
Learning to Have an Ear for Face Super-Resolution

Givi Meishvili Simon Jenni Paolo Favaro
University of Bern, Switzerland

{givi.meishvili, simon.jenni, paolo.favaro}@inf.unibe.ch

Abstract

We propose a novel method to use both audio and a low-
resolution image to perform extreme face super-resolution
(a 16× increase of the input size). When the resolution of
the input image is very low (e.g., 8 × 8 pixels), the loss of
information is so dire that important details of the origi-
nal identity have been lost and audio can aid the recovery
of a plausible high-resolution image. In fact, audio car-
ries information about facial attributes, such as gender and
age. To combine the aural and visual modalities, we pro-
pose a method to first build the latent representations of a
face from the lone audio track and then from the lone low-
resolution image. We then train a network to fuse these two
representations. We show experimentally that audio can
assist in recovering attributes such as the gender, the age
and the identity, and thus improve the correctness of the
high-resolution image reconstruction process. Our proce-
dure does not make use of human annotation and thus can
be easily trained with existing video datasets. Moreover,
we show that our model builds a factorized representation
of images and audio as it allows one to mix low-resolution
images and audio from different videos and to generate re-
alistic faces with semantically meaningful combinations.

1. Introduction
Image super-resolution is the task of recovering details

of an image that has been captured with a limited resolution.
Typically, the resolution of the input image is increased by
a scaling factor of 4× to 8×. In the more extreme case,
where the scaling factor is 16× or above, the loss of detail
can be so considerable that important semantic information
is lost. This is the case, for example, of images of faces
at an 8 × 8 pixels resolution, where information about the
original identity of the person is no longer discernible. The
information still available in such a low-resolution image is
perhaps the viewpoint and colors of the face and the back-
ground. While it is possible to hallucinate plausible high-
resolution images from such limited information, useful at-
tributes such as the identity or even just the gender or the

(a) (b) (c) (d) (e) (f)
Figure 1: Audio helps image super-resolution. (a) and
(b) are the ground-truth and 16× downsampled images re-
spectively; (c) results of the SotA super-resolution method
of Huang et al. [22]; (d) our super-resolution from only the
low-res image; (e) audio only super-resolution; (f) fusion of
both the low-res image and audio. In these cases all meth-
ods fail to restore the correct gender without audio.

age might be incorrect (see Fig. 1 (a)-(d)).
If the low-resolution image of a face is extracted from a

video, we could also have access to the audio of that person.
Despite the very different nature of aural and visual signals,
they both capture some shared attributes of a person and,
in particular, her identity. In fact, when we hear the voice
of an iconic actor we can often picture his or her face in
our mind. [32] recently showed that such capability can be
learned by a machine as well. The possibility to recover
a full identity is typically limited to a set of known people
(e.g., celebrities). Nonetheless, even when the identity of
a person is completely new, her voice indicates important
facial attributes such as gender, age, and ethnicity. If such
information is not present in the visual data (e.g., with a
low-resolution image), audio could be a benefit to image
processing and, in particular, image super-resolution (see
Fig. 1 (e)-(f)). For example, in videos where the identity of
a speaker is hidden via pixelation, as shown in Fig. 2, audio
could be used to recover a more plausible face than from the
lone low-resolution image.

Therefore, we propose to build a model for face super-
resolution by exploiting both a low-resolution image and its
audio. To the best of our knowledge, this has never been
explored before. A natural way to solve this task is to build
a multimodal network with two encoding networks, one for
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low resolution region of interest
(e.g., due to pixelation)

audio track

super-resolved region of interest
(e.g., depixelation)

image-audio fusion

Figure 2: Pixelation is used to hide the identity of a person
(left). However, audio could assist in recovering a super-
resolved plausible face (right).

