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Abstract

Deep learning (DL) methods have achieved state-of-the-
art performance in the task of single image rain removal.
Most of current DL architectures, however, are still lack
of sufficient interpretability and not fully integrated with
physical structures inside general rain streaks. To this is-
sue, in this paper, we propose a model-driven deep neu-
ral network for the task, with fully interpretable network
structures. Specifically, based on the convolutional dic-
tionary learning mechanism for representing rain, we pro-
pose a novel single image deraining model and utilize the
proximal gradient descent technique to design an itera-
tive algorithm only containing simple operators for solv-
ing the model. Such a simple implementation scheme fa-
cilitates us to unfold it into a new deep network architec-
ture, called rain convolutional dictionary network (RCD-
Net), with almost every network module one-to-one cor-
responding to each operation involved in the algorithm.
By end-to-end training the proposed RCDNet, all the rain
kernels and proximal operators can be automatically ex-
tracted, faithfully characterizing the features of both rain
and clean background layers, and thus naturally lead to
its better deraining performance, especially in real scenar-
ios. Comprehensive experiments substantiate the superior-
ity of the proposed network, especially its well generality
to diverse testing scenarios and good interpretability for all
its modules, as compared with state-of-the-arts both visu-
ally and quantitatively. The source codes are available at
https://github.com/hongwang01/RCDNet.

1. Introduction
Images taken under various rain conditions often suffer

from unfavorable visibility, and always severely affect the
performance of outdoor computer vision tasks, such as ob-
jection tracking [5], video surveillance [37], and pedestrian
detection [31]. Hence, removing rain streaks from rainy
images is an important pre-processing task and has drawn
much research attention in the recent years [39, 26].
†Corresponding author
∗Equal contribution

（c）Illustration of the proposed RCDNet

（a）RCD model for rain layer

（b）Algorithm for solving the proposed model      

Figure 1. (a) Rain convolutional dictionary (RCD) model for rain
layer. (b) The formulated optimization model and the correspond-
ing iterative solution algorithm. (c) Visual illustration of the pro-
posed RCDNet one-to-one corresponding to the algorithm (b).

In the past years, various methods have been proposed
for single image rain removal task. Many researchers made
focus on exploring physical properties of rain layer and
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background layer, and introduced various prior structures to
regularize and separate them. Along this research line, the
representative methods include layer priors with Gaussian
mixture model (GMM) [28], discriminative sparse coding
(DSC) [51], and joint convolutional analysis and synthesis
sparse representation (JCAS) [13]. Especially, inspired by
the fact that rain streaks repeatedly appear at different lo-
cations over a rainy image with similar local patterns like
shape, thickness, and direction, very recently researchers
represented this configuration of rain layer by the convolu-
tional dictionary learning model [15, 16]. Such a represen-
tation finely delivers this prior knowledge by imposing rain
kernels (conveying repetitive local patterns) on sparse rain
maps, as intuitively depicted in Fig. 1 (a). These methods
thus achieved state-of-the-art (SOTA) performance when
the background can also be well represented, e.g., by low-
rank prior in surveillance video sequences [25].

Albeit effective in certain applications, the rationality of
these techniques depends on the subjective prior assump-
tions imposed on the unknown background and rain layers
to be recovered. In real scenarios, however, such learn-
ing regimes could not always adapt to different rainy im-
ages with complex, diverse, and variant structures collected
from different resources. Besides, these methods generally
need time-consuming iterative computations, often with ef-
ficiency issue in real applications.

Driven by the significant success of deep learning (DL)
in low level vision, recent years have also witnessed
the rapid progress of deep convolutional neural networks
(CNN) for single image rain removal [8, 52, 53, 40]. The
current DL-based derainers mainly focus on designing net-
work modules, and then train network parameters based on
abundant rainy/clean image pairs to extract the background
layer. Typical deraining network structures include deep
detail network (DDN) [9], recurrent squeeze-and-excitation
context aggregation module (RESCAN) [27], progressive
image deraining network (PReNet) [35], spatial attentive
unit (SPANet) [41], and many others.

