction
networks while avoiding such degenerate solutions. Specif-
ically, we propose to use geometric and pose cycle consis-
tency losses. To enforce geometric cycle consistency, we
make use of the fact that multiple 2D views from the same
3D model must all result in the same 3D model upon re-
construction. However, note that these multiple 2D views
are intermediate representations obtained in our framework
utilizing just a single image per model. To correctly regress
the pose values, we obtain projections from random view-
points to enforce consistency in pose predictions. Motivated
by the observation that the reconstruction performance im-
proves remarkably when multiple 2D views are used for su-
pervision, we aim to utilize additional images as supervi-
sion. However, since our problem setting limits the number
of views from each 3D model to one, we effectively retrieve
images from the training set with similar 3D geometry in a
self-supervised manner. We utilize them as additional su-
pervision in the form of cross-silhouette consistency to aid
the training of pose and reconstruction networks.

Since our approach is self-supervised, we can adapt our
network to obtain better reconstructions on a given test input
image by performing additional optimization during infer-
ence. We propose regularization losses to avoid over-fitting
on a single test sample. This ensures that the 3D reconstruc-
tions are more accurate from input viewpoint while main-
taining their 3D structure in the occluded regions.

We benchmark our approach on the synthetic
ShapeNet [I] dataset and observe that it achieves com-
parable performance to the state-of-the-art multi-view
supervised approaches [16, 7]. We also evaluate our
approach on the real-world Pix3D [18] dataset and show
comparable or improved performance over a pose super-
vised approach [16]. We also present possible applications
of our approach for dense point correspondence and 3D
semantic part-segmentation. To the best of our knowledge,
this is the first completely self-supervised approach for
3D point cloud reconstruction from image and silhouette
collections.

To summarize, we make the following contributions in
this work:

e We propose a framework to achieve single image
3D point cloud reconstruction in a completely self-
supervised manner.

e We introduce cycle consistency losses on both pose
and 3D reconstructions to aid the training of the pose
and reconstruction networks respectively.

e We effectively mine images from geometrically similar
models to enforce cross-silhouette consistency, leading
to significantly improved reconstructions

e We perform thorough evaluations to demonstrate the
efficacy of each component of the proposed approach
on the ShapeNet dataset. We also achieve competi-
tive performance to pose and multi-view supervised
approaches on both ShapeNet and real-world Pix3D
datasets.

2. Related Works

Single Image Based 3D Reconstruction Several learning
based works in the recent past have tackled the problem
of single image based 3D object reconstruction. The
initial works [4, 2, 3, 19, 5, 12] make use of full 3D
supervision in terms of ground-truth voxels or point clouds.
Choy et al. [2] utilize multiple inputs for improved voxel
reconstructions. Fan et al. [3] is one of the first works
to learn point cloud reconstructions from images using a
deeply learned network. They made use of set distance
based losses to directly regress the 3D locations of the
points. Mandikal et al. [13] extend [3] to predict point
clouds with part segmentations using a part-aware distance
metric calculation.

2D Supervised Approaches While the above works obtain
promising results, they require ground truth 3D models as
supervision which is complex and expensive to obtain. To
overcome this, several works [23, 21, 22, 24, 11, 15, 6, 20,

, 16, 9] have explored 2D supervised approaches utiliz-
ing 2D images, silhouettes, depth maps and surface normal
maps. These works aim to develop ways to go from the 3D
representation to the 2D projections in a differentiable man-
ner in order to effectively back-propagate the gradients from
the 2D loss functions to the reconstruction network. Yan
et al. [23] achieve this on voxel based 3D representations
by performing grid sampling of voxels to obtain foreground
mask projections. Re-projection losses are used from mul-
tiple viewpoints to train the network. Similarly, Tulsiani et
al. [21] use a differentiable ray consistency based loss to re-
construct not only the shape information, but also features
like color. The work is extended in [20] where a multiple-
view consistency based loss is formulated to simultaneously
predict 3D camera pose and object reconstructions. Moti-
vated by the computational and performance advantages of-
fered by point clouds, a number of works have sought to
design rendering modules for projecting 3D points. Insa-
futdinov and Dosovitskiy [7] and Navaneet et al. [15, 16]
develop differentiable projection modules to project points
and corresponding features on to the 2D plane, enabling
training on 2D representations like silhouettes, depth maps,
images and part segmentations.
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Figure 2. Approach Overview. We propose a cycle consistency based approach to obtain 3D reconstructions from a collection of images
and their corresponding foreground masks. An encoder-decoder architecture based network is used to regress the 3D coordinates of the

point cloud reconstruction P. A pose network is used to obtain 3D camera pose predictions ¥V from the input image. DIFFER [

]is used

to render the reconstruction in the predicted viewpoint. Additionally, reconstructions are also projected from randomly sampled poses to
obtain k projections which are again used to reconstruct k point clouds P*. We enforce a 3D cycle consistency loss on P and P 1o train
Niee. Similarly the randomly sampled poses and corresponding projections are considered as pseudo ground truth labels to enforce pose
cycle consistency loss. The red dashed arrows in the diagram indicate the proposed losses.