the low-resolution image and one for audio, and a decod-
ing network mapping the concatenation of the encoders out-
puts to a high resolution image. In theory, a multi-modal
network should outperform its uni-modal counterparts. In
practice, however, this does not happen with standard net-
works and training strategies, as shown empirically in [46].
According to [46] the performance gap is due to: 1) the
difference between modalities in term of convergence and
over-fitting speeds, 2) The susceptibility of multi-modal ar-
chitectures to over-fitting due to their higher capacity. To
address the above training issues of multi-modal networks,
we propose to train the low-resolution image encoder and
the audio encoder separately, so that their disentanglement
accuracy can be equalized. To this aim, we first train a gen-
erator that starts from a Gaussian latent space and outputs
high resolution images (see Fig. 3). The generator is trained
as in the recent StyleGAN of [24], which produces very
high quality samples and a latent space with a useful hierar-
chical structure. Then, we train a reference encoder to invert
the generator by using an autoencoding constraint. The ref-
erence encoder maps a high-resolution image to the latent
space of the generator, which then outputs an approxima-
tion of the input image. Then, given a matching high/low-
resolution image pair, we pre-train a low-resolution image
encoder to map its input to the same latent representation
of the reference encoder (on the high-resolution image). As
a second step, we train an audio encoder and a fusion net-
work to improve the latent representation of the (fixed) low-
resolution image encoder. To speed up the training of the
audio encoder we also pre-train it by using as latent rep-
resentation the average of the outputs of the reference en-
coder on a high-resolution image and its horizontally mir-
rored version. Thanks to the hierarchical structure of the
latent space learned through StyleGAN, this averaging re-
moves information, such as the viewpoint, that audio cannot
possibly carry. In Section 3, we describe in detail the train-
ing of each of the above models. Finally, in Section 4 we
demonstrate experimentally that the proposed architecture

and training procedure successfully fuses aural and visual
data. We show that the fusion yields high resolution images
with more accurate identities, gender and age attributes than
the reconstruction based on the lone low-resolution image.
We also show that the fusion is semantically meaningful
by mixing low-resolution images and audio from different
videos (see an example in Fig. 3 (b)).
Contributions: Our method builds three models for the fol-
lowing mappings: 1) Audio to high-resolution image; 2)
Low-resolution image to high-resolution image; 3) Audio
and low-resolution image to high-resolution image. The
first mapping was developed concurrently to Speech2Face
[32]. A notable difference is that Speech2Face is trained
using as additional supervision a pre-trained face recogni-
tion network, while our method is fully unsupervised. In
the second mapping, we show in our Experiments section
that we achieve state of the art performance at 16×. In the
last mapping, which is the main novelty of this paper, we
show that our trained model is able to transfer and combine
facial attributes from audio and low-resolution images.1

2. Related Work

General Super-Resolution. Singe Image Super Resolu-
tion (SISR) is a very active research area, which largely
benefitted from the latest developments in deep learning
(see, e.g., [20, 19, 61, 12, 25]). A wide set of instances
of this problem has been addressed, ranging from arbitrary
scale factors [21], to improving the realism of the training
set through accurate modeling [48, 6] or through using real
zoomed-in images [7, 58], to robustness against adversarial
attacks [9] and generalization [63], and to modeling mul-
tiple degradations [56, 16, 58]. Finally, [37, 40] focus on
the evaluation of the image quality in SISR. Advances in
general super-resolution have also been largely driven by
the introduction of task-specific network architectures and
components (see e.g., [60, 29, 1, 43, 59, 23, 47, 18, 17, 27,
30, 45, 11, 50, 36, 54, 31]). In our method, we do not rely on
task-specific architectures, although we leverage the design
of a state-of-the-art generative model [24].
Face Super-Resolution. The face super-resolution prob-
lem has been tackled with a wide variety of approaches.
For example, Huang et al. [22] trained a CNN to regress
wavelet coefficients of HR faces and Yu et al. [53] intro-
duced a transformative discriminative autoencoder to super-
resolve unaligned and noisy LR face images. More in gen-
eral, recent methods addressed the problem by using addi-
tional supervision, for example, in the form of facial land-
marks, heat-maps or the identity label, and multi-task learn-
ing (e.g., [4, 51, 8, 55, 52]). In contrast, by using videos
with corresponding audio tracks our method does not rely