These DL strategies, however, also possess evident de-
ficiencies. The most significant one is their weak inter-
pretability. Network structures are always complicated and
diverse, making it difficult to analyze the role of differ-
ent modules and understand the underlying insights of their
mechanism. Besides, most of them treat CNN as an encap-
sulated end-to-end mapping module without deepening into
the rationality, and neglect the intrinsic prior knowledge of
rain streaks such as sparsity and nonlocal similarity. This
makes this methodology easily trapped into the overfitting-
to-training-sample issue.

To alleviate the aforementioned issues, this paper de-
signs an interpretable deep network, which sufficiently con-
siders the characteristics of rain streaks and attempts to
combine the advantages of the conventional model-driven

prior-based and current data-driven DL-based methodolo-
gies. Specifically, our contributions are mainly three-fold:

Firstly, we propose a concise rain convolutional dictio-
nary (RCD) model for single image by exploiting the in-
trinsic convolutional dictionary learning mechanism to en-
code rain shapes, and specifically adopt the proximal gra-
dient technique [2] to design an optimization algorithm for
solving it. Different from traditional solvers for the RCD
model containing complex operations (e.g., Fourier trans-
formation), the algorithm only contains simple computa-
tions (see Fig. 1 (b)) easy to be implemented by general
network modules. This facilitates our algorithm capable of
being easily unfolded into a deep network architecture.

Secondly, by unfolding the algorithm, we design a new
deep network architecture for image deraining, called RCD-
Net. The specificity of this network lies on its exact step-
by-step corresponding relationship between its modules and
the algorithm operators, and thus successively possesses the
interpretability of all its modules as that of all steps in the al-
gorithm. Specifically, as shown in Fig. 1 (b) and (c), each it-
eration of the algorithm contains two sub-steps, respectively
updating the rain map (convoluted by the learned rain ker-
nels) and background layer, and each stage of the RCDNet
also contains two sub-networks (M-net and B-net). Each
output of the intermediate layer in the network is thus with
clear interpretation, which greatly facilitates a deeper analy-
sis on what happens inside the network during training, and
a comprehensive understanding why the network works or
not (as the analysis presented in Sec. 5.2).

Thirdly, comprehensive experimental results substantiate
the superiority of the RCDNet beyond SOTA conventional
prior-based and current DL-based methods both quantita-
tively and visually. Especially, attributed to its well inter-
pretability, not only the underlying rationality and insights
of the network can be intuitively understood through visu-
alizing the amelioration process (like the gradually rectified
background and rain maps) over all network layers by gen-
eral users, but also the network can yield generally useful
rain kernels for expressing rain shapes and proximal opera-
tors for delivering the prior knowledge of background and
rain maps for a rainy image, facilitating their general avail-
ability to more real-world rainy images.

The paper is organized as follows. Sec. 2 reviews the re-
lated rain removal work. Sec. 3 presents the RCD model for
rain removal as well as the algorithm designed for solving
it. Then Sec. 4 introduces the unfolding deep network for
the algorithm. The experimental results are demonstrated in
Section 5 and the paper is finally concluded.

2. Related work
In this section, we give a brief review on the most related

work on rain removal for images. Depending on the input
data, the existing algorithms can be categorized into two



groups: video based and single image based ones.

2.1. Video deraining methods

Garg and Nayar [10] first tried to analyze the visual
effects of raindrops on imaging systems, and utilized a
space-time correlation model to capture the dynamics of
raindrops and a physics-based motion blur model to il-
lustrate the photometry of rain. For better visual quality,
they further proposed to increase the exposure time or re-
duce the depth of field of a camera [12, 11]. Later, both
temporal and chromatic properties of rain were considered
and then background layer was extracted from rainy video
by utilizing different strategies such as K-means cluster-
ing [55], Kalman filter [33], and GMM [3]. Besides, a
spatio-temporal frequency based raindrop detection method
was provided in [1].

