
Deep White-Balance Editing

Mahmoud Afifi1,2 Michael S. Brown1
1Samsung AI Center (SAIC) – Toronto 2York University

{mafifi, mbrown}@eecs.yorku.ca

Input image

Our deep-WB editing results

AW
B

Tu
ng

st
en

 W
B

Sh
ad

e
W

B

Figure 1: Our deep white-balance editing framework produces compelling results and generalizes well to images outside
our training data (e.g., image above taken from an Internet photo repository). Top: input image captured with a wrong WB
setting. Bottom: our framework’s AWB, Incandescent WB, and Shade WB results. Photo credit: M@tth1eu Flickr–CC
BY-NC 2.0.

Abstract

We introduce a deep learning approach to realistically
edit an sRGB image’s white balance. Cameras capture sen-
sor images that are rendered by their integrated signal pro-
cessor (ISP) to a standard RGB (sRGB) color space encod-
ing. The ISP rendering begins with a white-balance pro-
cedure that is used to remove the color cast of the scene’s
illumination. The ISP then applies a series of nonlinear
color manipulations to enhance the visual quality of the fi-
nal sRGB image. Recent work by [3] showed that sRGB
images that were rendered with the incorrect white balance
cannot be easily corrected due to the ISP’s nonlinear ren-
dering. The work in [3] proposed a k-nearest neighbor
(KNN) solution based on tens of thousands of image pairs.
We propose to solve this problem with a deep neural net-
work (DNN) architecture trained in an end-to-end manner

to learn the correct white balance. Our DNN maps an input
image to two additional white-balance settings correspond-
ing to indoor and outdoor illuminations. Our solution not
only is more accurate than the KNN approach in terms of
correcting a wrong white-balance setting but also provides
the user the freedom to edit the white balance in the sRGB
image to other illumination settings.

1. Introduction and related work

White balance (WB) is a fundamental low-level com-
puter vision task applied to all camera images. WB is per-
formed to ensure that scene objects appear as the same color
even when imaged under different illumination conditions.
Conceptually, WB is intended to normalize the effect of the
captured scene’s illumination such that all objects appear as
if they were captured under ideal “white light”. WB is one

1

ar
X

iv
:2

00
4.

01
35

4v
1

 [
cs

.C
V

]
 3

 A
pr

 2
02

0

of the first color manipulation steps applied to the sensor’s
unprocessed raw-RGB image by the camera’s onboard in-
tegrated signal processor (ISP). After WB is performed, a
number of additional color rendering steps are applied by
the ISP to further process the raw-RGB image to its final
standard RGB (sRGB) encoding. While the goal of WB
is intended to normalize the effect of the scene’s illumina-
tion, ISPs often incorporate aesthetic considerations in their
color rendering based on photographic preferences. Such
preferences do not always conform to the white light as-
sumption and can vary based on different factors, such as
cultural preference and scene content [8, 13, 22, 31].

Most digital cameras provide an option to adjust the WB
settings during image capturing. However, once the WB
setting has been selected and the image is fully processed
by the ISP to its final sRGB encoding it becomes challeng-
ing to perform WB editing without access to the original
unprocessed raw-RGB image [3]. This problem becomes
even more difficult if the WB setting was wrong, which re-
sults in a strong color cast in the final sRGB image.

The ability to edit the WB of an sRGB image not only
is useful from a photographic perspective but also can be
beneficial for computer vision applications, such as ob-
ject recognition, scene understanding, and color augmenta-
tion [2,6,19]. A recent study in [2] showed that images cap-
tured with an incorrect WB setting produce a similar effect
of an untargeted adversarial attack for deep neural network
(DNN) models.

In-camera WB procedure To understand the challenge
of WB editing in sRGB images it is useful to review
how cameras perform WB. WB consists of two steps per-
formed in tandem by the ISP: (1) estimate the camera sen-
sor’s response to the scene illumination in the form of
a raw-RGB vector; (2) divide each R/G/B color channel
in the raw-RGB image by the corresponding channel re-
sponse in the raw-RGB vector. The first step of estimat-
ing the illumination vector constitutes the camera’s auto-
white-balance (AWB) procedure. Illumination estimation
is a well-studied topic in computer vision—representative
works include [1, 7–10, 14, 17, 18, 23, 28, 33]. In addi-
tion to AWB, most cameras allow the user to manually se-
lect among WB presets in which the raw-RGB vector for
each preset has been determined by the camera manufac-
turer. These presets correspond to common scene illumi-
nants (e.g., Daylight, Shade, Incandescent).