1Our code and pre-trained models are available at
https://gmeishvili.github.io/ear for face super resolution/index.html.

https://gmeishvili.github.io/ear_for_face_super_resolution/index.html
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Figure 3: Simplified training and operating scheme of the proposed model. The model can be used (a) with matching inputs
or (b) by mixing low-resolution images with audios from other videos. The low-resolution image (8 × 8 pixels) is fed to a
low-resolution encoder El to obtain an intermediate latent representation. A residual is computed by fusing in the network
F the encoded audio track (through the audio encoder Ea) with the encoded low-resolution image. The residual is used to
update the latent representation of the low-resolution image and then produce the high-resolution image through the generator
G. The images to the right are actual outputs of our trained model.

on additional human annotation and thus its training can
scale more easily to large datasets.
GAN-Based Super-Resolution. Many general super-
resolution methods also make use of adversarial training
(see, e.g., [28, 34, 5, 57]). Several super-resolution methods
based on Generative Adversarial Networks (GANs) [15] fo-
cus specifically on faces [4, 8, 52, 49]. Our work also relies
on the use of a GAN to learn a face specific prior. However,
our approach builds a more general generative network that
combines low-resolution images and audio (see Fig. 3).
Use of Audio in Vision Tasks. The use of audio in com-
bination with video has received a lot of attention recently
(see, e.g., [41, 64]). Audio and video have been combined
to learn to localize objects or events [2, 44], to learn how
to separate audio sources [33, 62, 14, 13], to learn the as-
sociation between sound and object geometry and materials
[42], and to predict body dynamics [39]. A significant body
of work has also been devoted to the mapping of audio to
visual information (see, e.g., [32] and references therein).
However, to the best of our knowledge we are the first to
combine audio and images for an image restoration task.

3. Extreme Face Super-Resolution with Audio

Our goal is to design a model that is able to generate high
resolution images based on a (very) low resolution input im-
age and an additional audio signal. The dataset is therefore
given by D =

{
(xhi , x

l
i, ai) | i = 1, . . . , n

}
where xhi is the

high-resolution image, xli is the low-resolution image and
ai is a corresponding audio signal. Our model consists of
several components: a low-resolution encoder El, an audio
encoderEa, a fusion network F and a face generatorG. An
overview of the complete architecture is given in Fig. 3.

3.1. Combining Aural and Visual Signals

As mentioned in the Introduction, a natural choice to
solve our task is to train a feedforward network to match the
ground truth high resolution image given its low-resolution
image and audio signal. Experimentally, we found that such
a system tends to ignore the audio signal and to yield a
one-to-one mapping from a low-resolution to a single high-
resolution image. We believe that this problem is due to
the different nature of the aural and visual signals, and the
choice of the structure of the latent space. The fusion of
both signals requires mapping their information to a com-
mon latent space through the encoders. However, we find
experimentally that the audio signal requires longer pro-
cessing and more network capacity to fit the latent space
(this is also observed in [46]). This fitting can also be ag-
gravated by the structure of the latent space, which might
be biased more towards images than audio. Ideally, the
low-resolution image should only condition the feedfor-
ward network to produce the most likely corresponding
high-resolution output and the audio signal should intro-
duce some local variation (i.e., modifying the gender or the
age of the output). Therefore, for the fusion to be effec-



tive it would be useful if the audio could act on some fixed
intermediate representation from the low-resolution image,
where face attributes present in the audio are disentangled.

For these reasons we opted to pre-train and fix the gen-
erator of a StyleGAN [24] and then to train encoders to au-
toencode the inputs by using the generator as a decoder net-
work. StyleGAN generators have been shown to produce
realistic high resolution images along with a good disen-
tanglement of some meaningful factors of variation in the
intermediate representations. Such models should therefore
act as good priors for generating high resolution face images
and the disentangled intermediate representations should al-
low better editing based on the audio signal. Formally,
we learn a generative model of face images G(z), where
z ∼ N (0, Id), by optimizing the default non-saturating loss
of StyleGAN (see [24] for details).