In recent years, researchers introduced more intrinsic
characteristics of rainy video to the task, e.g., similarity
and repeatability of rain streaks [4], low-rankness among
multi-frames [20], and sparsity and smoothness of rain
streaks [18]. To handle heavy rain and dynamic scenes, a
matrix decomposition based video deraining algorithm was
presented in [36]. Afterwards, rain streaks were encoded
as a patch based GMM to adapt a wider range of rain vari-
ations [45]. More characteristics of rain streaks in a rainy
video were explored including repetitive local patterns and
multi-scale configurations and they were described as mul-
tiscale convolutional sparse coding model [25]. More re-
cently, there are some DL-based methods proposed for this
task. Chen et al. [19] presented a CNN architecture and
utilized superpixel to handle torrential rain fall with opaque
streak occlusions. To further improve visual quality, Liu et
al. [30] designed a joint recurrent rain removal and recon-
struction network that integrated rain degradation classifi-
cation, rain removal, and background details reconstruction.
To handle dynamic video contexts, they further developed
a dynamic routing residue recurrent network [29]. Though
these methods work well for videos, they cannot directly
perform in single image cases due to the lack of temporal
knowledge.

2.2. Single image deraining methods

Compared with video deraining task under a sequence
of images, rain removal from a single image is much more
challenging. The early attempts utilized the model-driven
strategies by decomposing a single rainy image into low fre-
quency part (LFP) and high frequency part (HFP) and then
specifically extracted rain layer from the HFP based on var-
ious processing such as guided filter [6, 21] and nonlocal
means filtering [23]. Later, researchers made more focus on
exploring the prior knowledge of rain and rain-free layers
of a rainy image, and designing proper regularizer to extract
and separate them [22, 38, 51, 28, 42, 56]. E.g., [13] consid-

ered the specific sparsity characteristics of rain-free and rain
parts and expressed them as the joint analysis and synthesis
sparse representation models, respectively. [15] used a sim-
ilar manner to deliver local repetitive patterns of rain streaks
across the image as the RCD model. Albeit achieving good
performance on certain scenarios, these prior-based meth-
ods rely on the subjective prior assumptions, while could
not always generally work well for practical complicated
and highly diverse rain shapes in real rainy images collected
from different resources.

Recently, a number of DL-based single image rain streak
removal methods were proposed through constructing di-
verse network modules [8, 9, 27, 52, 53]. To handle
heavy rain, Yang et al. [49] developed a multi-stage joint
rain detection and estimation network for single image
(JORDER E). Very recently, Ren et al. [35] designed a
PReNet that repeatedly unfolded several Resblocks and a
LSTM layer. Wang et al. [41] presented an attention unit
based SPANet for removing rain in a local-to-global man-
ner. Through using abundant rainy/clean image pairs to
train the deep model, these methods achieve favorable vi-
sual quality and SOTA quantitative measures of derained re-
sults. Most of these methods, however, just utilize network
modules assembled with some off-the-shelf components in
current DL toolkits to directly learn background layer in an
end-to-end way, and largely ignore the intrinsic prior struc-
tures inside the rain streaks. This makes them lack of evi-
dent interpretability in their network architectures and still
have room for further performance enhancement.

At present, there is a new type of single image derain-
ers that try to combine prior and DL methodologies. For
example, Mu et al. [32] utilized CNN to implicitly learn
prior knowledge for background and rain streaks, and for-
mulated them into traditional bi-layer optimization itera-
tions. Wei et al. [44] provided a semi-supervised rain re-
moval method (SIRR) that described rain layer prior as a
general GMM and jointly trained the backbone–DDN. Al-
beit obtaining initial success, they still use CNN architec-
tures as their main modules to construct the network, which
is thus still lack of sufficient interpretability.