Once the scene’s illumation raw-RGB vector is defined,
a simple linear scaling is applied to each color channel in-
dependently to normalize the illumination. This scaling op-
eration is performed using a 3× 3 diagonal matrix. The
white-balanced raw-RGB image is then further processed
by camera-specific ISP steps, many nonlinear in nature, to
render the final images in an output-referred color space—

namely, the sRGB color space. These nonlinear operations
make it hard to use the traditional diagonal correction to
correct images rendered with strong color casts caused by
camera WB errors [3].

WB editing in sRGB In order to perform accurate post-
capture WB editing, the rendered sRGB values should
be properly reversed to obtain the corresponding unpro-
cessed raw-RGB values and then re-rendered. This can be
achieved only by accurate radiometric calibration methods
(e.g., [12, 24, 34]) that compute the necessary metadata for
such color de-rendering. Recent work by Afifi et al. [3]
proposed a method to directly correct sRGB images that
were captured with the wrong WB setting. This work pro-
posed an exemplar-based framework using a large dataset
of over 65,000 sRGB images rendered by a software camera
pipeline with the wrong WB setting. Each of these sRGB
images had a corresponding sRGB image that was rendered
with the correct WB setting. Given an input image, their
approach used a KNN strategy to find similar images in
their dataset and computed a mapping function to the corre-
sponding correct WB images. The work in [3] showed that
this computed color mapping constructed from exemplars
was effective in correcting an input image. Later Afifi and
Brown [2] extended their KNN idea to map a correct WB
image to appear incorrect for the purpose of image aug-
mentation for training deep neural networks. Our work is
inspired by [2,3] in their effort to directly edit the WB in an
sRGB image. However, in contrast to the KNN frameworks
in [2, 3], we cast the problem within a single deep learning
framework that can achieve both tasks—namely, WB cor-
rection and WB manipulation as shown in Fig. 1.

Contribution We present a novel deep learning frame-
work that allows realistic post-capture WB editing of sRGB
images. Our framework consists of a single encoder net-
work that is coupled with three decoders targeting the fol-
lowing WB settings: (1) a “correct” AWB setting; (2) an
indoor WB setting; (3) an outdoor WB setting. The first
decoder allows an sRGB image that has been incorrectly
white-balanced image to be edited to have the correct WB.
This is useful for the task of post-capture WB correction.
The additional indoor and outdoor decoders provide users
the ability to produce a wide range of different WB ap-
pearances by blending between the two outputs. This sup-
ports photographic editing tasks to adjust an image’s aes-
thetic WB properties. We provide extensive experiments to
demonstrate that our method generalizes well to images out-
side our training data and achieves state-of-the-art results
for both tasks.

128×128×24

64×64×24 64×64×48

32×32×48 16×16×192

8×8×192
…

8×8×384
16×16×19216×16×384

16×16×192

64×64×48 64×64×96

…

64×64×48

128×128×24
128×128×48

128×128×24

128×128×3

8×8×384
16×16×192

16×16×384 16×16×192

64×64×48

64×64×96

…

64×64×48

128×128×24

128×128×48

128×128×24

128×128×3

Training patches

…

…

Encoder Auto WB
decoder

Shade WB
decoder

Output of 3×3 convolutional layers with stride 1 and padding 1
Output of ReLU layers
Output of 2×2 max-pooling layers with stride 2
Output of 2×2 transposed convolutional layers with stride 2
Output of depth concatenation layers
Output of 1×1 convolutional layer with stride 1 and padding 1

Encoder Selected
decoder

Skip connections

*Skip connections for the shade WB decoder not shown to aid visualization.
Skip connections*

Testing image Auto WB result Incandescent WB result Shade WB result
Trained DNN model

(A)

(B)

White-balanced
patches

Patches with
shade WB

Figure 2: Proposed multi-decoder framework for sRGB WB editing. (A) Our proposed framework consists of a single
encoder and multiple decoders. The training process is performed in an end-to-end manner, such that each decoder “re-
renders” the given training patch with a specific WB setting, including AWB. For training, we randomly select image patches
from the Rendered WB dataset [3]. (B) Given a testing image, we produce the targeted WB setting by using the corresponding
trained decoder.

2. Deep white-balance editing
2.1. Problem formulation

Given an sRGB image, IWB(in) , rendered through an un-
known camera ISP with an arbitrary WB setting WB(in), our
goal is to edit its colors to appear as if it were re-rendered
with a target WB setting WB(t).

As mentioned in Sec. 1, our task can be accomplished
accurately if the original unprocessed raw-RGB image is
available. If we could recover the unprocessed raw-RGB
values, we can change the WB setting WB(in) to WB(t), and
then re-render the image back to the sRGB color space with
a software-based ISP. This ideal process can be described
by the following equation:

IWB(t) = G (F (IWB(in))) , (1)

where F : IWB(in) → DWB(in) is an unknown reconstruction
function that reverses the camera-rendered sRGB image I
back to its corresponding raw-RGB image D with the cur-
rent WB(in) setting applied and G : DWB(in) → IWB(t) is an
unknown camera rendering function that is responsible for
editing the WB setting and re-rendering the final image.