3.2. Inverting the Generator

Our goal is that the fusion of the information provided by
the low-resolution image and audio track results in a recon-
struction that is close to the corresponding high resolution
image. We pose this task as that of mapping an image x to
its latent space target z, such thatG(z) = x. In other words,
we need to invert the pre-trained generatorG. Recently, this
problem has attracted the attention of the research commu-
nity [3]. In this paper, we introduce a novel GAN inversion
approach, where we first pre-train the encoder Eh while the
generator is fixed, and then we train both the encoder Eh

and the generator G (fine-tuning) through an autoencoding
constraint and by anchoring the weights of G to its initial
values through an L2 loss. Then, the latent representation
zi corresponding to the image xi can be generated by the
encoderEh, and used as a target by the encoders of the low-
resolution images and the audio, and the fusion network.
Encoder Pre-Training. As a first step we train a high-
resolution image encoder by minimizing the loss

Lpre-train =

n∑
i=1

∣∣G(zi)− xhi
∣∣
1

+ λf `feat
(
G(zi), x

h
i

)
, (1)

only with respect to Eh, where zi = Eh(xhi ), `feat is a
perceptual loss based on VGG features (see Supplementary
material for more details), and λf = 1 is a coefficient that
regulates the importance of `feat relative to the L1 loss. We
found that regressing a single zi is not sufficient to recover a
good approximation of xhi . In the original style-based gen-
erator [24] each zi is mapped to a vector wi, which is then
replicated and inserted at k different layers of the generator
(each corresponding to different image scales). To improve
the high-resolution reconstruction, we instead generate k
different zij , j = 1, . . . , k, and feed the resulting wij to
the corresponding layers in the generator. The output of Eh

therefore lies in Rk×d. Note that this is not too dissimilar

Figure 4: Examples of generator inversions. Top row: In-
put images to the autoencoders. Bottom row: Autoencoding
results with a fixed pre-trained generator (see eq. (1)). Mid-
dle row: Autoencoding results with our fine-tuned generator
(see eq. (2)).

from the training of the style-based generator, where the w-
s of different images are randomly mixed at different scales.

Encoder and Generator Fine-Tuning. This second opti-
mization problem can be written as

min
Eh,G
Lpre-train + λt |Ginit −G|22 , (2)

where λt = 1 is a coefficient that regulates how much G
can be updated, and Ginit denotes the weights of G after
StyleGAN training. Moreover, during training we relax the
regularizer of the weights ofG by reducing λt by a factor of
2 as soon as the overall loss is minimized (locally). The pur-
pose of the pre-training and the regularizer decay procedure
is to encourage a gradual convergence of both the encoder
and the decoder without losing prematurely the structure of
the latent representation of G. Examples of inversions be-
fore and after the fine-tuning are shown in Fig. 4. There is a
visible improvement in the reconstruction accuracy of both
the face and the background. Quantitative results are shown
in the Experiments section.

3.3. Pre-Training Low-Res and Audio Encoders

Given the high-resolution image encoder, we now have
targets zi for the low-resolution and audio fusion. How-
ever, the training of a fusion model directly on these targets
runs into some difficulties. As mentioned before, we find
experimentally that, given enough capacity, a fusion model
F (xli, ai) trained to predict zi = Eh(xhi ), ignores the au-
dio signal ai almost completely. To address this degenerate
behavior, we train two encodersEl andEa separately to ex-
tract as much information from the two modalities as pos-
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Figure 5: Illustration of how we compute the targets for
the audio encoder pre-training. We feed a high-resolution
training image and its horizontally flipped version through
the high-resolution encoder. The resulting latent codes are
then averaged and used as targets. Because of the hierarchi-
cal structure of the latent space of StyleGAN, the averaged
latent code produces a face in neutral frontal facing pose.

sible and only later fuse them. To ensure that neither of the
two encoders can overfit the whole training setD we extract
the subset Dpre =