Weakly Supervised Approaches Among the weakly su-
pervised approaches, [8, 14, 10, 16, 20, 7] are the closest
to ours. Mees et al. [14] utilize mean 3D object models
to learn 3D reconstructions in a self-supervised manner. Li
et al. [10] generate 3D models using a self-supervised ap-
proach, but do not perform reconstruction from RGB im-
ages. In SSL-Net [17], 3D models are used to pre-train one
of the networks before performing self-supervised recon-
struction. To the best of our knowledge, we are the first to
obtain colored 3D point cloud reconstructions from just a
collection of images and corresponding silhouettes.

3. Approach

We aim to obtain 3D point cloud reconstruction from a
single image in a self-supervised setting. To this end, we
propose a learning based approach with an encoder-decoder
architecture based network to predict the reconstructions.
Let I be the image input to the network, M the foreground
object mask and P e RV*3 the corresponding point cloud
reconstruction obtained using the reconstruction network
Niee (refer Fig. 2). N is the number of points in the re-
constructed point cloud. In the absence of ground truth 3D
models, all our supervisory data, which is the set of input
images and corresponding silhouettes, lies in the 2D do-
main. In order to utilize these 2D observations to train
the network, we would need to project the reconstructed
point cloud on to the 2D image plane. We use the differ-
entiable projection modules proposed in DIFFER [16] and
CAPNet [15] to obtain color and mask projections respec-
tively from a given viewpoint. The viewpoint v associated
with the input image is characterized by azimuth and el-
evation values of the camera in the 3D space placed at a

fixed distance from the object. We use another encoder net-
work j\/poSe to obtain the viewpoint prediction ¥. The recon-
structed point cloud is projected from the predicted view-
point using the differentiable projection module to obtain
2D image and mask predictions Iand M respectively. If the
predicted viewpoint and reconstructions are correct, the 2D
projections will match the input image. To enforce this, we
use the losses proposed in DIFFER [16] to optimize both
the reconstruction and pose prediction networks. Specifi-
cally, we use the following image (£;) and mask (Lyr) loss

functions: )
=5 > iy — 13 (1)
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where h,w are the height and width of the 2D observa-
tions respectively. M, and M+ are sets of pixel coordi-
nates of the ground truth and predicted projections whose
values are non-zero. In this formulation, the predictions
by the reconstruction and pose networks rely heavily on
each other. Since the predicted viewpoint is used in pro-
jection, the reconstruction network can predict correct 3D
models that consistently match the input image only if the



pose predictions are accurate. Similarly, since the pose net-
work parameters are optimized using projection losses, the
predicted pose values will be correct only if the reconstruc-
tions are reasonable. In such a situation, the network can
collapse to degenerate solutions. For instance, the predicted
viewpoint can be constant regardless of the input and the
3D reconstruction can be planar. The networks would still
achieve zero loss as long as they reproduce the input im-
age from the predicted constant viewpoint. To avoid such
degenerate solutions, we propose novel cycle consistency
losses to train both reconstruction and pose networks.

3.1. Geometric Cycle Consistency Loss

We propose geometric cycle consistency loss to train the
reconstruction network (Fig. 2) to avoid degenerate recon-
structions. The reconstructed point cloud Pis projected
from k randomly sampled viewpoints {vi}¥.  Let {I?}¥
be the corresponding image projections. These images are
used as input to the reconstruction network M. and the cor-
responding reconstructed point clouds {Pl}’f are obtained.
Since each of the projections and the input image are all as-
sociated with the same 3D object, the corresponding point
clouds must all be consistent with each other. To enforce
this, we define the geometric cycle consistency loss as fol-

lows:
k

Lo = den(P, P (5)
i=1
where dcp(+, ) denotes the Chamfer distance between two
point clouds. The reconstruction network is trained using a
combination of the mask and image losses and the geomet-
ric cycle consistency loss.

L% — oLy + L) + BLG (6)

3.2. Pose Cycle Consistency Loss

The projection based losses form weak supervisory sig-
nals to train the pose prediction network. While there is no
direct pose information available for the input images, the
projected images and corresponding pose pairs {f ivitk
can be considered as pseudo ground-truth pairs for training
the pose network. We input the image projections {%}%
to the pose prediction network Npose to obtain the corre-
sponding pose predictions {¥*}¥ (Fig 2). The correspond-
ing viewpoints {v'}¥ are then used as ground-truth to train
Npose. The pose loss is obtained as follows:

k
1 o
Epose = % § |VZ -V | (7)
=1

The final training objective for the pose network is a
combination of pose cycle consistency loss and image and
mask losses (Eq. 1 and 4). This ensures that the pose loss is
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Figure 3. Sample k-nearest neighbours. We utilize our single-
view trained reconstruction network to obtain k-nearest neighbour
samples from the train set. Note that the neighbours have differ-
ent poses and have different color distribution, but have similar 3D
shape which provides us with additional information on the geom-
etry of the object.

dependent on the pose predictions of the input image, while
simultaneously being optimized with a stronger supervision
using the projected images.

