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Abstract

We propose D3VO as a novel framework for monocu-
lar visual odometry that exploits deep networks on three
levels – deep depth, pose and uncertainty estimation. We
first propose a novel self-supervised monocular depth es-
timation network trained on stereo videos without any ex-
ternal supervision. In particular, it aligns the training im-
age pairs into similar lighting condition with predictive
brightness transformation parameters. Besides, we model
the photometric uncertainties of pixels on the input images,
which improves the depth estimation accuracy and provides
a learned weighting function for the photometric residu-
als in direct (feature-less) visual odometry. Evaluation re-
sults show that the proposed network outperforms state-of-
the-art self-supervised depth estimation networks. D3VO
tightly incorporates the predicted depth, pose and uncer-
tainty into a direct visual odometry method to boost both
the front-end tracking as well as the back-end non-linear
optimization. We evaluate D3VO in terms of monocular vi-
sual odometry on both the KITTI odometry benchmark and
the EuRoC MAV dataset. The results show that D3VO out-
performs state-of-the-art traditional monocular VO meth-
ods by a large margin. It also achieves comparable re-
sults to state-of-the-art stereo/LiDAR odometry on KITTI
and to the state-of-the-art visual-inertial odometry on Eu-
RoC MAV, while using only a single camera.

1. Introduction
Deep learning has swept most areas of computer vision

– not only high-level tasks like object classification, detec-
tion and segmentation [30, 39, 58], but also low-level ones
such as optical flow estimation [12, 65] and interest point
detection and description [11, 13, 79]. Yet, in the field of
Simultaneously Localization And Mapping (SLAM) or Vi-
sual Odometry (VO) which estimates the relative camera
poses from image sequences, traditional geometric-based
approaches [16, 17, 53] still dominate the field. While
monocular methods [16,52] have the advantage of low hard-
ware cost and less calibration effort, they cannot achieve
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Figure 1: We propose D3VO – a novel monocular visual odome-
try (VO) framework which exploits deep neural networks on three
levels: Deep depth (D), Deep pose (T t−1

t ) and Deep uncertainty
(Σ) estimation. D3VO integrates the three estimations tightly into
both the front-end tracking and the back-end non-linear optimiza-
tion of a sparse direct odometry framework [16].

competitive performance compared to stereo [53, 74] or
visual-inertial odometry (VIO) [44, 54, 56, 72], due to the
scale drift [62,77] and low robustness. Recently, there have
been many efforts to address this by leveraging deep neu-
ral networks [48, 68, 80, 83]. It has been shown that with
deep monocular depth estimation networks [26, 27, 43, 78],
the performance of monocular VO is boosted, since deep
networks are able to estimate depth maps with consistent
metric scale by learning a-priori knowledge from a large
amount of data [42].

In this way, however, deep neural networks are only
used to a limited degree. Recent advances of self- and un-
supervised monocular depth estimation networks [26, 86]
show that the poses of the adjacent monocular frames can
be predicted together with the depth. Since the pose esti-
mation from deep neural networks shows high robustness,
one question arises: Can the deep-predicted poses be em-
ployed to boost traditional VO? On the other hand, since
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SLAM/VO is essentially a state estimation problem where
uncertainty plays an important role [19, 63, 69] and mean-
while many learning based methods have started estimating
uncertainties, the next question is, how can we incorporate
such uncertainty-predictions into optimization-based VO?

In this paper, we propose D3VO as a framework for
monocular direct (feature-less) visual VO that exploits self-
supervised monocular depth estimation network on three
levels: deep depth, pose and uncertainty estimation, as
shown in Fig. 1. To this end, we first propose a purely
self-supervised network trained with stereo videos. The
proposed self-supervised network predicts the depth from a
single image with DepthNet and the pose between two ad-
jacent frames with PoseNet. The two networks are bridged
by minimizing the photometric error originated from both
static stereo warping with the rectified baseline and tem-
poral warping using the predicted pose. In this way, the
temporal information is incorporated into the training of
depth, which leads to more accurate estimation. To deal
with the inconsistent illumination between the training im-
age pairs, our network predicts the brightness transforma-
tion parameters which align the brightness of source and
target images during training on the fly. The evaluation on
the EuRoC MAV dataset shows that the proposed brightness
transformation significantly improves the depth estimation
accuracy. To integrate the deep depth into VO system, we
firstly initialize every new 3D point with the predicted depth
with a metric scale. Then we adopt the virtual stereo term
proposed in Deep Virtual Stereo Odometry (DVSO) [78] to
incorporate the predicted pose into the non-linear optimiza-
tion. Unlike DVSO which uses a semi-supervised monoc-
ular depth estimation network relying on auxiliary depth
extracted from state-of-the-art stereo VO system [74], our
network uses only stereo videos without any external depth
supervision.

Although the illumination change is explicitly modeled,
it is not the only factor which may violate the bright-
ness constancy assumption [40]. Other factors, e.g., non-
Lambertian surfaces, high-frequency areas and moving ob-
jects, also corrupt it. Inspired by the recent research on
aleatoric uncertainty by deep neural networks [35, 40], the
proposed network estimates the photometric uncertainty as
predictive variance conditioned on the input image. As a
result, the errors originated from pixels which are likely
to violate the brightness constancy assumption are down-
weighted. The learned weights of the photometric residuals
also drive us to the idea of incorporating it into direct VO
– since both the self-supervised training scheme and the di-
rect VO share a similar photometric objective, we propose
to use the learned weights to replace the weighting function
of the photometric residual in traditional direct VO which is
empirically set [61] or only accounts for the intrinsic uncer-
tainty of the specific algorithm itself [16, 37].