{
(xhi , x

l
i, ai) | i = 1, . . . , n/2

}
for the

encoders pre-training and use the entire D only for the later
fusion training. The low-resolution encoder El is trained to
regress the high-resolution encodings zi = Eh(xhi ) from xli
by solving

min
El

∑
xl
i,x

h
i ∈Dpre

∣∣El

(
xli
)
− zi

∣∣
1

+ λ
∣∣D ◦G (El

(
xli
))
− xli

∣∣
1
,

(3)

where D ◦ x is the 16× downsampling of x and λ = 40.
In the case of the audio encoding, regressing all the in-

formation in zi with Ea(ai) is not possible without over-
fitting, as many of the factors of variation in zi, e.g., the
pose of the face, are not present in ai. To remove the pose
from zi we generate the targets for the audio encoder as
z̄i

.
= 1

2

(
Eh(xhi ) + Eh(x̂hi )

)
, where x̂hi is a horizontally

flipped version of the image xhi . As it turns out, due to
the disentangled representations of G, the reconstruction
G(z̄i) produces a neutral frontal facing version of G(zi)
(see Fig. 5). The audio encoder Ea is finally trained by
solving

min
Ea

∑
ai,xh

i ∈Dpre

|Ea(ai)− z̄i|1 . (4)

3.4. Fusing Audio and Low-Resolution Encodings

We now want to fuse the information provided by the
pre-trained encoders El and Ea. Since the low-resolution
encoder El already provides a good approximation to Eh,
it is reasonable to use it as a starting point for the final
prediction. Conceptually, we can think of El as provid-
ing a zli = El(x

l
i) that results in a canonical face G(zli)

corresponding to the low-resolution image xli. Ambigui-
ties in zli could then possibly be resolved via the use of
audio, which would provide an estimate of the residual
∆zi = zi − zli. We therefore model the fusion mechanism

Figure 6: Selected examples of reconstructions to some of
our ablation experiments. The 8 × 8 pixels low-resolution
inputs are shown in (a) and the corresponding 128×128 pix-
els ground truth images are shown in column (f). In the mid-
dle, we show results for encodings from the high-resolution
encoder Eh in (b), the low-resolution encoder El in (c), the
audio encoder Ea in (d) and from our fusion model F with
the fine-tuned Ea in (e). It is apparent how our integration
of the audio and the low-resolution image is limited by the
accuracy of the encoder for the high resolution image (com-
pare e.g., (b) with (e) and (f) on the third row).

as zfi = El(x
l
i) + F

(
El(x

l
i), Ea(ai)

)
, where F is a sim-

ple fully-connected network acting on the concatenation of
El(x

l
i) and Ea(ai). Since the audio-encoding Ea might be

suboptimal for the fusion, we continue training it along with
F . The limited complexity of the function F prevents the
overfitting to the low-resolution encoding, but provides the
necessary context for the computation of ∆zi. To summa-
rize, we train the fusion by optimizing

min
Ea,F

∑
ai,xh

i ,x
l
i∈D

∣∣∣zfi − zi∣∣∣
1

+ λ
∣∣∣D ◦G(zfi )− xli∣∣∣

1
. (5)

4. Experiments
We demonstrate our contributions by evaluating three

models with different input-output mappings: 1) Audio to
high-resolution image; 2) Low-resolution image to high-
resolution image; 3) Audio and low-resolution image to
high-resolution image. In particular, we focus our attention
on the third case as it is the main objective of this paper.