L = y(L1+ Lar) + pLpose (8)

3.3. Nearest Neighbours Consistency Loss

Earlier works [15] demonstrate that even just a single
additional view as supervision during training significantly
improves the reconstruction quality. However, as men-
tioned previously, assuming the presence of such multi-
view images during training curtails the practical utility
and prevents the applicability on real-world single image
datasets. In order to remain in the constrained setting, but
improve reconstructions with the use of multiple image su-
pervision, we propose mining images from the training set
which belong to similar 3D models. For every input im-
age, we find the closest neighbours such that they have sim-
ilar underlying 3D shapes, and use projection consistency
based loss, termed ‘nearest neighbours consistency loss’, to
assist the training of the network. To find the nearest neigh-
bours in the 3D domain in a self-supervised fashion, we
need features which embed the 3D shape information. Uti-
lizing features from networks trained on 2D tasks (for e.g.,
classification on ImageNet dataset), would provide neigh-
bours which are similar in color and viewpoint, but not nec-
essarily in 3D shape. Alternatively, to quantify the 3D sim-
ilarity, we consider the encoded features of our proposed
reconstruction network. Nearest neighbours from training
set are obtained by comparing the Euclidean distances in
the encoded feature space. Sample nearest neighbour im-
ages are shown in Fig. 3. We observe that the retrievals
are similar in shape and have diversity in terms of pose and
color. During training, nearest neighbours of the input im-
age are utilized as additional supervision. The neighbour
images are passed through Ny to obtain the correspond-
ing poses. The reconstructed point cloud obtained from the
input image is projected from these viewpoints. We then en-
force silhouette loss in Eq. 4 on these projections using the



ground-truth silhouettes of the neighbour images. This is
possible since the geometry of the input and the neighbours
are similar and thus the projections from the input model
closely match those from the neighbours. Note that the loss
is enforced using only masks and not the color images since
the neighbours might have different color distribution. The
mask losses are summed over n neighbours to get the to-
tal nearest neighbours loss. This is used in addition to the
losses mentioned in Eq. | and 4 to train the reconstruction
network.

Law =) Ly ©)
=1

3.4. Symmetry Loss

Since all the object categories we consider in our exper-
iments have a minimum of one plane of symmetry, we fur-
ther regularize the network to obtain symmetric reconstruc-
tions with respect to a pre-defined plane. Without loss of
generality, let us assume that the point clouds are symmet-
ric with respect to the xz-plane. Then, the symmetry loss is
given by:

Loym = den(PF, P7) (10)

where Pt is the set of points in P with positive y values
and P~ is the reflection about the xz-plane of the points
in P with negative y values. The symmetry loss helps in
obtaining improved geometry of reconstructions consistent
with the ground truth and avoids overfitting to the input im-
age. Due to the absence of ground truth pose values, the
co-ordinate system for the predicted camera poses is not
pre-determined. The choice of plane of symmetry in enforc-
ing symmetry loss can also help align the reconstructions to
a predefined canonical pose. The total reconstruction loss
with nearest neighbours and symmetry losses is as follows:

L' = a(Ly+ Lu) + BLe +nlaw + wLym (1)

3.5. Inference Stage Optimization (ISO)

Our self-supervised approach, which relies only on the
input images and corresponding object silhouettes for train-
ing, is ideally poised for instance specific optimization dur-
ing inference. At inference, we predict both the 3D point
locations and the input image viewpoint. To obtain highly
corresponding reconstructions, we aim to minimize the dif-
ference between the input and the projected image (from
predicted viewpoint) during inference. To ensure that the
reconstructions are not degraded in the regions occluded in
the input image, we employ additional regularization. Note
that while CAPNet [15] too performs inference stage opti-
mization, unlike our work, the authors assume known view-
point. The regularization loss formulation is as follows:

Acreg = dch(Pa pO) (12)

where P and P are the initial and optimized point clouds.
We also use the symmetry loss as an additional form of reg-
ularization to enable the network to optimize for the regions
in the point cloud visible in the input image while suitably
modifying the points corresponding to the occluded regions.
The objective function during ISO is given by:

Liso = Oz(l:l + [:M) + /\([,reg) + H(ﬁsym) (13)

4. Experiments
4.1. Implementation Details

We use a two-branch network to simultaneously obtain
shape and color reconstructions. Separate models are used
for training on each object category. The number of pro-
jections, k is set to four and the number of points in recon-
structed point cloud to 1024. Adam optimizer with a learn-
ing rate of 0.00005 is used for training the network. The
hyperparameters «, 3, v and p are set to 100, 104, 1 and 1
respectively. Architecture details, additional details on hy-
perparameter settings and training schedules are provided in
the supplementary material. We publicly release the code.'