2.2. Method overview

Our goal is to model the functionality of G (F (·)) to
generate IWB(t) . We first analyze how the functions G and

F cooperate to produce IWB(t) . From Eq. 1, we see that the
function F transforms the input image IWB(in) into an inter-
mediate representation (i.e., the raw-RGB image with the
captured WB setting), while the function G accepts this in-
termediate representation and renders it with the target WB
setting to an sRGB color space encoding.

Due to the nonlinearities applied by the ISP’s rendering
chain, we can think of G as a hybrid function that consists
of a set of sub-functions, where each sub-function is respon-
sible for rendering the intermediate representation with a
specific WB setting.

Our ultimate goal is not to reconstruct/re-render the orig-
inal raw-RGB values, but rather to generate the final sRGB
image with the target WB setting WB(t). Therefore, we can
model the functionality of G (F (·)) as an encoder/decoder
scheme. Our encoder f transfers the input image into a la-
tent representation, while each of our decoders (g1, g2, ...)
generates the final images with a different WB setting. Sim-
ilar to Eq. 1, we can formulate our framework as follows:

ÎWB(t) = gt (f (IWB(in))) , (2)

where f : IWB(in) → Z , gt : Z → ÎWB(t) , and Z is an in-
termediate representation (i.e., latent representation) of the
original input image IWB(in) .

Our goal is to make the functions f and gt independent,
such that changing gt with a new function gy that targets a

En
co

de
r

Se
le

ct
ed

 d
ec

od
er

(e
.g

.,
AW

B)

Skip connections

Downsampled image Network output

Input image Final result

Color mapping function

Polynomial fitting

()

Figure 3: We consider the runtime performance of our method to be able to run on limited computing resources (∼1.5 seconds
on a single CPU to process a 12-megapixel image). First, our DNN processes a downsampled version of the input image,
and then we apply a global color mapping to produce the output image in its original resolution. The shown input image is
rendered from the MIT-Adobe FiveK dataset [11].

different WB y does not require any modification in f , as is
the case in Eq. 1.

In our work, we target three different WB settings: (i)
WB(A): AWB—representing the correct lighting of the cap-
tured image’s scene; (ii) WB(T): Tungsten/Incandescent—
representing WB for indoor lighting; and (iii) WB(S):
Shade—representing WB for outdoor lighting. This gives
rise to three different decoders (gA, gT , and gS) that are re-
sponsible for generating output images that correspond to
AWB, Incandescent WB, and Shade WB.

The Incandescent and Shade WB are specifically se-
lected based on the color properties. This can be understood
when considering the illuminations in terms of their corre-
lated color temperatures. For example, Incandescent and
Shade WB settings are correlated to 2850 Kelvin (K) and
7500K color temperatures, respectively. This wide range
of illumination color temperatures considers the range of
pleasing illuminations [26, 27]. Moreover, the wide color
temperature range between Incandescent and Shade allows
the approximation of images with color temperatures within
this range by interpolation. The details of this interpolation
process are explained in Sec. 2.5. Note that there is no
fixed correlated color temperature for the AWB mode, as it
changes based on the input image’s lighting conditions.

2.3. Multi-decoder architecture

An overview of our DNN’s architecture is shown in Fig.
2. We use a U-Net architecture [29] with multi-scale skip
connections between the encoder and decoders. Our frame-
work consists of two main units: the first is a 4-level en-
coder unit that is responsible for extracting a multi-scale
latent representation of our input image; the second unit in-
cludes three 4-level decoders. Each unit has a different bot-
tleneck and transposed convolutional (conv) layers. At the
first level of our encoder and each decoder, the conv layers
have 24 channels. For each subsequent level, the number of
channels is doubled (i.e., the fourth level has 192 channels
for each conv layer).

2.4. Training phase

Training data We adopt the Rendered WB dataset pro-
duced by [3] to train and validate our model. This dataset

(A) Input image (B) Interpolation for the target
color temperature t=3500K

(C) Result image

2850K 7500K

2850 75003500

Figure 4: In addition to our AWB correction, we train our
framework to produce two different color temperatures (i.e.,
Incandescent and Shade WB settings). We interpolate be-
tween these settings to produce images with other color
temperatures. (A) Input image. (B) Interpolation process.
(C) Final result. The shown input image is taken from the
rendered version of the MIT-Adobe FiveK dataset [3, 11].