Robustness is one of the most important factors in de-
signing VO algorithm. However, traditional monocular vi-
sual VO suffers from a lack of robustness when confronted
with low textured areas or fast movement [72]. The typical
solution is to introduce an inertial measurement unit (IMU).
But this increases the calibration effort and, more impor-
tantly, at constant velocity, IMUs cannot deliver the metric
scale in constant velocity [50]. We propose to increase the
robustness of monocular VO by incorporating the estimated
pose from the deep network into both the front-end tracking
and the back-end non-linear optimization. For the front-
end tracking, we replace the pose from the constant veloc-
ity motion model with the estimated pose from the network.
Besides, the estimated pose is also used as a squared regu-
larizer in addition to direct image alignment [66]. For the
back-end non-linear optimization, we propose a pose en-
ergy term which is jointly minimized with the photometric
energy term of direct VO.

We evaluate the proposed monocular depth estima-
tion network and D3VO on both KITTI [25] and EuRoC
MAV [5]. We achieve state-of-the-art performances on both
monocular depth estimation and camera tracking. In par-
ticular, by incorporating deep depth, deep uncertainty and
deep pose, D3VO achieves comparable results to state-of-
the-art stereo/LiDAR methods on KITTI Odometry, and
also comparable results to the state-of-the-art VIO methods
on EuRoC MAV, while being a monocular method.

2. Related Work
Deep learning for monocular depth estimation. Su-

pervised learning [15, 43, 45] shows great performance on
monocular depth estimation. Eigen et al. [14, 15] pro-
pose to use multi-scale CNNs which directly regresses the
pixel-wise depth map from a single input image. Laina
et al. [43] propose a robust loss function to improve the
estimation accuracy. Fu et al. [24] recast the monocular
depth estimation network as an ordinal regression prob-
lem and achieve superior performance. More recent works
start to tackle the problem in a self- and unsupervised
way by learning the depth map using the photometric er-
ror [27, 28, 49, 73, 81, 82, 86] and adopting differentiable
interpolation [32]. Our self-supervised depth estimation
network builds upon MonoDepth2 [26] and extends it by
predicting the brightness transformation parameters and the
photometric uncertainty.

Deep learning for uncertainty estimation. The uncer-
tainty estimation of deep learning has recently been inves-
tigated in [35, 36] where two types of uncertainties are
proposed. Klodt et al. [40] propose to leverage the con-
cept of aleatoric uncertainty to estimate the photometric and
the depth uncertainties in order to improve the depth esti-
mation accuracy. However, when formulating the photo-
metric uncertainty, they do not consider brightness changes



across different images which in fact can be modeled explic-
itly. Our method predicts the photometric uncertainty con-
ditioned on the brightness-aligned image, which can deliver
better photometric uncertainty estimation. Besides, we also
seek to make better use of our learned uncertainties and pro-
pose to incorporate them into traditional VO systems [16].

Deep learning for VO / SLAM. End-to-end learned
deep neural networks have been explored to directly predict
the relative poses between images with supervised [70, 75,
85] or unsupervised learning [46, 73, 82, 86]. Besides pose
estimation, CodeSLAM [2] delivers dense reconstruction
by jointly optimizing the learned prior of the dense geome-
try together with camera poses. However, in terms of pose
estimation accuracy all these end-to-end methods are infe-
rior to classical stereo or visual inertial based VO methods.
Building on the success of deep monocular depth estima-
tion, several works integrate the predicted depth/disparity
map into monocular VO systems [68, 78] to improve per-
formance and eliminate the scale drift. CNN-SLAM [68]
fuses the depth predicted by a supervised deep neural net-
work into LSD-SLAM [17] and the depth maps are refined
with Bayesian filtering, achieving superior performance in
indoor environments [29, 64]. Other works [10, 67] explore
the application of deep neural networks on feature based
methods ,and [34] uses Generative Adversarial Networks
(GANs) as an image enhancement method to improve the
robustness of VO in low light. The most related work to
ours is Deep Virtual Stereo Odometry (DVSO). DVSO pro-
poses a virtual stereo term that incooperates the depth es-
timation from a semi-supervised network into a direct VO
pipeline. In particular, DVSO outperforms other monocular
VO systems by a large margin, and even achieves compa-
rable performance to state-of-the-art stereo visual odometry
systems [53, 74]. While DVSO merely leverages the depth,
the proposed D3VO exploits the power of deep networks on
multiple levels thereby incorporating more information into
the direct VO pipeline.

3. Method
We first introduce a novel self-supervised neural net-

work that predicts depth, pose and uncertainty. The net-
work also estimates affine brightness transformation pa-
rameters to align the illumination of the training images in
a self-supervised manner. The photometric uncertainty is
predicted based on a distribution over the possible bright-
ness values [35, 40] for each pixel. Thereafter we introduce
D3VO as a direct visual odometry framework that incorpo-
rates the predicted properties into both the tracking front-
end and the photometric bundle adjustment backend.

3.1. Self-supervised Network

The core concept of the proposed monocular depth es-
timation network is the self-supervised training scheme

Figure 2: Examples of point clouds and trajectories delivered by
D3VO on KITTI Odometry Seq. 00, EuRoC MH 05 difficult and
V1 03 difficult. The insets on EuRoC show the scenarios with low
illumination and motion blur which are among the main reasons
causing failures of traditional purely vision-based VO systems.

which simultaneously learns depth with DepthNet and mo-
tion with PoseNet using video sequences [26,86]. The self-
supervised training is realized by minimizing the minimum
of the photometric re-projection errors between the tempo-
ral and static stereo images:

Lself =
1

|V |
∑
p∈V

min
t′
r(It, It′→t). (1)

where V is the set of all pixels on It and t′ is the index of
all source frames. In our setting It is the left image and
It′ contains its two adjacent temporal frames and its op-
posite (right) frame, i.e., It′ ∈ {It−1, It+1, Its}. The per-
pixel minimum loss is proposed in Monodepth2 [26] in or-
der to handle the occlusion among different source frames.
To simplify notation, we use I instead of I(p) in the re-
mainder of this section. It′→t is the sythesized It by warp-
ing the temporal stereo images with the predicted depth Dt,
the camera pose Tt′

t , the camera intrinsics K, and the dif-
ferentialble bilinear sampler [32]. Note that for Its→t, the
transformation Tts

t is known and constant. DepthNet also
predicts the depth map Dts of the right image Its by feed-
ing only the left image It as proposed in [27]. The training
of Dts requires to synthesize It→ts and compare with Its .
For simplicity, we will in the following only detail the loss
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Figure 3: Examples of affine brightness transformation on EuRoC
MAV [5]. Originally the source image (It′ ) and the target image
(It) show different brightness. With the predicted parameters a, b,
the transformed target images Ia

′,b′ have similar brightness as the
source images, which facilitates the self-supervised training based
on the brightness constancy assumption.

regarding the left image.
The common practice [27] is to formulate the photomet-

ric error as
r(Ia, Ib) =

α

2
(1−SSIM(Ia, Ib))+(1−α)||Ia−Ib||1 (2)

based on the brightness constancy assumption. However,
it can be violated due to illumination changes and auto-
exposure of the camera to which both L1 and SSIM [76] are
not invariant. Therefore, we propose to explicitly model the
camera exposure change with predictive brightness trans-
formation parameters.

Brightness transformation parameters. The change of
the image intensity due to the adjustment of camera expo-
sure can be modeled as an affine transformation with two
parameters a, b

Ia,b = aI + b. (3)

Despite its simplicity, this formulation has been shown to be
effective in direct VO/SLAM, e.g., [16, 18, 33, 74], which
builds upon the brightness constancy assumption as well.
Inspired by these works, we propose predicting the transfor-
mation parameters a, b which align the brightness condition
of It with It′ . We reformulate Eq. (1) as

Lself =
1

|V |
∑
p∈V

min
t′
r(I

at′ ,bt′
t , It′→t) (4)

with
I
at′ ,bt′
t = at→t′It + bt→t′ , (5)

where at→t′ and bt→t′ are the transformation parameters
aligning the illumination of It to It′ . Note that both param-
eters can be trained in a self-supervised way without any
supervisional signal. Fig. 3 shows the affine transformation
examples from EuRoC MAV [5].

Photometric uncertainty. Only modeling affine bright-
ness change is not enough to capture all failure cases of
the brightness constancy assumption. Other cases like non-
Lambertian surfaces and moving objects, are caused by the
intrinsic properties of the corresponding objects which are
not trivial to model analytically [40]. Since these aspects
can be seen as observation noise, we leverage the concept
of heteroscedastic aleatoric uncertainty of deep neural net-
works proposed by Kendall et al. [35]. The key idea is to

predict a posterior probability distribution for each pixel pa-
rameterized with its mean as well as its variance p(y|ỹ, σ)
over ground-truth labels y. For instance, by assuming the
noise is Laplacian, the negative log-likelihood to be mini-
mized is

− log p(y|ỹ, σ) =
|y − ỹ|
σ

+ log σ + const. (6)

Note that no ground-truth label for σ is needed for train-
ing. The predictive uncertainty allows the network to adapt
the weighting of the residual dependent on the data input,
which improves the robustness of the model to noisy data
or erroneous labels [35].

In our case where the “ground-truth” y are the pixel
intensities on the target images, the network will predict
higher σ for the pixel areas on It where the brightness con-
stancy assumption may be violated. Similar to [40], we im-
plement this by converting Eq. (4) to

Lself =
1

|V |
∑
p∈V

mint′ r(I
at′ ,bt′
t , It′→t)

Σt
+ log Σt, (7)

where Σt is the uncertainty map of It. Fig. 4 shows the
qualitative results of the predicted uncertainty maps on
KITTI [25] and EuRoC [5] datasets, respectively. In the
next section, we will show that the learned Σt is useful for
weighting the photometric residuals for D3VO.

The total loss function is the summation of the self-
supervised losses and the regularization losses on multi-
scale images:

Ltotal =
1

s

∑
s

(Lsself + λLsreg), (8)

where s = 4 is the number of scales and
Lreg = Lsmooth + βLab (9)

with
Lab =

∑
t′

(at′ − 1)2 + b2t′ (10)

is the regularizer of the brightness parameters and Lsmooth
is the edge-aware smoothness on Dt [27].

To summarize, the proposed DepthNet predicts Dt, Dts

and Σt with one single input It. PoseNet predicts Tt′

t ,
at→t′ and bt→t′ with channel-wise concatenated (It, It′)
as the input. Both DepthNet and PoseNet are convolu-
tional networks following the widely used UNet-like archi-
tecture [59]. Please refer to our supplementary materials for
network architecture and implementation details.