4.1. Dataset

We perform all our experiments on a subset of the Vox-
Celeb2 dataset [10]. The dataset contains over one million
audio tracks extracted from 145K videos of people speak-
ing. For the full training set D we select 104K videos



Figure 7: To demonstrate qualitatively the capabilities of
our audio-to-image model Ea + G we picked several au-
dio tracks and the corresponding generated faces by Oh et
al. [32] from https://speech2face.github.io/
supplemental/retrieve/index.html. Images in
every column are generated from the same audio sources.
The results of Oh et al. [32] are shown on the first row, and
our results are shown on the second row.

with 545K audio tracks and extract around 2M frames at
128 × 128 pixels such that each speaker has at least 500
associated frames. We then extract half of this dataset to
create Dpre in such a way that Dpre and D contain the same
speakers, but Dpre has fewer videos than D. For the test set,
we select 39K frames and 37K utterances from 25K videos
not contained in the training set (again from the same speak-
ers). In the end, we select around 4K speakers out of the 6K
speakers in the full dataset (filtering out speakers with very
few videos and audio tracks). Note that this selection is
purely done to allow the evaluation via a speaker identity
classifier. We call experiments closed set when the training
and test sets share the same set of face identities; instead,
we call them open set when the test set has identities that
were not in the training set.

4.2. Implementation

The style-based generator G is pre-trained on the full
training set D with all hyper-parameters set to their default
values (see [24] for details). It has been trained on a to-
tal of 31 million images. The high-resolution encoder Eh

is trained for 715K iterations and a batch-size of 128 on
the 128× 128 images from D. The low-resolution encoder
El and the audio encoder Ea are trained on Dpre. El is
trained for 240K iterations with a batch-size of 256 and Ea

is trained for 200K iterations and a batch-size of 64. The
inputs xli to El are of size 8× 8 pixels and the inputs to Ea

are the audio log-spectrograms of ai of size 257×257. The
fine-tuning of Ea and the training of the fusion layer F is
performed for 420K iterations onD. We use the Adam opti-
mizer [26] with a fixed learning rate of 10−4 for the training
of all the networks. A detailed description of the network
architectures can be found in the supplementary material.

Table 1: Results of our ablation experiments. We report the
accuracy of an identity classifier Ci and a gender classifier
Cg as well as the error of an age classifier Ca on generated
high-resolution images. All the models in (c)-(h) are trained
using the fine-tuned generator G.

Closed Set Open Set
Ablation Acc Ci Acc Cg Err Ca Acc Ci Acc Cg Err Ca

(a) Eh + fixed G 34.31% 95.60% 3.59 29.42% 92.65% 3.28
(b) Eh + tuned G 71.62% 98.20% 2.85 64.95% 95.14% 2.74

(c) El only 36.47% 95.51% 3.62 15.55% 91.08% 3.76
(d) Ea only 26.06% 97.07% 4.29 0.20% 96.38% 4.85
(e) F1 + tuned Ea 35.91% 95.88% 3.56 15.03% 91.75% 3.64
(f) F + zero Ea 36.95% 95.53% 3.60 15.38% 90.89% 3.73
(g) F + fixed Ea 48.43% 97.17% 3.46 14.57% 92.86% 3.74
(h) F + tuned Ea 51.65% 97.32% 3.31 15.67% 93.11% 3.68

During the training of F we sample one frame and an au-
dio segment (4 seconds) independently (i.e., they are not
synchronized) from the same short video. This forces the
network to learn more general attributes such as gender and
age, rather than characteristics specific to a particular in-
stant in time.

4.3. Audio-Only to High Resolution Face

Although our main objective is to obtain super-resolved
images from the fusion of low-resolution images and
audio, we provide a brief comparison between our
model for face reconstruction from audio (Ea + G) with
Speech2Face [32]. Since the dataset of [32] is not pub-
lic, we perform a qualitative and a quantitative compari-
son based on audio tracks and reconstrucitons by Oh et
al. [32] from https://speech2face.github.io/
supplemental/retrieve/index.html. In Fig. 7
we show the reference faces obtained by Speech2Face and
our output using the same audio tracks. We can see that the
gender and age are matching. In the second evaluation, we
perform gender classification on the output of our audio-to-
image model when given audio from the VoxCeleb dataset
[10] as input. Given a voice of the male or female person,
our Ea +G model generates faces of males and females in
97% and 96% of the cases respectively. The results match
those reported by [32]. Notice that [32] uses supervision
from a classifier during training, while our training is com-
pletely unsupervised.