3. RCD model for single image deraining
3.1. Model formulation

For a observed color rainy image denoted as O ∈
RH×W×3, where H and W are the height and width of the
image, respectively, it can be rationally separated as:

O = B +R, (1)

where B andR represent the background and rain layers of
the image, respectively. Then, the aim of most of DL-based
deraining methods is to estimate the mapping function (ex-
pressed by a deep network) from O to B (orR).



Instead of heuristically constructing a complex deep
network architecture, we first consider the problem un-
der the conventional prior-based methodology through ex-
ploiting the prior knowledge for representing rain streaks
[13, 15, 25]. Specifically, as shown in Fig. 1 (a), by adopt-
ing the RCD mechanism, the rain layer can be modeled as:

Rc =
N∑
n=1

Cc
n ⊗Mn, c = 1, 2, 3, (2)

where Rc denotes the cth color channel of R, and
{Cc

n}n,c ⊂ Rk×k is a set of rain kernels which describes
the repetitive local patterns of rain streaks, and {Mn}n ⊂
RH×W represents the corresponding rain maps represent-
ing the locations where local patterns repeatedly appear.
N is the number of kernels and ⊗ is the 2-dimensional
(2D) convolutional operation. For conciseness, we rewrite
(2) as R =

∑N
n=1 Cn ⊗Mn throughout the paper, where

Cn ∈ Rk×k×3 is the tensor form of Cc
ns and the convolution

is performed between Cn and the matrix Mn one channel by
one channel. Then, we can rewrite the model (1) as:

O = B +

N∑
n=1

Cn ⊗Mn. (3)

It should be noted that the rain kernels actually can be
viewed a set of convolutional dictionary [16] for repre-
senting repetitive and similar local patterns underlying rain
streaks, and a small number of rain kernels can finely repre-
sent wide range of rain shapes1. They are common knowl-
edge for representing different rain types across all rainy
images, and thus could be learned from abundant training
data by virtue of the strong learning capability of end-to-
end training manner of deep learning (see more details in
Sec. 4). Unlike rain kernels, the rain maps must vary with
the input rainy image as the locations of rain streaks are
totally random. Therefore, for predicting the clean image
from a testing input rainy one, the key issue is to output
Mns and B from O with the rain kernels Cns fixed, and the
corresponding optimization problem is:

min
M,B

∥∥∥∥∥O−B−
N∑
n=1

Cn⊗Mn

∥∥∥∥∥
2

F

+αg1(M)+βg2(B), (4)

whereM∈ RH×W×N is the tensor form of Mns. α and β
are trade-off parameters. g1(·) and g2(·) mean the regulariz-
ers to deliver the prior structures of Mn and B, respectively.

3.2. Optimization algorithm

Since we want to build a possibly perfect step-by-
step corresponding deep unfolding network architecture for

1We simply set N = 32 for all our experiments.

solving the problem (4), it is critical to build an algorithm
which contains only simple computations easy to be trans-
formed to network modules. The traditional solvers for
RCD-based model usually contain certain complicated op-
erations, e.g., the Fourier transform and inverse Fourier
transform [16, 46, 25], which are hard to accomplish such
exact transformation from algorithm to network structure.
We thus prefer to build a new algorithm for solving the
problem through alternately updating M and B by proxi-
mal gradient method [2]. In this manner, only simple com-
putations can be involved. The details are as follows:

UpdatingM: The rain mapsM can be updated by solv-
ing the quadratic approximation [2] of the problem (4) as:

min
M

1

2

∥∥∥M−(M(s−1)−η1∇f
(
M(s−1)

))∥∥∥2
F
+ αη1g1 (M) ,

(5)
where M(s−1) is the updating result of the last itera-
tion, η1 is the stepsize parameter, and f

(
M(s−1)) =∥∥∥O−B(s−1)−∑N

n=1 Cn⊗M
(s−1)
n

∥∥∥2
F

. Corresponding to
general regularization terms [7], the solution of Eq. (5) is:

M(s) = proxαη1
(
M(s−1)−η1∇f

(
M(s−1)

))
. (6)

Moreover, by substituting

∇f
(
M(s−1)

)
=C⊗T

(
N∑
n=1

Cn⊗M (s−1)
n +B(s−1)−O

)
, (7)

where C ∈ Rk×k×N×3 is a 4-D tensor stacked by Cns, and
⊗T denotes the transposed convolution2, we can obtain the
updating formula forM as3:

M(s) =

proxαη1

(
M(s−1)−η1C⊗T

(
N∑
n=1

Cn⊗M (s−1)
n +B(s−1)−O

))
,

(8)

where proxαη1(·) is the proximal operator dependent on the
regularization term g1(·) with respect to M. Instead of
choosing a fixed regularizer in the model, the form of the
proximal operator can be automatically learned from train-
ing data. More details will be presented in the next section.

Updating B: Similarly, the quadratic approximation of
the problem (4) with respect to B is:

min
B

1

2

∥∥∥B−(B(s−1)−η2∇h(B(s−1)))∥∥∥2
F
+βη2g2(B) . (9)

where∇h
(
B(s−1)

)
=
∑N
n=1 Cn⊗M

(s)
n +B(s−1)−O, and

it is easy to deduce that the final updating rule for B is3:

B(s)=

proxβη2

(
(1− η2)B(s−1)+η2

(
O−

N∑
n=1

Cn⊗M (s)
n

))
.

(10)

2For any tensor A ∈ RH×W×3, we can calculate the nth channel of
C⊗TA by

∑3
c=1 C{:,:,n,c} ⊗T A{:,:,c}.

3It can be proved that, with small enough η1 and η2, Eq. (8) and Eq.
(10) can both lead to the reduction of objective function (4) [2].



（a）Illustration of the entire RCDNet

（b）The design of a single stage

Residual

Figure 2. (a) The proposed network with S stages. The network takes a rainy image O as input and outputs the learned rain kernel C, rain
mapM, and clean background image B. (b) Illustration of the network architecture at the sth stage. Each stage consists of M-net and B-net
to accomplish the update of rain mapM and background layer B, respectively. The images are better to be zoomed in on screen.

where proxβη2(·) is the proximal operator correlated to the
regularization term g2(·) with respect to B.

Based on this iterative algorithm, we can then construct
our deep unfolding network as follows.

4. The rain convolutional dictionary network
Inspired by the recently raised deep unfolding techniques

in various tasks such as deconvolution [54], compressed
sensing [50], and dehazing [48], we build a network struc-
ture for single image rain removal task by unfolding each
iterative steps of the aforementioned algorithm as the corre-
sponding network module. We especially focus on making
all network modules one-to-one corresponding to the algo-
rithm implementation operators, for better interpretability.

As shown in Fig. 2 (a), the proposed network consists of
S stages, corresponding to S iterations of the algorithm for
solving (4). Each stage achieves the sequential updates of
M and B by M-net and B-net. As displayed in Fig. 2 (b),
exactly corresponding to each iteration of the algorithm, in
each stage of the network, M-net takes the observed rainy
image O and the previous outputs B(s−1) and M(s−1) as
inputs, and outputs an updatedM(s), and then B-net takes
O andM(s) as inputs, and outputs an updated B(s).

4.1. Network design
The key issue of unrolling the algorithm here is how to

represent the two proximal operators involved in (8) and
(10) while other operations can be naturally performed with
generally used operators in normal networks [34]. In this
work, we simply choose a ResNet [14] to construct the two
proximal operators as many other works did [47, 48]. Then,
we can separately decompose the updating rules forM as
(8) and B as (10) into sub-steps and achieve the following

procedures for the sth stage of the RCDNet:

M-net :


R̂(s) = O − B(s−1),

R̃(s) =
∑N
n=1 Cn ⊗M

(s−1)
n ,

E(s) = η1C ⊗T
(
R̃(s) − R̂(s)