includes ∼65K sRGB images rendered by different camera
models and with different WB settings, including the Shade
and Incandescent settings. For each image, there is also a
corresponding ground truth image rendered with the correct
WB setting (considered to be the correct AWB result). This
dataset consists of two subsets: Set 1 (62,535 images taken
by seven different DSLR cameras) and Set 2 (2,881 images
taken by a DSLR camera and four mobile phone cameras).
The first set (i.e., Set 1) is divided into three equal parti-
tions by [3]. We randomly selected 12,000 training images
from the first two partitions of Set 1 to train our model. For
each training image, we have three ground truth images ren-
dered with: (i) the correct WB (denoted as AWB), (ii) Shade
WB, and (iii) Incandescent WB. The final partition of Set 1
(21,046 images) is used for testing. We refer to this parti-
tion as Set 1–Test. Images of Set 2 are not used in training
and the entire set is used for testing.

Data augmentation We also augment the training images
by rendering an additional 1,029 raw-RGB images, of the
same scenes included in the Rendered WB dataset [3], but
with random color temperatures. At each epoch, we ran-

domly select four 128×128 patches from each training im-
age and their corresponding ground truth images for each
decoder and apply geometric augmentation (rotation and
flipping) as an additional data augmentation to avoid over-
fitting.

Loss function We trained our model to minimize the L1-
norm loss function between the reconstructed and ground
truth patches:

∑
i

3hw∑
p=1

|PWB(i)(p)−CWB(i)(p)| , (3)

where h and w denote the patch’s height and width, and
p indexes into each pixel of the training patch P and the
ground truth camera-rendered patch C, respectively. The
index i ∈ {A,T,S} refers to the three target WB settings.
We also have examined the squared L2-norm loss function
and found that both loss functions work well for our task.

Training details We initialized the weights of the conv
layers using He’s initialization [20]. The training process is
performed for 165,000 iterations using the adaptive moment
estimation (Adam) optimizer [25], with a decay rate of gra-
dient moving average β1 = 0.9 and a decay rate of squared
gradient moving average β2 = 0.999. We used a learning
rate of 10−4 and reduced it by 0.5 every 25 epochs. The
mini-batch size was 32 training patches per iteration. Each
mini-batch contains random patches selected from training
images that may contain different WB settings. During
training, each decoder receives the generated latent repre-
sentations by our single encoder and generates correspond-
ing patches with the target WB setting. The loss function is
computed using the result of each decoder and is followed
by gradient backpropagation from all decoders aggregated
back to our single encoder via the skip-layer connections.
Thus, the encoder is trained to map the images into an in-
termediate latent space that is beneficial for generating the
target WB setting by each decoder.

2.5. Testing phase

Color mapping procedure Our DNN model is a fully
convolutional network and is able to process input images
in their original dimensions with the restriction that the di-
mensions should be multiples of 24, as we use 4-level en-
coder/decoders with 2×2 max-pooling and transposed conv
layers. However, to ensure a consistent run time for any
sized input images, we resize all input images to a maxi-
mum dimension of 656 pixels. Our DNN is applied on this
resized image to produce image ÎWB(i)↓ with the target WB
setting i ∈ {A,T,S}.

We then compute a color mapping function between our
resized input and output image. Work in [16, 21] evaluated

several types of polynomial mapping functions and showed
their effectiveness to achieve nonlinear color mapping. Ac-
cordingly, we computed a polynomial mapping matrix M
that globally maps values of ψ

(
IWB(in)↓

)
to the colors of our

generated image ÎWB(i)↓, where ψ(·) is a polynomial kernel
function that maps the image’s RGB vectors to a higher 11-
dimensional space. This mapping matrix M can be com-
puted in a closed-form solution, as demonstrated in [2, 3].

Once M is computed, we obtain our final result in the
same input image resolution using the following equation
[3]:

ÎWB(i) = Mψ (IWB(in)) . (4)

Fig. 3 illustrates our color mapping procedure. Our
method requires ∼1.5 seconds on an Intel Xeon E5-1607
@ 3.10GHz machine with 32 GB RAM to process a 12-
megapixel image for a selected WB setting.

We note that an alternative strategy is to compute the
color polynomial mapping matrix directly [30]. We con-
ducted preliminary experiments and found that estimating
the polynomial matrix directly was less robust than generat-
ing the image itself followed by fitting a global polynomial
function. The reason is that having small errors in the esti-
mated polynomial coefficients can lead to noticeable color
errors (e.g., out-of-gamut values), whereas small errors in
the estimated image were ameliorated by the global fitting.

Editing by user manipulation Our framework allows the
user to choose between generating result images with the
three available WB settings (i.e., AWB, Shade WB, and In-
candescent WB). Using the Shade and Incandescent WB,
the user can edit the image to a specific WB setting in terms
of color temperature, as explained in the following.