3.2. D3VO

In the previous section, we introduced the self-
supervised depth estimation network which predicts the
depth map D, the uncertainty map Σ and the relative pose
Tt′

t . In this section, we will describe how D3VO integrates
these predictions into a windowed sparse photometric bun-
dle adjustment formulation as proposed in [16]. Note that



in the following we use ·̃ denoting the predictions from the
network as D̃, Σ̃ and T̃t′

t to avoid ambiguity.
Photometric energy. D3VO aims to minimize a total

photometric error Ephoto defined as

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj , (11)

where F is the set of all keyframes, Pi is the set of points
hosted in keyframe i, obs(p) is the set of keyframes in
which point p is observable and Epj is the weighted photo-
metric energy term when p is projected onto keyframe j:

Epj :=
∑

p∈Np

wp

∣∣∣∣∣∣∣∣(Ij [p′]− bj)− eaj

eai
(Ii[p]− bi)

∣∣∣∣∣∣∣∣
γ

,

(12)
where N is the set of 8 neighboring pixels of p defined
in [16], a,b are the affine brightness parameters jointly esti-
mated by non-linear optimization as in [16] and || · ||γ is the
Huber norm. In [16], the residual is down-weighted when
the pixels are with high image gradient to compensate small
independent geometric noise [16]. In realistic scenarios,
there are more sources of noise, e.g., reflection [40], that
need to be modeled in order to deliver accurate and robust
motion estimation. We propose to use the learned uncer-
tainty Σ̃ to formulate the weighting function

wp =
α2

α2 +
∣∣∣∣∣∣Σ̃(p)

∣∣∣∣∣∣2
2

, (13)

which may not only depend on local image gradient, but
also on higher level noise pattern. As shown in Fig. 4,
the proposed network is able to predict high uncertainty on
the areas of reflectance, e.g., the windows of the vehicles,
the moving object like the cyclist and the object boundaries
where depth discontinuity occurs.

The projected point position of p′ is given by p′ =
Π(Tj

iΠ
−1(p, dp)), where dp is the depth of the point p in

the coordinate system of keyframe i and Π(·) is the projec-
tion function with the known camera intrinsics. Instead of
randomly initializing dp as in traditional monocular direct
methods [16, 17], we initialize the point with dp = D̃i[p]
which provides the metric scale. Inspired by [78], we intro-
duce a virtual stereo term E†p to Eq. (11)

Ephoto =
∑
i∈F

∑
p∈Pi

λE†p +
∑

j∈obs(p)

Epj

 (14)

with
E†p = wp

∣∣∣∣∣∣I†i [p†]− Ii[p]
∣∣∣∣∣∣
γ
, (15)

I†i [p†] = Ii[Π(Ts
−1Π−1(p†, Dis [p†]))] (16)

with Ts the transformation matrix from the left to the right
image used for training DepthNet and

p† = Π(TsΠ
−1(p, dp)). (17)

The virtual stereo term optimizes the estimated depth dp
from VO to be consistent with the depth predicted by the
proposed deep network [78].

Pose energy. Unlike traditional direct VO ap-
proaches [19, 23] which initialize the front-end tracking for
each new frame with a constant velocity motion model, we
leverage the predicted poses between consecutive frames to
build a non-linear factor graph [41, 47]. Specifically, we
create a new factor graph whenever the newest keyframe,
which is also the reference frame for the front-end track-
ing, is updated. Every new frame is tracked with respect
to the reference keyframe with direct image alignment [66].
Additionally, the predicted relative pose from the deep net-
work is used as a factor between the current frame and the
last frame. After the optimization is finished, we marginal-
ize the last frame and the factor graph will be used for the
front-end tracking of the following frame. Please refer to
our supp. materials for the visualization of the factor graph.

The pose estimated from the tracking front-end is then
used to initialize the photometric bundle adjustment back-
end. We further introduce a prior for the relative keyframe
pose Ti

i−1 using the predicted pose T̃i
i−1. Note that T̃i

i−1
is calculated by concatenating all the predicted frame-to-
frame poses between keyframe i− 1 and i. Let

Epose =
∑

i∈F−{0}

Log(T̃i
i−1T

i−1
i )>Σ−1

ξ̃i
i−1

Log(T̃i
i−1T

i−1
i ),

(18)
where Log: SE(3)→ R6 maps from the transformation ma-
trix T ∈ R4×4 in the Lie group SE(3) to its correspond-
ing twist coordinate ξ ∈ R6 in the Lie algebra se(3). The
diagonal inverse covariance matrix Σ−1

ξ̃i
i−1

is obtained by

propagating the covariance matrix between each consecu-
tive frame pairs that is modeled as a constant diagonal ma-
trix.

The total energy function is defined as
Etotal = Ephoto + wEpose. (19)

Including the pose prior termEpose in Eq. 19 can be con-
sidered as an analogy to integrating the pre-integrated IMU
pose prior into the system with a Gaussian noise model.
Etotal is minimized using the Gauss-Newton method. To
summarize, we boost the direct VO method by introduc-
ing the predicted poses as initializations to both the tracking
front-end and the optimization backend, as well as adding
them as a regularizer to the energy function of the photo-
metric bundle adjustment.

4. Experiments

We evaluate the proposed self-supervised monocular
depth estimation network as well as D3VO on both the
KITTI [25] and the EuRoC MAV [5] datasets.



RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Approach Train lower is better higher is better
MonoDepth2 [27] MS 4.750 0.196 0.106 0.818 0.874 0.957 0.979
Ours, uncer MS 4.532 0.190 0.101 0.772 0.884 0.956 0.978
Ours, ab MS 4.650 0.193 0.105 0.791 0.878 0.957 0.979
Ours, full MS 4.485 0.185 0.099 0.763 0.885 0.958 0.979
Kuznietsov et al. [42] DS 4.621 0.189 0.113 0.741 0.862 0.960 0.986
DVSO [78] D*S 4.442 0.187 0.097 0.734 0.888 0.958 0.980
Ours MS 4.485 0.185 0.099 0.763 0.885 0.958 0.979

Table 1: Depth evaluation results on the KITTI Eigen split [15]. M: self-supervised monocular supervision; S: self-supervised stereo
supervision; D: ground-truth depth supervison; D*: sparse auxiliary depth supervision. The upper part shows the comparison with the
SOTA self-supervised network Monodepth2 [26] under the same setting and the ablation study of the brightness transformation parameters
(ab) and the photometric uncertainty (uncer). The lower part shows the comparison with the SOTA semi-supervised methods using stereo
as well as depth supervision. Our method outperforms Monodepth2 on all metrics and can also deliver comparable performance to the
SOTA semi-supervised method DVSO [78] that additionally uses the depth from Stereo DSO [74] as sparse supervision signal.