)
,

M(s) = proxNet
θ
(s)
m

(
M(s−1) − E(s)

)
,

(11)

B-net :


R(s) =

∑N
n=1 Cn ⊗M

(s)
n ,

B̂(s) = O −R(s),

B(s)=proxNet
θ
(s)
b

(
(1−η2)B(s−1)+η2B̂(s)

)
,

(12)

where proxNet
θ
(s)
m
(·) and proxNet

θ
(s)
b

(·) are two ResNets

consisting of several Resblocks with the parameters θ(s)m and
θ
(s)
b at the sth stage, respectively.

We can then design the network architecture, as shown
in Fig. 2, by transforming the operators in (11) and (12)
step-by-step. All the parameters involved can be automat-
ically learned from training data in an end-to-end manner,
including {θ(s)m , θ

(s)
b }Ss=1, rain kernels C, η1, and η2.

It should be indicated that both of the two sub-networks
are very interpretable. As shown in Fig. 2 (b), the M-net
accomplishes the extraction of residual information E(s) of
rain maps. Specifically, R̂(s) is the rain layer estimated
with the previous background B(s−1), and R̃(s) is the rain
layer achieved by the generative model (2) with the es-
timated M(s−1). Then the M-net calculates the residual
information between the two rain layers obtained in this
two ways, and extracts the residual information E(s) of rain
maps with the transposed convolution of rain kernels to up-
date the rain map. Next, the B-net recovers the background
B̂(s) estimated with current rain kernel and rain mapsM(s),
and fuses this estimated B̂(s) with the previously estimated



B(s−1) by weighted parameters η2 and (1 − η2) to get the
updated background B(s). Here, we setM(0) as 0 and ini-
tialize B(0) by a convolutional operator on O4.

Remark: From Fig. 2, the input tensor of proxNet
θ
(s)
b

(·)
has the same sizeH ×W × 3 as the to-be-estimated B. Ev-
idently, this is not beneficial for learning B since most of the
previous updating information would be compressed due to
few channels. To better keep and deliver image features,
we simply expand the input tensor at the 3rd mode for more
channels in experiments (see more in supplemental file).

4.2. Network training

Training loss. For simplicity, we adopt the mean square
error (MSE) [21] for the learned background and rain layer
at every stage as the training objective function:

L =
S∑
s=0

λs

∥∥∥B(s)−B∥∥∥2
F
+

S∑
s=1

γs

∥∥∥O−B−R(s)
∥∥∥2
F
, (13)

where B(s) and R(s) separately denote the derained result
and extracted rain layer as expressed in (12) at the sth stage
(s = 0, 1, · · · , S). λs and γs are tradeoff parameters5.

Implement details. We implement our network based
on a NVIDIA GeForce GTX 1080Ti GPU. We adopt the
Adam optimizer [24] with the batch size of 16 and the patch
size of 64×64. The initial learning rate is 1×10−3 and di-
vided by 5 every 25 epochs. The total epoch is 100.

5. Experimental results
We first conduct ablation study and model visualization

to verify the underlying mechanism of the proposed net-
work, and then present experiments on synthesized bench-
mark datasets and real datasets for performance evaluation.

5.1. Ablation study

Dataset and performance metrics. In this section, we
use Rain100L to perform all the ablation studies. The syn-
thesized dataset consists of 200 rainy/clean image pairs for
training and 100 pairs for testing [49]. Two performance
metrics are employed, including peak-signal-to-noise ratio
(PSNR) [17] and structure similarity (SSIM) [43]. Note that
as the human visual system is sensitive to the Y channel of a
color image in YCbCr space, we compute PSNR and SSIM
based on this luminance channel.

Table 1 reports the effect of stage number S on deraining
performance of our network. Here, S = 0 means that the
initialization B(0) is directly regraded as the recovery result.