To produce the effect of a new target WB setting with a
color temperature t that is not produced by our decoders,
we can interpolate between our generated images with the
Incandescent and Shade WB settings. We found that a sim-
ple linear interpolation was sufficient for this purpose. This
operation is described by the following equation:

ÎWB(t) = b ÎWB(T) + (1− b) ÎWB(S) , (5)

where ÎWB(T) and ÎWB(S) are our produced images with In-
candescent and Shade WB settings, respectively, and b is
the interpolation ratio that is given by 1/t−1/t(S)

1/t(T)−1/t(S) . Fig. 4
shows an example.

3. Results
Our method targets two different tasks: post-capture WB

correction and manipulation of the sRGB rendered images
to a specific WB color temperature. We achieve state-of-
the-art results for several different datasets for both tasks.

(A) Input images (B) Quasi-U CC results (C) KNN-WB results (D) Our deep-WB results (E) Ground truth images

E= 13.83 E= 8.12 E= 4.21Rendered WB dataset

Rendered Cube+ dataset E= 10.83 E= 4.12 E= 2.97

Figure 5: Qualitative comparison of AWB correction. (A) Input images. (B) Results of quasi-U CC [9]. (C) Results of
KNN-WB [3]. (D) Our results. (E) Ground truth images. Shown input images are taken from the Rendered WB dataset [3]
and the rendered version of Cube+ dataset [3, 5].

Table 1: AWB results using the Rendered WB dataset [3] and the rendered version of the Cube+ dataset [3,5]. We report the
mean, first, second (median), and third quartile (Q1, Q2, and Q3) of mean square error (MSE), mean angular error (MAE),
and 4E 2000 [32]. For all diagonal-based methods, gamma linearization [4,15] is applied. The top results are indicated with
yellow and boldface.

MSE MAE 4E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Rendered WB dataset: Set 1–Test (21,046 images) [3]

FC4 [23] 179.55 33.89 100.09 246.50 6.14° 2.62° 4.73° 8.40° 6.55 3.54 5.90 8.94
Quasi-U CC [9] 172.43 33.53 97.9 237.26 6.00° 2.79° 4.85° 8.15° 6.04 3.24 5.27 8.11
KNN-WB [3] 77.79 13.74 39.62 94.01 3.06° 1.74° 2.54° 3.76° 3.58 2.07 3.09 4.55
Ours 82.55 13.19 42.77 102.09 3.12° 1.88° 2.70° 3.84° 3.77 2.16 3.30 4.86

Rendered WB dataset: Set 2 (2,881 images) [3]
FC4 [23] 505.30 142.46 307.77 635.35 10.37° 5.31° 9.26° 14.15° 10.82 7.39 10.64 13.77
Quasi-U CC [9] 553.54 146.85 332.42 717.61 10.47° 5.94° 9.42° 14.04° 10.66 7.03 10.52 13.94
KNN-WB [3] 171.09 37.04 87.04 190.88 4.48° 2.26° 3.64° 5.95° 5.60 3.43 4.90 7.06
Ours 124.97 30.13 76.32 154.44 3.75° 2.02° 3.08° 4.72° 4.90 3.13 4.35 6.08

Rendered Cube+ dataset with different WB settings (10,242 images) [3, 5]
FC4 [23] 371.9 79.15 213.41 467.33 6.49° 3.34° 5.59° 8.59° 10.38 6.6 9.76 13.26
Quasi-U CC [9] 292.18 15.57 55.41 261.58 6.12° 1.95° 3.88° 8.83° 7.25 2.89 5.21 10.37
KNN-WB [3] 194.98 27.43 57.08 118.21 4.12° 1.96° 3.17° 5.04° 5.68 3.22 4.61 6.70
Ours 80.46 15.43 33.88 74.42 3.45° 1.87° 2.82° 4.26° 4.59 2.68 3.81 5.53

We first describe the datasets used to evaluate our method
in Sec. 3.1. We then discuss our quantitative and qualitative
results in Sec. 3.2 and Sec. 3.3, respectively. We also per-
form an ablation study to validate our problem formulation
and the proposed framework.

3.1. Datasets

As previously mentioned, we used randomly selected
images from the two partitions of Set 1 in the Rendered WB
dataset [3] for training. For testing, we used the third parti-
tion of Set 1, termed Set 1-Test, and three additional datasets
not part of training. Two of these additional datasets are as
follows: (1) Set 2 of the Rendered WB dataset (2,881 im-

ages) [3], and (2) the sRGB rendered version of the Cube+
dataset (10,242 images) [5]. Datasets (1) and (2) are used
to evaluate the task of AWB correction. For the WB manip-
ulation task, we used the rendered Cube+ dataset and (3) a
rendered version of the MIT-Adobe FiveK dataset (29,980
images) [11]. The rendered version of each dataset of these
datasets is available from the project page associated with
[3]. These latter datasets represent raw-RGB images that
have been rendered to the sRGB color space with different
WB settings. This allows us to evaluate how well we can
mimic different WB settings.