4.1. Monocular Depth Estimation

KITTI. We train and evalutate the proposed self-
supervised depth estimation network on the split of Eigen at
el. [15]. The network is trained on stereo sequences with the
pre-processing proposed by Zhou et al. [86], which gives
us 39,810 training quadruplets, each of which contains 3
(left) temporal images and 1 (right) stereo image, and 4,424
for validation. The upper part of Table 1 shows the com-
parison with Monodepth2 [26] which is the state-of-the-art
method trained with stereo and monocular setting, and also
the ablation study of the proposed brightness transformation
prediction (ab) and the photometric uncertainty estimation
(uncer). The results demonstrate that the proposed depth es-
timation network outperforms Monodepth2 on all metrics.
The ablation studies unveil that the significant improvement
over Monodepth2 comes largely with uncer, possibly be-
cause in KITTI there are many objects with non-Lambertian
surfaces like windows and also objects that move indepen-
dently such as cars and leaves which violate the brightness
constancy assumption. The lower part of the table shows the
comparison to the state-of-the-art semi-supervised methods
and the results show that our method can achieve competi-
tive performance without using any depth supervision.

In Figure 4 we show some qualitative results obtained
from the Eigen test set [15]. From left to right, the original
image, the depth maps and the uncertainty maps are shown
respectively. For more qualitative results and the general-
ization capability on the Cityscapses dataset [8], please re-
fer to our supp. materials.

EuRoC MAV. The EuRoC MAV Dataset [5] is a dataset
containing 11 sequences categorized as easy, medium and
difficult according to the illumination and camera motion.
This dataset is very challenging due to the strong motion
and significant illumination changes both between stereo
and temporal images. We therefore consider it as a nice
test bench for validating the effectiveness of our predic-
tive brightness transformation parameters for depth predic-
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Figure 4: Qualitative results from KITTI and EuRoC MAV. The
original image, the predicted depth maps and the uncertainty maps
are shown from the left to the right, respectively. In particular, the
network is able to predict high uncertainty on object boundaries,
moving objects, highly reflecting and high frequency areas.

RMSE RMSE (log) ARD SRD δ < 1.25

Monodepth2 0.370 0.148 0.102 0.065 0.890
Ours, ab 0.339 0.130 0.086 0.054 0.929
Ours, uncer 0.368 0.144 0.100 0.065 0.892
Ours, full 0.337 0.128 0.082 0.051 0.931

Table 2: Evaluation results of V2 01 in EuRoC MAV [5]. The
performance of monocular depth estimation is boosted largely by
the proposed predictive brightness transformation parameters.

RMSE RMSE (log) ARD SRD δ < 1.25

[28] 0.971 0.396 0.332 0.389 0.420
Ours 0.943 0.391 0.330 0.375 0.438

Table 3: Evaluation results of V2 01 in EuRoC MAV [5] with the
model trained with all MH sequences.

tion. Inspired by Gordon et al. [28] who recently generated
ground truth depth maps for the sequence V2 01 by project-
ing the provided Vicon 3D scans and filtering out occluded
points, we also use this sequence for depth evaluations1.
Our first experiment is set up to be consistent as in [28],
for which we train models with the monocular setting on all

1We thank the authors of [28] to provide the processing code.



MH sequences and test on V2 01 and show the results in
Table 3.

In the second experiment, we use 5 sequences MH 01,
MH 02, MH 04, V1 01 and V1 02 as the training set to
check the performance of our method in a relatively loos-
ened setting. We remove the static frames for training and
this results in 12,691 images of which 11,422 images are
used for training and 1269 images are used for validation.
We train our model with different ablations, as well as Mon-
odepth2 [26] as the baseline. The results in Table 2 show
that all our variations outperform the baseline and, in con-
trast to the case in KITTI, the proposed ab improves the
results on this dataset significantly. Please refer to the supp.
materials for more experiments on ab. In fact, it is worth
noting that the results in Table 3 (trained on one scene MH
and tested on another scene V) are worse than the ones in
Table 2 (trained on both MH and V), which implies that it is
still a challenge to improve the generalization capability of
monocular depth estimation among very different scenarios.

4.2. Monocular Visual Odometry

We evaluate the VO performance of D3VO on both
KITTI Odometry and EuRoC MAV with the network
trained on the splits described in the previous section.

KITTI Odometry. The KITTI Odometry Benchmark
contains 11 (0-10) sequences with provided ground-truth
poses. As summarized in [78], sequences 00, 03, 04, 05,
07 are in the training set of the Eigen split that the proposed
network uses, so we consider the rest of the sequences as the
testing set for evaluating the pose estimation of D3VO. We
use the relative translational (trel) error proposed in [25] as
the main metric for evaluation. Table 4 shows the compari-
son with other state-of-the-art mono (M) as well as stereo
(S) VO methods on the rest of the sequences. We refer
to [78] for the results of the compared methods. Traditional
monocular methods show high errors in the large-scale out-
door scene like the sequences in KITTI due to the scale drift.
D3VO achieves the best performance on average, despite
being a monocular methods as well. The table also contains
the ablation study on the integration of deep depth (Dd),
pose (Dp) and uncertainty (Du). It can be noticed that, con-
sistent with the results in Table 1, the predicted uncertainty
helps a lot on KITTI. We also submit the results on the test-
ing sequences (11-20) to the KITTI Odometry evaluation
server (link). At the time of submission, D3VO outperforms
DVSO and achieves the best monocular VO performance
and comparable to other state-of-the-art LiDAR and stereo
methods.