4.4. Classification as a Performance Measure

To evaluate the capability of our model to recover gen-
der and other identity attributes based on the low-resolution
and audio inputs we propose to use the accuracy of a pre-
trained identity classifier Ci and gender classifier Cg which
achieve an accuracy of 95.25% and 99.53% respectively on
the original high resolution images. To this end, we fine-
tune two VGG-Face CNNs of [35] on the training set D for

https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html


10 epochs on both face attributes. As one can see in Table 1
these classifiers perform well on the test set on both face
attributes. Although we do not have the ground truth age
of our dataset, we use a pre-trained age classifier Ca [38]
as the reference. Then, we measure the performance of our
models by checking the consistency between the classified
age of the input and of the output.
Ablations. We perform ablation experiments to understand
the information retained in the encoders and to justify the
design of our final model. The accuracy of the classifiers
Ci and Cg , as well as the consistency error of Ca, are re-
ported in Table 1 for the following ablation experiments

(a)-(b) The importance of fine-tuning. In (a) we show the
performance after pre-training of Eh without fine-
tuning, and in (b) we show the improvement in per-
formance with the fine-tuning of G as in eq. (2).

(c)-(d) Individual components. Shows the performance
of the individual encoders without fusion. Results
for the low-resolution encoder El and the audio en-
coder Ea should be compared to the reference high-
resolution encoder Eh.

(e)-(h) Fusion strategies. The performance of different fu-
sion strategies is reported. As a reference, we re-
port results of a fusion model F1 with a single fully-
connected layer and fine-tuning of Ea. We compare it
to a more complex fusion network F with three fully-
connected layers when the audio is not used (f), the
audio encoder is fixed (g) and when fine-tuningEa (h).

Ablation (c) and (d) show that Ea is able to predict the cor-
rect gender more often than El. All the fusion approaches
(e)-(h) lead to an improvement in terms of identity predic-
tion over Ea and El alone, thus showing that the informa-
tion from both inputs is successfully integrated. We can ob-
serve that both gender and age can be predicted well even
from unseen identities (i.e., the open-set case). Ablation (f)
vs (h) shows that the method is indeed using information
from the audio signal and the performance increase is not
due to the additional capacity of the fusion network F . Ab-
lation (h) vs (e) justifies the usage of 3 fully-connected lay-
ers instead of only 1. Ablation (h) vs (g) demonstrates that
fine-tuning of the encoder Ea during the training of the fu-
sion network F leads to slight improvements in terms of our
quantitative metrics. Note that the performance of all meth-
ods in Table 1, including the SotA [22], is lower in the open
set experiments than in the closed set ones. This is expected
since all methods are trained only on identities present in the
training set and most likely only a small amount of informa-
tion is shared across identities. The open set experiments
show how much the methods can identify such shared in-
formation, which is a sign of generalization. See also Fig. 6
for qualitative results.

Figure 8: Comparison to other super-resolution methods on
our test set. The first column shows the 8 × 8 pixels in-
puts; the second column shows the output of LapSRN [27];
the third column shows the output of W-SRNet [22]. Our
model is shown in the fourth column. The ground-truth
high-resolution image is shown in the last column.

Comparisons to Other Super-Resolution Methods. We
compare to state-of-the-art super-resolution methods in Ta-
ble 2 and Fig. 8. The standard metrics PSNR and SSIM
along with the accuracy of Ci and Cg , and the errors of Ca