(A) Input images (B) KNN-WB
emulator results

(C) Our deep-WB
results

(D) Target camera
WB

E= 9.49 E= 5.02 Fluorescent WB

E= 8.53 E= 6.30 Shade WB

E= 5.37 E= 4.01 Daylight WB

E= 13.04 E= 6.43 Incandescent WB

Figure 6: Qualitative comparison of WB manipulation. (A)
Input images. (B) Results of KNN-WB emulator [2]. (C)
Our results. (D) Ground truth camera-rendered images with
the target WB settings. In this figure, the target WB set-
tings are Incandescent, Daylight, Shade, and Fluorescent.
Shown input images are taken from the rendered version of
the MIT-Adobe FiveK dataset [3, 11].

3.2. Quantitative results

For both tasks, we follow the same evaluation metrics
used by the most recent work in [3]. Specifically, we used
the following metrics to evaluate our results: mean square
error (MSE), mean angular error (MAE), and 4E 2000
[32]. For each evaluation metric, we report the mean, lower
quartile (Q1), median (Q2), and the upper quartile (Q3) of
the error.

WB correction We compared the proposed method with
the KNN-WB approach in [3]. We also compared our
results against the traditional WB diagonal-correction us-
ing recent illuminant estimation methods [9, 23]. We note
that methods [9, 23] were not designed to correct nonlin-
ear sRGB images. These methods are included, because
it is often purported that such methods are effective when
the sRGB image has been “linearized” using a decoding
gamma.

Table 1 reports the error between corrected images ob-
tained by each method and the corresponding ground truth
images. Table 1 shows results on the Set 1-Test, Set 2, and
Cube+ dataset described earlier. This represents a total
of 34,169 unseen sRGB images by our DNN-model, each
rendered with different camera models and WB settings.
For the diagonal-correction results, we pre-processed each
testing image by first applying the 2.2 gamma lineariza-
tion [4, 15], and then we applied the gamma encoding after
correction. We have results that are on par with the state-of-

the-art method [3] on the Set 1–Test. We achieve state-of-
the-art results in all evaluation metrics for additional testing
sets (Set 2 and Cube+).

WB manipulation The goal of this task is to change the
input image’s colors to appear as they were rendered using
a target WB setting. We compare our result with the most
recent work in [2] that proposed a KNN-WB emulator that
mimics WB effects in the sRGB space. We used the same
WB settings produced by the KNN-WB emulator. Specifi-
cally, we selected the following target WB settings: Incan-
descent (2850K), Fluorescent (3800K), Daylight (5500K),
Cloudy (6500K), and Shade (7500K). As our decoders
were trained to generate only Incandescent and Shade WB
settings, we used Eq. 5 to produce the other WB settings
(i.e., Fluorescent, Daylight, and Cloudy WB settings).

Table 2 shows the obtained results using our method
and the KNN-WB emulator. Table 2 demonstrates that our
method outperforms the KNN-WB emulator [2] over a to-
tal of 40,222 testing images captured with different camera
models and WB settings using all evaluation metrics.

3.3. Qualitative results

In Fig. 5 and Fig. 6, we provide a visual comparison of
our results against the most recent work proposed for WB
correction [3,9] and WB manipulation [2], respectively. On
top of each example, we show the 4E 2000 error between
the result image and the corresponding ground truth image
(i.e., rendered by the camera using the target setting). It is
clear that our results have the lower 4E 2000 and are the
most similar to the ground truth images.

Fig. 7 shows additional examples of our results. As
shown, our framework accepts input images with arbitrary
WB settings and re-renders them with the target WB set-
tings, including the AWB correction.

We tested our method with several images taken from
the Internet to check its ability to generalize to images typ-
ically found online. Fig. 8 and Fig. 9 show examples. As is
shown, our method produces compelling results compared
with other methods and commercial software packages for
photo editing, even when input images have strong color
casts.

3.4. Comparison with a vanilla U-Net

As explained earlier, our framework employs a single en-
coder to encode input images, while each decoder is respon-
sible for producing a specific WB setting. Our architecture
aims to model Eq. 1 in the same way cameras would pro-
duce colors for different WB settings from the same raw-
RGB captured image.