4.2. Datasets

ShapeNet [1]: ShapeNet is a curated set of synthetic 3D
mesh models. We sample points on the surface of the
meshes to obtain the corresponding point clouds for eval-
uation. To create the set of input images, we render the
mesh models from a single random view per object instance.
All the experiments are performed on the representative car,
chair and airplane (denoted as aero) categories.

Pix3D [18]: Pix3D is a repository of aligned real-world im-
age and 3D model pairs. The dataset exhibits great diversity
in terms of object shapes and backgrounds and is highly
challenging. We consider the chair category of Pix3D in
our experiments. Since the dataset is small, we only per-
form evaluation on the Pix3D dataset.

We use the train/val/test splits provided by DIFFER [16] in
all our experiments. For ease of comparison, all the Cham-
fer and EMD metrics are scaled by 100.

4.3. Evaluation Methodology

Since point clouds are unordered representations, we
use Chamfer distance and earth mover’s distance (EMD)
to evaluate the reconstructions. For evaluation, we ran-
domly sample 1024 points from the reconstructions if
they contain higher number of points. The Cham-
fer distance between two point clouds P and P is de-
fined as dehamter(P,P) = Y.cp minyele’_yH; +
Y pep Mingep ||z — y||§ EMD between two point clouds

is defined as dgyp (P, P) = ming p 5> 4ep lla—d(a)l2

ICode is available at https://github.com/val-iisc/ssl_
3d_recon
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where ¢(-) is a bijection from P to P. For the pose unsu-
pervised approaches, the models are aligned using a global
rotation matrix obtained by minimizing the Chamfer error
on the validation set. To evaluate color metrics, we project
each reconstruction from 10 randomly sampled viewpoints
and compute the £, distance using the ground-truth images.
We report the median angular error and accuracy in the pose
prediction evaluation. In addition, the pose metrics are also
calculated by utilizing the ground truth orientation. The pre-
dicted point cloud is ‘flipped’ (rotated by 180°) if the error
is more than 90°.

4.4. Baseline Approaches

We compare the proposed approach with two state-of-
the-art approaches on 2D supervised single image based
3D point cloud reconstruction. Specifically, we use the
following variants of the works:

DIFFER: DIFFER [16] proposed a differentiable module
to project point cloud features on to the 2D plane, which
enables it to utilize input images for training. Note that
DIFFER utilizes ground truth pose values for the input
image and hence has a higher degree of supervision
compared to our approach. Codes and settings provided by
the authors are used to train the network.

ULSP: Insafutdinov et al. [7] proposed a multi-view
consistency based unsupervised approach for point cloud
reconstruction. While the approach does not make use
of ground truth pose values, it requires multiple images
and their corresponding foreground masks from different
viewpoints per 3D object instance. Hence, the work is
not directly comparable to our approach which uses just
a single image per model. To remain as close as possible
to this setting, we train ULSP with supervision from two
views per model using the code provided by the authors.
ULSP_Sup: We consider a variant of ULSP [7] with
ground truth camera pose supervision. Similar to DIFFER,
this is trained with one input viewpoint per 3D model.

We also provide comparison with two variants of the
proposed approach - ‘Ours-CC’ and ‘Ours-NN’. Ours-CC
is trained only with the cycle consistency losses while NN
consistency loss is used in addition in Ours-NN.

4.5. Effect of Cycle Consistency Losses

We first analyze the role of the proposed consistency
losses in improving the reconstructions in a self-supervised
setting (Table 1). In the absence of both L5 and Lpge
(Ours-No-CC), the network fails to learn meaningful 3D re-
constructions. When both the cyclic losses are employed
(Ours-CC), we observe that the network learns the under-
lying 3D shapes of the objects and thus results in effective
reconstructions. We present detailed ablations for individ-
ual loss components in the supplementary material.

Chamfer EMD

Method Car Chair Aero Car Chair  Aero

Ours-No-CC 1033 21.84 15.06 1832 2340 16.12
Ours-CC 639 1358 8.66 642 1646 12.53

Table 1. Effect of Consistency Loss. We evaluate the effect of
the proposed consistency losses on reconstruction metrics. The
network fails to train in the absence of the consistency losses in
the self-supervised setting.

Method Chamfer EMD

Car Chair Aero Car Chair Aero
DIFFER 6.35 9.78 5.67 6.03 1621 99
DIFFER + L 5.63 9.23 558 535 13.07 9.44
ULSP_Sup 6.64 1049 5.70 6.89 1093 7.43

ULSP_Sup+Ls 613 100 737 583 1024 9.99

Table 2. Portability of Geometric Consistency. Using our geo-
metric consistency loss atop supervised approaches results in sig-
nificant gains in reconstruction performance.

We also demonstrate the utility of the proposed geomet-
ric losses in the pose supervised setting for single image
based 3D reconstructions. Specifically, we use the proposed
loss L atop pose supervised DIFFER and ULSP_Sup to
optimize the corresponding reconstruction networks. Ta-
ble 2 suggests that geometric loss can significantly improve
the performance of existing supervised approaches as well.