We further compare D3VO with state-of-the-art end-to-
end deep learning methods and other recent hybrid methods
and show the results in Table 5. Note that here we only show
the results on Seq.09 and 10, since most of the end-to-end
methods only provide the results on these two sequences.

01 02 06 08 09 10 mean

M

DSO [16] 9.17 114 42.2 177 28.1 24.0 65.8
ORB [52] 108 10.3 14.6 11.5 9.30 2.57 37.0

S

S. LSD [18] 2.13 1.09 1.28 1.24 1.22 0.75 1.29
ORB2 [53] 1.38 0.81 0.82 1.07 0.82 0.58 0.91
S. DSO [74] 1.43 0.78 0.67 0.98 0.98 0.49 0.89
Dd 1.16 0.84 0.71 1.01 0.82 0.73 0.88
Dd+Dp 1.15 0.84 0.70 1.03 0.80 0.72 0.87
Dd+Du 1.10 0.81 0.69 1.03 0.78 0.62 0.84
D3VO 1.07 0.80 0.67 1.00 0.78 0.62 0.82

Table 4: Results on our test split of KITTI Odometry. The results
of the SOTA monocular (M) methods are shown as baselines. The
comparison with the SOTA stereo (S) methods shows that D3VO
achieves better average performance than other methods, while be-
ing a monocular VO. We also show the ablation study for the inte-
gration of deep depth(Dd), pose(Dp) as well as uncertainty(Du).

Seq. 09 Seq. 10

E
nd

-t
o-

en
d

UnDeepVO [46] 7.01 10.63
SfMLearner [86] 17.84 37.91
Zhan et al. [82] 11.92 12.45

Struct2Depth [6] 10.2 28.9
Bian et al. [1] 11.2 10.1

SGANVO [21] 4.95 5.89
Gordon et al. [28] 2.7 6.8

H
yb

ri
d

CNN-SVO [48] 10.69 4.84
Yin et al. [80] 4.14 1.70

Zhan et al. [83] 2.61 2.29
DVSO [78] 0.83 0.74

D3VO 0.78 0.62
Table 5: Comparison to other hybrid methods as well as end-to-
end methods on Seq.09 and 10 of KITTI Odometry.

We refer to [28, 78, 83] for the results for the compared
methods. D3VO achieves better performance than all the
end-to-end methods by a notable margin. In general, hy-
brid methods which combine deep learning with traditional
methods deliver better results than end-to-end methods.

EuRoC MAV. As introduced in Sec. 4.1, EuRoC
MAV is very challenging for purely vision-based VO due
to the strong motion and significant illumination changes.
VIO methods [44, 56, 71, 72] dominate this benchmark
by integrating IMU measurements to get a pose or mo-
tion prior and meanwhile estimating the absolute scale.
We compare D3VO with other state-of-the-art monocular
VIO (M+I) as well as stereo VIO (S+I) methods on se-
quences MH 03 medium, MH 05 difficult, V1 03 difficult,
V2 02 medium and V2 03 difficult. All the other sequences
are used for training. We refer to [9] for the results of the
M+I methods. The results of DSO and ORB-SLAM are
shown as baselines. We also show the results from the pro-
posed PoseNet (End-end VO). For the evaluation metric, we
use the root mean square (RMS) of the absolute trajectory
error (ATE) after aligning the estimates with ground truth.
The results in Table 6 show that with the proposed frame-
work integrating depth, pose and uncertainty from the pro-

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Figure 5: Qualitative comparison of the trajectories on MH 05 difficult and V1 03 difficult from EuRoC MAV.

M03 M05 V103 V202 V203 mean

M

DSO [16] 0.18 0.11 1.42 0.12 0.56 0.48
ORB [52] 0.08 0.16 1.48 1.72 0.17 0.72

M
+I

VINS [57] 0.13 0.35 0.13 0.08 0.21 0.18
OKVIS [44] 0.24 0.47 0.24 0.16 0.29 0.28
ROVIO [3] 0.25 0.52 0.14 0.14 0.14 0.24
MSCKF [51] 0.23 0.48 0.24 0.16 0.13 0.25
SVO [22] 0.12 0.16 X X X 0.14+X
VI-ORB [54] 0.09 0.08 X 0.04 0.07 0.07+X
VI-DSO [72] 0.12 0.12 0.10 0.06 0.17 0.11
End-end VO 1.80 0.88 1.00 1.24 0.78 1.14
Dd 0.12 0.11 0.63 0.07 0.52 0.29
Dd+Dp 0.09 0.09 0.13 0.06 0.19 0.11
Dd+Du 0.08 0.09 0.55 0.08 0.47 0.25
D3VO 0.08 0.09 0.11 0.05 0.19 0.10

S+
I VINS [57] 0.23 0.19 0.11 0.10 - 0.17

OKVIS [44] 0.23 0.36 0.13 0.17 - 0.22
Basalt [71] 0.06 0.12 0.10 0.05 - 0.08
D3VO 0.08 0.09 0.11 0.05 - 0.08

Table 6: Evaluation results on EuRoC MAV [5]. We show the re-
sults of DSO and ORB-SLAM as baselines and compare D3VO
with other SOTA monocular VIO (M+I) and stereo VIO (S+I)
methods. Note that for stereo methods, V2 03 difficult is excluded
due to many missing images from one of the cameras [71]. Despite
being a monocular method, D3VO shows comparable results to
SOTA monocular/stereo VIO. The best results among the monoc-
ular methods are shown as black bold and the best among the
stereo methods are shown as blue bold. The ablation study shows
that Dd+Dp delivers large improvement on V1 03 difficult and
V2 03 difficult where the camera motions are very strong.

posed deep neural network, D3VO shows high accuracy as
well as robustness and is able to deliver comparable results
to other state-of-the-art VIO methods with only a single
camera. We also show the ablation study for the integration
of predicted depth (Dd), pose (Dp) and uncertainty (Du)
and the integration of pose prediction improves the perfor-
mance significantly on V1 03 difficult and V2 03 difficult
where violent camera motion occurs.