Intuitively, we can re-implement our framework us-
ing a multi-U-Net architecture [29], such that each en-

(A) Input images (B) AWB results (C) Incandescent WB results (D) Fluorescent WB results (E) Shade WB results

Figure 7: Qualitative results of our method. (A) Input images. (B) AWB results. (C) Incandescent WB results. (D)
Fluorescent WB results. (E) Shade WB Results. Shown input images are rendered from the MIT-Adobe FiveK dataset [11].

(C) KNN-WB (D) Our AWB correction(A) Input image (B) Quasi-U CC (E) Our Incandescent WB (F) Our Shade WB

Figure 8: (A) Input image. (B) Result of quasi-U CC [9]. (C) Result of KNN-WB [3]. (D)-(F) Our deep-WB editing results.
Photo credit: Duncan Yoyos Flickr–CC BY-NC 2.0.

coder/decoder model will be trained for a single target of
the WB settings.

In Table 3, we provide a comparison between our pro-
posed framework against vanilla U-Net models. We train
our proposed architecture and three U-Net models (each U-
Net model targets one of our WB settings) for 88,000 itera-
tions. The results validate our design and make evident that
our shared encoder not only reduces the required number of
parameters but also gives better results.

4. Conclusion
We have presented a deep learning framework for edit-

ing the WB of sRGB camera-rendered images. Specifically,
we have proposed a DNN architecture that uses a single en-
coder and multiple decoders, which are trained in an end-to-
end manner. Our framework allows the direct correction of
images captured with wrong WB settings. Additionally, our
framework produces output images that allow users to man-
ually adjust the sRGB image to appear as if it was rendered
with a wide range of WB color temperatures. Quantitative
and qualitative results demonstrate the effectiveness of our
framework against recent data-driven methods.

References
[1] Mahmoud Afifi and Michael S Brown. Sensor independent

illumination estimation for dnn models. In BMVC, 2019. 2
[2] Mahmoud Afifi and Michael S Brown. What else can fool

deep learning? Addressing color constancy errors on deep
neural network performance. In ICCV, 2019. 2, 5, 7, 9

[3] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S
Brown. When color constancy goes wrong: Correcting im-
properly white-balanced images. In CVPR, 2019. 1, 2, 3, 4,
5, 6, 7, 8, 9

[4] Matthew Anderson, Ricardo Motta, Srinivasan Chan-
drasekar, and Michael Stokes. Proposal for a standard default
color space for the Internet - sRGB. In Color and Imaging
Conference, pages 238–245, 1996. 6, 7

[5] Nikola Banić and Sven Lončarić. Unsupervised learning for
color constancy. arXiv preprint arXiv:1712.00436, 2017. 6,
9

[6] Kobus Barnard, Vlad Cardei, and Brian Funt. A comparison
of computational color constancy algorithms: methodology
and experiments with synthesized data. IEEE Transactions
on Image Processing, 11(9):972–984, 2002. 2

[7] Jonathan T Barron. Convolutional color constancy. In ICCV,
2015. 2

Table 2: Results of WB manipulation using the rendered version of the Cube+ dataset [3, 5] and the rendered version of the
MIT-Adobe FiveK dataset [3, 11]. We report the mean, first, second (median), and third quartile (Q1, Q2, and Q3) of mean
square error (MSE), mean angular error (MAE), and 4E 2000 [32]. The top results are indicated with yellow and boldface.

MSE MAE 4E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Rendered Cube+ dataset (10,242 images) [3, 5]

KNN-WB emulator [2] 317.25 50.47 153.33 428.32 7.6° 3.56° 6.15° 10.63° 7.86 4.00 6.56 10.46
Ours 199.38 32.30 63.34 142.76 5.40° 2.67° 4.04° 6.36° 5.98 3.44 4.78 7.29

Rendered MIT-Adobe FiveK dataset (29,980 images) [3, 11]
KNN-WB emulator [2] 249.95 41.79 109.69 283.42 7.46° 3.71° 6.09° 9.92° 6.83 3.80 5.76 8.89
Ours 135.71 31.21 68.63 151.49 5.41° 2.96° 4.45° 6.83° 5.24 3.32 4.57 6.41

(A) Input image (B) Photoshop auto-color
correction

(E) iPhone 8 Plus Photo
app auto-correct

(D) Google Photos
auto-filter

(C) Samsung S10
auto-WB correction

(F) Our deep-WB
correction

Figure 9: Strong color casts due to WB errors are hard to correct. (A) Input image rendered with an incorrect WB setting.
(B) Result of Photoshop auto-color correction. (C) Result of Samsung S10 auto-WB correction. (D) Result of Google Photos
auto-filter. (E) Result of iPhone 8 Plus built-in Photo app auto-correction. (F) Our AWB result using the proposed deep-WB
editing framework. Photo credit: OakleyOriginals Flickr–CC BY 2.0.