4.6. Reconstruction Results

Quantitative and qualitative comparisons of the proposed
self-supervised approach with other multi-view and pose
supervised approaches on the ShapeNet dataset are pro-
vided in Table 3 and Fig. 4 respectively. The performance
of our approach is comparable to those utilizing higher lev-
els of supervision. For the baseline approaches, we observe
that pose supervised ULSP_Sup is marginally better than
the two-views supervised ULSP in the case of chairs and
airplanes and significantly better in the case of cars. Our
car reconstruction metric is close to the supervised ULSP
network and is better than other approaches. Notably, while
we use the same projection module and projection consis-
tency losses as in DIFFER, we outperform the pose super-
vised DIFFER in most of the quantitative metrics. This
demonstrates the utility of the additional cycle and near-
est neighbour consistency loss for reconstruction and pose
prediction. The addition of nearest neighbour significantly
boosts the reconstruction performance, particularly in the
case of the more challenging chair category. In the car and
airplane categories, there is apparent visual improvement
in the shape and spread of points with the use of nearest
neighbours. While we are able to effectively capture the ge-
ometry of the object, points are sparsely distributed in the
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Figure 4. Comparisons on ShapeNet. We provide comparison with both pose and multi-view supervised approaches on ShapeNet.
Our approach is on par with the supervised approaches in terms of correspondence of the reconstruction to the input image. Our car
reconstructions have significantly better shape and uniformity in points compared to the supervised approaches.

thin regions such as legs in the case of chairs. However,
we can observe similar sparse point distributions in the case
of DIFFER [16]. We also present qualitative (Fig. 5) and
quantitative (in supplementary) results on inference stage
optimization. The reconstructions have greater correspon-
dence with the input image as observed in the silhouettes
before and after optimization in Fig. 5. Reconstruction met-
rics indicate that the point clouds are preserved in regions
not observed in the test input. Additional qualitative results,
ablations on symmetry and nearest neighbours consistency
loss and failure cases are provided in the supplementary.

To show the adaptability of our approach to real-world
datasets, we evaluate it on the Pix3D dataset. Note that
since the dataset consists of very few models, we perform
evaluation of the networks trained on ShapeNet dataset. For
synthetic to real domain adaptation, we train on ShapeNet
dataset with the input images overlaid with random natural
scene backgrounds. Our approach performs comparably to
the pose supervised DIFFER approach both quantitatively
(Table 4) and qualitatively (Fig. 6).

Fig. 5 presents qualitative results on color prediction on
ShapeNet dataset. For effective evaluation, we project each
ground truth and predicted model from 10 randomly sam-
pled viewpoints and calculate the channel-wise £ loss be-
tween them. Our reconstructions result in greater visual cor-
respondence with the input image, particularly in the case of
cars. Quantitative results are provided in the supplementary.

4.7. Pose Prediction Results

Table 5 presents median error and accuracy of our pose
prediction network. We report results both with (‘flip’)
and without (‘No-flip’) the use of ground-truth orientation.
Ours-CC achieves high accuracy on the car category. How-

GT Silhouette Initial After ISO GT Silhouette Initial After ISO
Prediction Prediction

Figure 5. Inference stage optimization (ISO). Optimization dur-
ing inference results in greater correspondence to the input image.
Regularization is employed to maintain the shape in regions oc-
cluded in the input image.

Q%E §
.

g f 4
Input GT DIFFER Ours-NN Input DIFFER Ours-NN

Figure 6. Comparisons on Pix3D. Since both DIFFER and the
proposed approach are trained on ShapeNet and evaluated on
Pix3D, the correspondence to input in reconstructions is lower
compared to that on ShapeNet. However, our reconstructions have
marginally better shape and point spread compared to the super-
vised DIFFER approach.

ever, in the chair category, where there exists higher am-
biguity, Ours-CC performs significantly worse. Due to the
existence of multiple planes of symmetry in certain airplane
models, the network often predicts the incorrect orientation,
as observed in the high median error. But when the ground
truth orientation is used to calculate the metrics, such con-
flicts are resolved leading to significantly better metrics. In
all the categories, we observe that the pose metrics reliably



. Chamfer EMD
Method Pose  Views Car Chair Aero Mean Car Chair Aero Mean
ULSP_Sup Yes 1view 54 9.72 591 7.01 478 10.18 7.66 7.54
DIFFER Yes lview 6.35 09.78 5.67 7.27 6.03 16.21 9.90 10.71
ULSP No 2 views 7.02 9.87 596 7.62 7.99 10.56 8.06 8.87
Ours-CC No 1view 639 1358 8.66 9.54 6.42 1646 1253 11.8
Ours-NN No lview 548 1091 7.11 7.83 495 1493 11.07 10.31

Table 3. Reconstruction Metrics on ShapeNet. Despite being self-supervised, lacking the input pose values and with just the input image
as supervision, we perform comparably to or even outperform other state-of-the-art approaches requiring higher degree of supervision.