Figure 5 shows the qualitative comparison of trajectories
obtained from DSO [16], ORB-SLAM [52], visual inertial
DSO [72], the end-to-end predicted poses from our network
and D3VO on the MH 03 and V1 03 sequences. All the 5
methods can deliver fairly good results on MH 05 difficult.
On V1 03 difficult where the motions are stronger and there
are many brightness inconsistencies between temporal and
stereo images, D3VO can still deliver comparable results to
VI-DSO, while using only a single camera.

5. Conclusion
We presented D3VO as a monocular VO method that en-

hances the performance of geometric VO methods by ex-
ploiting the predictive power of deep networks on three lev-
els integrating predictions of monocular depth, photomet-
ric uncertainty and relative camera pose. To this end, we
first introduced a novel self-supervised monocular depth es-
timation network which explicitly addresses the illumina-
tion change in the training set with predictive brightness
transformation parameters. The network achieves state-of-
the-art results on KITTI and EuRoC MAV. The predicted
depth, uncertainty and pose are then incorporated into both
the front-end tracking and back-end non-linear optimiza-
tion of a direct VO pipeline. We systematically evalu-
ated the VO performance of D3VO on the two datasets.
D3VO sets a new state-of-the-art on KITTI Odometry and
also achieves state-of-the-art performance on the challeng-
ing EuRoC MAV, rivaling with leading mono-inertial and
stereo-inertial methods while using only a single camera.
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Supplementary

A. Network Training Details

Both DepthNet and PoseNet are implemented with Py-
Torch [55] and trained on a single Titan X Pascal GPU.
We resize the images to 512 × 256 for both KITTI [25]
and EuRoC MAV [5]. We use ResNet-18 [31] as the en-
coder of DepthNet and it is initialized with ImageNet [60]
pre-trained weights. Note that since EuRoC MAV provides
grayscale images only, we duplicate the images to form 3-
channel inputs. The decoder of DepthNet and the entire
PoseNet are initialized randomly. We use a batch size of
8 and the Adam optimizer [38] with the number of epochs
20 and 40 for KITTI and EuRoC MAV, respectively. The
learning rate is set to 10−4 initially and decreased to 10−5

for the last 5 epochs.
The predicted brightness transformation parameters are

the same for the 3 channels of the input images. We mask
out the over-exposure pixels when applying affine bright-
ness transformation, since we found they negatively affect
the estimation of the brightness parameters. Engel et al.
also find similar issues in [18].

For the total loss function

Ltotal =
1

s

∑
s

(Lsself + λsLsreg), (20)

we use s = 4 output scales with and λs = 10−3 × 1
2s−1 .

For the regularization
Lreg = Lsmooth + βLab (21)

with
Lsmooth =

∑
p∈V
|∇xDt| e−|∇xIt| + |∇yDt| e−|∇yIt| (22)

and

Lab =
∑
t′

(at′ − 1)2 + b2t′ , (23)

we set β = 10−2.

B. Network Architectures

DepthNet. We adopt ResNet-18 [31] as the encoder
of DepthNet with the implementation from the torchvision
package in PyTorch [55]. The decoder architecture is built
upon the implementation in [26] with skip connections from
the encoder, while the difference is that our final outputs
contain 3 channels including Dt, Ds

t and Σt. Table 7 shows
the detailed architecture of DepthNet decoder.

PoseNet. The architecture of PoseNet is similar to [86]
without the explainability mask decoder. PoseNet takes 2
channel-wise concatenated images as the input and outputs
the relative pose and the relative brightness parameters a
and b. The predicted pose is parameterized with translation
vector and Euler angles.

DepthNet Decoder
layer chns scale input activation
upconv5 256 32 econv5 ELU [7]
iconv5 256 16 ↑upconv5, econv4 ELU
upconv4 128 16 iconv5 ELU
iconv4 128 8 ↑upconv4, econv3 ELU
disp uncer4 3 1 iconv4 Sigmoid
upconv3 64 8 iconv4 ELU
iconv3 64 4 ↑upconv3, econv2 ELU
disp uncer3 3 1 iconv3 Sigmoid
upconv2 32 4 iconv3 ELU
iconv2 32 2 ↑upconv2, econv1 ELU
disp uncer2 3 1 iconv2 Sigmoid
upconv1 16 3 iconv2 ELU
iconv1 16 1 ↑upconv1 ELU
disp uncer1 3 1 iconv1 Sigmoid

Table 7: Network architecture of DepthNet decoder. All layers are
convolutional layers with kernel size 3 and stride 1, and ↑ is 2× 2
nearest-neighbor upsampling. Here chns is the number of output
channels, scale is the downscaling factor relative to the input im-
age. Note that the disp uncer layers have 3-channel outputs that
contain Dt, Ds

t and Σt.

PoseNet
layer k s chns scale input activation
conv1 3 2 16 2 It±1,It ReLU
conv2 3 2 32 4 conv1 ReLU
conv3 3 2 64 8 conv2 ReLU
conv4 3 2 128 16 conv3 ReLU
conv5 3 2 256 32 conv4 ReLU
conv6 3 2 512 64 conv5 ReLU
conv7 3 2 1024 128 conv6 ReLU
avg pool - - 1024 - conv7 -
pose 1 1 6 - avg pool -
a 1 1 1 - avg pool Softplus
b 1 1 1 - avg pool TanH

Table 8: Network architecture of PoseNet. Except for the global
average pooling layer (avg pool), all layers are convolutional lay-
ers with k the kernel size, s the stride, chns the channels and scale
the downscaling factor relative to the input image.