Table 3: Average of mean square error and 4E 2000 [32]
obtained by our framework and the traditional U-Net archi-
tecture [29]. Shown results on Set 2 of the Rendered WB
dataset [3] for AWB and the rendered version of the Cube+
dataset [3, 5] for WB manipulation. The top results are in-
dicated with yellow and boldface.

AWB [3] WB editing [3, 5]Method MSE 4E 2000 MSE 4E 2000
Multi-U-Net [29] 187.25 6.23 234.77 6.87
Ours 124.47 4.99 206.81 6.23

[8] Jonathan T Barron and Yun-Ta Tsai. Fast Fourier color con-
stancy. In CVPR, 2017. 2

[9] Simone Bianco and Claudio Cusano. Quasi-unsupervised
color constancy. In CVPR, 2019. 2, 6, 7, 8

[10] Gershon Buchsbaum. A spatial processor model for ob-
ject colour perception. Journal of the Franklin Institute,
310(1):1–26, 1980. 2

[11] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In CVPR, 2011. 4,
6, 7, 8, 9

[12] Ayan Chakrabarti, Ying Xiong, Baochen Sun, Trevor Dar-
rell, Daneil Scharstein, Todd Zickler, and Kate Saenko.
Modeling radiometric uncertainty for vision with tone-
mapped color images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 36(11):2185–2198, 2014. 2

[13] Dongliang Cheng, Abdelrahman Kamel, Brian Price, Scott
Cohen, and Michael S Brown. Two illuminant estimation
and user correction preference. In CVPR, 2016. 2

[14] Dongliang Cheng, Dilip K Prasad, and Michael S Brown.
Illuminant estimation for color constancy: Why spatial-
domain methods work and the role of the color distribution.
JOSA A, 31(5):1049–1058, 2014. 2

[15] Marc Ebner. Color Constancy, volume 6. John Wiley &
Sons, 2007. 6, 7

[16] Graham D Finlayson, Michal Mackiewicz, and Anya Hurl-
bert. Color correction using root-polynomial regression.
IEEE Transactions on Image Processing, 24(5):1460–1470,
2015. 5

[17] Graham D Finlayson and Elisabetta Trezzi. Shades of gray
and colour constancy. In Color and Imaging Conference,
2004. 2

[18] Peter V Gehler, Carsten Rother, Andrew Blake, Tom Minka,
and Toby Sharp. Bayesian color constancy revisited. In
CVPR, 2008. 2

[19] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. Com-
putational color constancy: Survey and experiments. IEEE
Transactions on Image Processing, 20(9):2475–2489, 2011.
2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015. 5

[21] Guowei Hong, M Ronnier Luo, and Peter A Rhodes. A
study of digital camera colorimetric characterisation based
on polynomial modelling. Color Research & Application,
26(1):76–84, 2001. 5

[22] Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang,
and Stephen Lin. Exposure: A white-box photo post-
processing framework. ACM Transactions on Graphics
(TOG), 37(2):26:1–26:17, 2018. 2

[23] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc4: Fully
convolutional color constancy with confidence-weighted
pooling. In CVPR, 2017. 2, 6, 7

[24] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk,
Stephen Lin, and Michael S Brown. A new in-camera imag-
ing model for color computer vision and its application.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 34(12):2289–2302, 2012. 2

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[26] Arie Andries Kruithof. Tubular luminescence lamps for gen-
eral illumination. Philips Technical Review, 6:65–96, 1941.
4

[27] Andrius Petrulis, Linas Petkevičius, Pranciškus Vitta, Ri-
mantas Vaicekauskas, and Artūras Žukauskas. Exploring
preferred correlated color temperature in outdoor environ-
ments using a smart solid-state light engine. The Journal of
the Illuminating Engineering Society, 14(2):95–106, 2018. 4

[28] Yanlin Qian, Joni-Kristian Kamarainen, Jarno Nikkanen, and
Jiri Matas. On finding gray pixels. In CVPR, 2019. 2

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015. 4, 7, 9

[30] Eli Schwartz, Raja Giryes, and Alex M Bronstein. DeepISP:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2018. 5

[31] Michael Scuello, Israel Abramov, James Gordon, and Steven
Weintraub. Museum lighting: Why are some illuminants pre-
ferred? JOSA A, 21(2):306–311, 2004. 2

[32] Gaurav Sharma, Wencheng Wu, and Edul N Dalal.
The CIEDE2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical observa-
tions. Color Research & Application, 30(1):21–30, 2005. 6,
7, 9

[33] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep spe-
cialized network for illuminant estimation. In ECCV, 2016.
2

[34] Ying Xiong, Kate Saenko, Trevor Darrell, and Todd Zickler.
From pixels to physics: Probabilistic color de-rendering. In
CVPR, 2012. 2