Method Chamfer EMD
DIFFER  14.33 16.09
Ours-NN  14.52 15.82

Table 4. Reconstruction Results on Pix3D. We evaluate both
the pose supervised DIFFER and our approach on the real-world
Pix3D [18] dataset. Our self-supervised approach performs com-
parably to the pose supervised one and adapts well to the real-

world dataset.
e AAR

PRSP = WS

DIFFER Ours-NN Input DIFFER Ours-NN Input DIFFER Ours-NN
Figure 7. 2D Color Projections. Our colored projections have
greater visual correspondence with the input images compared to
the supervised DIFFER approach.

Input

Median Error Accuracy

Categ. Method o flip  Flip  No-flip Flip
Car Ours-CC  7.58 554 7407 944

Ours-NN  6.85 555 7587 934
Chair Ours-CC  41.86  33.78 4145 4572

Ours-NN  19.69 17.79 59.14  64.16
Aero Ours-CC 8829 3853 2099  40.74

Ours-NN 4336  19.52 4234  60.74

Table 5. Pose Metrics on ShapeNet. Pose metrics are remarkably
good for the car category for both our approaches. In the chal-
lenging chair and airplane categories, use of nearest neighbours
(Ours-NN) significantly boosts the predictions.

improve upon the introduction of nearest neighbor consis-
tency (Lnn), further highlighting the need for such a loss.
We also observe that the pose and reconstruction metrics
are correlated and thus incorrect prediction in either of them
significantly affects the other.

4.8. Point Correspondences and Part Transfer

In our reconstructions, we observe that points with sim-
ilar indices in the regressed points have spatial correspon-

Ours Ours

Figure 8. Part Transfer. Semantic part segmented ground truth
and reconstructed point clouds. Correspondences between the re-
constructed point clouds are used for consistent part segmentation

transfer across models.

dence even though we do not explicitly enforce it. We use
a colored UV map to visualize the point correspondences
(see Supplementary for more details). We utilize this corre-
spondence for the task of single-shot semantic part segmen-
tation. We use a single ground-truth part-segmented model
to transfer part labels across all models based on point in-
dices. Results (Fig. 8) indicate that our network is effec-
tive in obtaining 3D part segmentations using just a single
ground-truth model.

5. Conclusion

We propose a self-supervised approach for single im-
age based 3D point cloud reconstruction. We develop
novel geometric and pose cycle consistency losses to ef-
fectively train our reconstruction and pose networks in a
self-supervised manner. Through the use of training images
with similar 3D shape, we mimic the effect of training with
multi-view supervision using a single-view dataset. We
benchmark our reconstruction, color and pose prediction
networks on the ShapeNet dataset, achieving comparable
performance to pose and multi-view supervised approaches.
The role of all the proposed losses is thoroughly analyzed.
We further demonstrate the utility of our approach through
reconstruction results on the real-world Pix3D dataset and
qualitative results on possible applications like dense point
correspondence and 3D part segmentation. In future, we
like to address the issue of sparse point predictions in thin
structures and further improve the reconstruction quality.
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From Image Collections to Point Clouds with Self-supervised
Shape and Pose Networks: Supplementary Material
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The supplementary document is arranged as follows: We
provide training schedule and additional implementation
details in the initial sections. We add more detailed abla-
tions on the role of individual components of the proposed
cycle consistency based losses. Subsequently we present
experimental results on the effect of number of nearest
neighbours, consistency and symmetry losses, dense point
correspondence, inference stage optimization and colored
point cloud reconstruction. We provide qualitative results
on failure modes of our approach. Lastly, we provide the
architectural details of our reconstruction and pose predic-
tion networks.'

1. Training Schedule

We train our networks for 400000 iterations using Adam
optimizer with a learning rate of 0.0005. For training our
approach, we observe that the pose prediction network con-
verges at a much earlier stage compared to the reconstruc-
tion network. At the half-way stage (200000 iterations), we
freeze the pose network and train the reconstruction net-
work with just image and mask losses, similar to the DIF-
FER baseline. We observe that this helps in obtaining bet-
ter 3D shape reconstructions and eliminate outlier points in
predictions.

2. Additional Implementation Details

We choose the optimal hyperparameter values based on
the reconstruction performance on the validation set. The
weight for geometric consistency loss, S is set to 10000 and
pose consistency loss, p is set to 1. The weight for nearest
neighbours consistency loss x is set to be same as that for
mask loss a. During the second half of the training sched-
ule, the weights for consistency losses /3 and p are set to 0
and that of image and mask losses « is reduced to 10. In the

ICode is available at https://github.com/val-iisc/ssl_
3d_recon
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experiments on nearest neighbours, we consider five near-
est neighbours for every input among which n images are
sampled randomly. The effect of the number of neighbours
chosen, n, is presented in Fig. 1 and Table 2. In inference
stage optimization experiments, the weights for regulariza-
tion and symmetry loss, A and & are both set to 500.