C. Factor Graph of Front-end Tracking

In Figure 6, we show the visualization of the factor
graphs created for the front-end tracking in D3VO. The non-
keyframes are tracked with respect to the reference frame,
which is the latest keyframe in the optimization window
with direct image alignment. With the predicted relative
poses from PoseNet, we also add a prior factor between the
consecutive frames. When the new non-keyframe comes,
the oldest non-keyframe in the factor graph is marginalized.
The figure shows the status of the factor graph for the first
(It), second (It+1) and third non-keyframe (It+2) comes.



marginalizatoin	factorphotometric	factor

�photo

KF	7 It

�photo

KF	7 It It+1

�pose �pose

�photo

KF	7 It+1 It+2

�pose

keyframe	pose non-keyframe	pose deep	pose	factor

Figure 6: Visualization of the factor graph created for the front-
end tracking in D3VO. From left to right are the factor graph when
the first (It), second (It+1) and third (It+2) frame comes after the
newest keyframe, which is the reference frame for the front-end
tracking, is added to the optimization window. The predicted rela-
tive poses from the proposed PoseNet is used as the prior between
the consecutive frames.

avg photometric error
w/o ab 0.10
w/ ab 0.03
w/ ab (LS) 0.07

Table 9: Average photometric errors on V2 03 difficult. We
project the visible 3D points with ground-truth depth of the left
images onto the corresponding right images fo the stereo pairs,
and then calculate the absolute photometric errors. Note that the
intensity values are normalized to [0, 1]. The results show that
by transforming the left images with the predicted ab, the average
photometric error is largely decreased.

D. Additional Experiments on Brightness Parame-
ters

In our main paper, we have shown that the predictive
brightness parameters effectively improve the depth estima-
tion accuracy, especially on EuRoC MAV where the illumi-
nation change is quite strong. To further validate the cor-
rectness of the predicted brightness parameters, we mea-
sure the photometric errors when projecting the pixels from
the source images to the next consecutive images using the
ground-truth depth and poses in V2 03 difficult. An exam-
ple of the ground-truth depth is shown in Figure 7 for which
we use the code from the authors of [28]. We first calcu-
late the photometric errors using the original image pairs
and then calculate the absolute photometric errors by trans-
forming the left images with the predicted parameters from
PoseNet. We also implemented a simple baseline method
to estimate the affine brightness parameters by solving lin-
ear least squares (LS). We formulated the normal equation
with the dense optical flow method [20] implemented in
OpenCV [4]. As shown in Table 9, the average photometric
error is decreased by a large margin when the affine bright-
ness transformation is performed and the predicted param-
eters from PoseNet are better than the ones estimated from
LS. We show more examples of the affine brightness trans-
formation in Figure 9.

Figure 7: An example of the ground-truth depth map of
V2 03 difficult in EuRoC MAV.

01 02 06 08 09 10 mean
ORB2 [53] 21.4 15.0 3.52 11.1 6.34 5.25 10.4
S. DSO [74] 26.5 16.4 3.11 11.0 9.39 3.11 11.6
D3VO 26.9 10.4 2.92 12.7 5.30 2.44 10.1
ORB2 [53] 9.95 9.55 2.45 3.75 3.07 0.99 4.96
S. DSO [74] 5.08 7.82 1.93 3.02 4.31 0.84 3.83
D3VO 1.73 5.43 1.69 3.53 2.68 0.87 2.65

Table 10: Absolute translational error (ATE) as RMSE on KITTI.
The upper part and the lower part show the results w/o and w/
SE(3) alignment, respectively. Note that ATE is very sensitive to
the error occurs at one specific time [84].

0 250 500 750 1000 1250 1500 1750
x [m]

1000

800

600

400

200

0

z [
m

]
w/o SE(3)

D3VO
gt

1000 750 500 250 0 250 500 750
x [m]

400

200

0

200

400

600

z [
m

]

w/ SE(3)

0 250 500 750 1000 1250 1500 1750
x [m]

0

10

20

30

40

50

60

y 
[m

]

w/o SE(3)

1000 750 500 250 0 250 500 750
x [m]

30

20

10

0

10

20

30

y 
[m

]

w/ SE(3)

Figure 8: Trajectories on KITTI 01 to compare between w/o and
w/ SE(3) alignment for the ATE evaluation. The upper part of the
figure shows the trajectories on the x-z plane and the lower part
shows the trajectories on the x-y plane. We can see that less ac-
curate pose estimations for the initial frames may result in a large
overall ATE, if no SE(3) alignment is performed.

E. Absolute Translational Error on KITTI

The evaluation metrics proposed with the KITTI bench-
mark [25] measures the relative pose accuracy. It is impor-
tant to measure the global consistency of the pose estima-
tions. Therefore, we also show the absolute translational er-
ror (ATE) as RMSE in Table 10 where the upper part shows
the evaluation results without the SE(3) alignment and the
lower part shows the results with the SE(3) alignment. For
some sequences, e.g., KITTI 01, the ATE without SE(3)
alignment is very large, while the ATE with SE(3) align-
ment dramatically decreases. The trajectories on KITTI 01
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Figure 9: Examples of affine brightness transformation in
V2 03 difficult from EuRoC MAV.

are shown in Figure. 8 where we can see that the less accu-
rate pose estimations for the initial frames may result in a
large overall ATE.

F. Cityscapes

Figure 10 shows the results on the Cityscapes dataset [8]
with our model trained on KITTI. The results show the gen-
eralization capability of our network on both depth and un-
certainty prediction. In particular, the network can gen-
eralize to predict high uncertainties on reflectance, object
boundaries, high-frequency areas, and moving objects.

Figure 10: Results on Cityscapes with the model trained on KITTI.