are reported for super-resolved images of our test set. Note
that most methods in the literature are not trained on ex-
treme super-resolution factors of 16×, but rather on factors
of 4×. Therefore, we report the results of one method using
a factor of 4× as a reference for the changes with the 16×
factor. The performance of other 4× super-resolution meth-
ods can be found in our supplementary material. We retrain
the methods of [27] and [22] on our training set, before
evaluating their performance. Notice that although LapSRN
trained on 16× super-resolution performs better in terms of
PSNR and SSIM than our method, the quality of the recov-
ered image is clearly worse (see Fig. 8). This difference in
the quality is instead revealed by evaluating the gender and
identity classification accuracies, and the age classification
error of the restored images. This suggests that while PSNR
and SSIM may be suitable metrics to evaluate reconstruc-
tions with small super-resolution factors, they may not be
suitable to assess the reconstructions in more extreme cases
such as with a factor of 16×.
Editing by Mixing Audio Sources. Our model allows us
to influence the high-resolution output by interchanging the
audio tracks used in the fusion. To demonstrate this capabil-
ity we show examples where we mix a fixed low-resolution
input with several different audio sources in Fig. 10. To also
quantitatively evaluate such mixing, we feed low-resolution



Table 2: Comparison to other general-purpose super-resolution methods at different super-resolution factors. We report
PSNR and SSIM obtained on the test set. Note that the target resolution is fixed at 128× 128 pixels and therefore the inputs
to the 4× method (top row, LapSRN [27]) is 32× 32 pixels, while our model only uses 8× 8 pixels input images.

Closed Set Open Set
Method Factor PSNR SSIM Acc Ci Acc Cg Err Ca PSNR SSIM Acc Ci Acc Cg Err Ca

LapSRN [27] 4× 31.99 0.91 93.83% 99.38% 2.81 31.66 0.91 95.84% 95.37% 2.81

LapSRN [27] 16× 22.75 0.64 5.27% 83.27% 5.16 22.39 0.62 6.80% 79.57% 5.16
W-SRNet [22] 16× 21.55 0.67 34.91% 95.68% 4.28 19.18 0.59 13.54% 89.45% 4.57
Ours 16× 21.64 0.68 51.65% 97.32% 3.31 19.97 0.60 15.67% 93.11% 3.68

Table 3: Agreement of Cg predictions with labels of low-
resolution and audio labels on mixed reconstructions.

Label Source Closed Set Open Set

Audio 10.76% 13.74%
Low-Resolution Image 89.24% 86.26%

Figure 9: Examples of failure cases in our method. The
8 × 8 pixels low-resolution inputs are shown in (a) and the
corresponding 128 × 128 pixels ground truth images are
shown in column (e). In the middle, we show results for
encodings from the high-resolution encoder Eh in (b), the
low-resolution encoder El in (c) and from our fusion model
F with the fine-tuned Ea in (d).

images and audios from persons of different gender and
classify the gender of the resulting high-resolution faces. In
Table 3, we report the accuracy with respect to the ground-
truth gender labels of low-resolution images and audios.
Failure Cases. We observe that failures may correspond
more to the inherent bias presented in the training set than
the training algorithm or network architecture. Failure cases
sometimes happen when the gender can be easily guessed
just from the low-resolution image. Some of the failure
cases are reported in Fig 9.

5. Conclusions
We have introduced a new paradigm for face super-

resolution, where also audio contributes to the restoration

Figure 10: Examples where we mix a given low-resolution
image with different audio sources. The top row shows
the high-resolution images from which we take the audio
track. The first column on the left corresponds to the low-
resolution images used as input. The rest of the images in
the matrix are generated by mixing the low-resolution im-
age from a row with the audio of a column.

of missing details in the low-resolution input image. We
have described the design of a neural network and the cor-
responding training procedure to successfully make use of
the audio signal despite the difficulty of extracting visual
information from it. We have also shown quantitatively that
audio can contribute to improving the accuracy of the iden-
tity as well as the gender and age of the restored face. More-
over, we have shown that it is possible to mix low-resolution
images and audios from different videos and obtain seman-
tically meaningful high resolution images. A fundamental
challenge in this work was the fusion of information from
these very different modalities. As we have shown, valuable
information is present in both. However, we observed that a
naı̈ve end-to-end training tends to ignore audio information.
We conjecture that this problem might be a fundamental is-
sue with current training schemes of neural networks and
its solution could provide insights on how to improve the
training on tasks in general.
Acknowledgements. This work was supported by grants
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