3. Role of Cycle Consistency Losses

We present quantitative ablation on the role of individ-
ual components of our proposed cycle consistency loss in
Table 1. We present qualitative comparison of reconstruc-
tion with and without these losses in a self-supervised set-
ting in Fig. 2. The network fails to learn meaningful 3D
shapes in the absence of the proposed losses, while the re-
constructions closely match the input when the losses are
utilized. We also observe that each of the individual losses
help improve the reconstructions and the best performance
is obtained when all the losses are combined. Fig. 3, dis-
plays the qualitative results on the effect of geometric con-
sistency loss on the pose supervised ULSP_Sup approach.
We observe a significant improvement in the reconstruction
quality, suggesting the portable nature of the proposed loss.

4. Effect of Nearest Neighbours

Fig. 3 and Tables 1 and 3 in the main submission
demonstrate the efficacy of the nearest neighbours consis-
tency loss. Here, we analyze the effect of the number of
chosen nearest neighbours for each image. Table 2 and
Fig. 1 present quantitative and qualitative comparison re-
spectively of reconstruction performance for different num-
ber of neighbours. We observe a significant improvement
when just a single image is utilized. The performance im-
proves or remains nearly same as more number of images
are considered. When more than 3 images are used in loss
calculation, we observe a drop in performance. This be-
haviour is consistent with our expectations, since the farther
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. Nearest Chamfer EMD
Geometric CC Pose CC Neighbor CC  Car Chair Aero Car Chair  Aero
X X X 1033 21.84 1506 1832 2340 16.12
v X X 578  27.89 10.77 7.07 269 15.76
X v X 1131 1146 1247 1159 1497 1526
v v X 639 1358 8.66 642 1646 12.53
v v v 548 1091 7.1 495 1493 11.07

Table 1. Effect of Consistency Loss. We evaluate the effect of the proposed consistency losses on reconstruction metrics. The network
fails to train in the absence of the consistency losses in the self-supervised setting. Each of the proposed losses is necessary to obtain the

optimal performance.

nearest neighbours have lower geometric similarity with the
input image.

5. Effect of Symmetry Loss

Symmetry loss (Section 3.4 of main paper) was proposed
as an additional regularization to obtain meaningful 3D re-
constructions and to align the reconstructions to a prede-
fined canonical pose. Here, we present quantitative results
(Table 3) for reconstruction performance with and without
symmetry loss. We use both consistency and nearest neigh-
bor losses for both the methods. We observe that symmetry
loss is crucial in getting reasonable reconstructions for the
airplane category. It does not affect the performance for the
car category while it has a negative impact on chair recon-
structions. Similar trends were observed on the validation
set too. Based on these observations, we choose the best
combination for Ours-NN model. We use the symmetry loss
only for the airplane category in Ours-NN.

6. Results on Point Correspondence

We observe that the reconstructed point clouds have
dense point-wise correspondence. That is, points with sim-
ilar indices in the regressed list of points are present in se-
mantically simillar regions. To visualize this, we use a col-
ored UV map to obtain point correspondences on the point
cloud. Fig. 4 depicts the UV mapped point clouds. We ob-
serve that points with similar color are grouped together and
have correspondence across different samples.

7. Results on Inference Stage Optimization

Fig. 4 of the paper demonstrates that ISO results in sig-
nificant improvement in correspondence of the reconstruc-
tions to the input image. We present the corresponding
quantitative results in Table 4. The metrics are consistent
with our observations that the point cloud structure remains
intact in occluded regions while closely matching the input
image in the visible regions.

8. Results on Color Prediction

Since our networks predict colored point clouds, we
present qualitative and quantitative results on it in Fig. 5
and Table 5. Due to the absence of good ground-truth for
evaluation of color prediction on point clouds, we project
our reconstructions from 10 randomly sampled view-points
and perform comparison in the 2D domain. We observe
a greater correspondence to the input image in our projec-
tions compared to those of the pose supervised DIFFER ap-
proach, particularly in the case of car category. Since the
color metrics are dependent on the quality of our recon-
structions, DIFFER has improved performance in the chair
category, while we outperform it in the car category.

9. Failure Cases

Fig. 6 presents a few failure cases. Some reconstructions
have high density clusters leaving very few points to model
the thinner structures (Fig. 6(a)). Clusters in airplane cate-
gory lead to reconstructions with thin structures. However,
we note that such failure modes are also observed in ear-
lier point cloud reconstruction literature [ 1 6] and addressing
these forms an important future work. Our approach also
fails to accurately model certain structures like the spoil-
ers in cars and complex leg and handle structures in chairs
(Fig. 6(b)). Training with larger number of such examples
might help alleviate the problem.

10. Network Architecture

Details of our reconstruction and pose network architec-
tures are provided in Tables 6 and 7. We use a dual branch
reconstruction network similar to DIFFER [16] for recon-
structing point locations and color values. The structure
branch of the reconstruction network and the pose network
have similar architecture except for the output layer. We
use the output of the D, (Table 6) layer our reconstruction
network as the embedding to obtain the nearest neighbours
in our experiments.



Car Chair Aero

Neighbours Chamfer EMD Chamfer EMD Chamfer EMD
0 6.39 6.42 13.58 16.46 8.66 12.53
1 5.47 4.93 1091 1493 8.35 12.3

2 5.51 5.29 10.65 1546 7.1 11.07
3 5.57 5.16 10.90 14.84 8.99 14.02
4 5.54 5.24 11.93 16.64 8.65 13.35

Table 2. Effect of Nearest Neighbours. We examine the effect of number of images of nearest neighbours on the reconstruction metrics.
The performance improves or remains nearly same as more number of images are considered. When more than 3 images are used in loss
calculation, we observe a drop in reconstruction performance due to the increased disparity between neighbours and input image.

. p . § 3 B . § N .
Input Ours-CC  Ours-1-NN Ours-2-NN Ours-3-NN Ours-4-NN Input GT Ours-CC Ours-1-NN Ours-2-NN Ours-3-NN Ours-4-NN

Figure 1. Effect of Nearest Neighbours. We examine the effect of number of images of nearest neighbours on the reconstruction metrics.
The performance improves or remains nearly same as more number of images are considered. The best performance is achieved when one
or two images are used while reconstructions suffer when more than 3 images are utilized.

Chamfer EMD
Car Chair Aero Car Chair Aero

Ours-No-Sym 548 1091 791 495 1493 13.98
Ours-Sym 572 1234 7.11 524 16.67 11.07

Method

Table 3. Effect of Symmetry Loss. Symmetry loss is crucial for
effective reconstructions on airplane category. We choose the best
settings from the ablation for each category in Ours-NN model.
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Figure 2. Effect of Cycle Consistency Loss. The network fails to learn meaningful 3D shapes in the absence of the proposed geometric
and pose cycle consistency losses. The reconstructions closely match the input when the losses are utilized.



Input

GT

ULSP_Sup

ULSP_sup
+ Lg

Figure 3. Portability of Proposed Loss. We employ the proposed geometric cycle consistency loss atop the pose-supervised ULSP
approach. We observe a significant improvement in the reconstruction quality, suggesting the portable nature of the proposed loss.

Figure 4. Point Correspondence. Similar indices in the point cloud are visualized with the same color. The reconstructions exhibit high
point correspondence across models.



Categ. Method Chamfer EMD
Car Ours-NN 5.47 493
Ours-NN post ISO 549 5.01
Chair Ours-NN 10.91 14.93
Ours-NN post ISO  15.32 17.79
Aero Ours-NN 7.1 11.07
Ours-NN post ISO  7.62 11.09

Table 4. Quantitative Analysis of ISO. Chamfer and EMD met-
rics before and after inference stage optimization are comparable.
This indicates that the point cloud structures are not degraded in
occluded regions due to ISO.

View 1 View 2

Input DIFFER Ours-NN DIFFER Ours-NN

Figure 5. Colored Point Cloud Reconstruction. We compare
the colored point cloud reconstructions of DIFFER and our ap-
proach. We achieve higher correspondence in color to the input
image compared to DIFFER.

Method Car Chair Aero

DIFFER  8.59 12.81 4.69
Ours-CC  8.58 14.19 4.8
Ours-NN  8.09 13.51 4.77

Table 5. Color Metrics. We present the Lo distance between pre-
dicted projections and ground-truth images to evaluate color pre-
diction. We either outperform or perform comparably to the pose
supervised DIFFER approach.

Input Image GT OURS-NN Input Image OURS-NN

@
Figure 6. Failure cases. (a) Points are clustered with very few
points being used for thin structures like the legs of the chair. (b)
Details like car spoilers and complex chair legs/handles are not
accurately reconstructed.

S.No. Layer Fllgzii;ze/ Output Size
Structure Branch
Eg conv 3x3/2 32x32x32
Eg conv 3x3/2 16x16x64
FEgs conv 3x3/2 8x8x128
Egy conv 3x3/2 4x4x256
Dy linear - 128
Do linear - 128
D3 linear - 128
Dy linear - 1024%*3
Color Branch

Ea conv 3x3/2 32x32x32
E. conv 3x3/2 16x16x64
Dy linear - 128
Do linear - 128
D3 linear - 128
D.3 | concat(Dy3, D.3) - 256
Dy linear - 128
Dy linear - 1024%*3

Table 6. Reconstruction Network Architecture. We use dual
branch network architecture for regressing point locations and
color as it is shown to be highly effective [16]

S.No. | Layer Fllgegii‘lize/ Output Size
F conv 3x3/2 32x32x32
FEo conv 3x3/2 16x16x64
Eg3 conv 3x3/2 8x8x128
Egy conv 3x3/2 4x4x256
Dg1 linear - 128
Dy | linear - 128
D3 | linear - 128
D,y | linear - 2

Table 7. Pose Network Architecture. We use an architecture sim-
ilar to reconstruction network except for the output layer. In the
pose prediction network, two values corresponding to azimuth and
elevation parameters of the camera are regressed.