4More network design details are described in supplemental file.
5In all experiments, we simply set λS = γS = 1 to make the out-

puts at the final stage play a dominant role, and other parameters as 0.1 to
help find the correct parameter in each stage. More parameter settings are
discussed in supplementary material.

Table 1. Effect of stage number S on the performance of RCDNet.
Stage No. S=0 S=2 S=5 S=8 S=11 S=14 S=17 S=20

PSNR 35.93 38.46 39.35 39.60 39.81 39.90 40.00 39.91
SSIM 0.9689 0.9813 0.9842 0.9850 0.9855 0.9858 0.9860 0.9858

Stage 1

26.54 / 0.8347

26.52 / 0.8302

Stage 17

38.79 / 0.9844 

38.71 / 0.9838

Stage 16

35.78 / 0.9553

35.37 / 0.9708 

25.84 / 0.8165

Stage 11

30.92 / 0.8851

31.38 / 0.9158

/

Stage 6

27.69 / 0.8446

25.85 / 0.8203

27.36 / 0.8438

Figure 3. Visualization of the recovery background B(s), B̂(s) as
expressed in Eq. (12), and the rain layer R(s) at different stages.
The stage number S is 17. PSNR/SSIM for reference. The images
are better to be zoomed in on screen.

Figure 4. At the final stage s = 17, the extracted rain layer, rain
kernels Cn, and rain maps Mn for the inputO in Fig. 3. The lower
left is the rain kernels C learned from Rain100L. The images are
better to be zoomed in on screen.

Taking S = 0 as a baseline, it is seen that only with 2 stages,
our method achieves significant rain removal performance,
which validates the essential role of the proposed M-net and
B-net. We also observe that when S = 20, its deraining
performance is slightly lower than that of S = 17 since
larger S would make gradient propagation more difficult.
Based on such observation, we easily set S as 17 throughout
all our experiments. More ablation results and discussions
are listed in supplementary material.

5.2. Model verification

We then show how the interpretability of this RCDNet
facilitates an easy analysis for the working mechanism in-
side the network modules.

Fig. 3 presents the extracted background layer B(s) (1st

row), B̂(s)(2nd row) that represents the role of M-net in help-
ing restore clean background, and rain layer R(s) (3rd row)
at different stages. We can find that with the increase of s,
R(s) covers more rain streaks and fewer image details, and
B̂(s) and B(s) are also gradually ameliorated. These should



Input / Groundtruth
27.37 / 0.8154

DSC
29.34 / 0.8479

GMM
32.38 / 0.9306

JCAS
31.45 / 0.9151

Clear
31.59 / 0.9380

DDN
37.31 / 0.9704

RESCAN
41.26 / 0.9887

PReNet
37.27 / 0.9793

SPANet
35.67 / 0.9700

JORDER_E
41.11 / 0.9894

SIRR
36.99 / 0.9692

RCDNet
42.15 / 0.9912

Figure 5. 1st column: input rainy image (upper) and groundtruth (lower). 2nd-12th column: derained results (upper) and extracted rain
layers (lower) by 11 competing methods. PSNR/SSIM for reference. Bold indicates top 1st rank.

be attributed to the proper guidance of the RCD prior for
rain streaks and the mutual promotion of M-net and B-net
that enables the RCDNet to be evolved to a right direction.

Fig. 4 presents the learned rain kernels and the rain maps
for the input O in Fig. 3. Clearly, the RCDNet finely ex-
tracts proper rain layers explicitly based on the RCD model.
This not only verifies the reasonability of our method but
also manifests the peculiarity of our proposal. On one hand,
we utilize a M-net to learn sparse rain maps instead of di-
rectly learning rain streaks that makes learning process eas-
ier. On the other hand, we exploit training data to automati-
cally learn rain kernels representing general repetitive local
patterns of rain with diverse shapes. This facilitates their
general availability to more real-world rainy images.

Table 2. PSNR and SSIM comparisons on four benchmark
datasets. Bold and bold italic indicate top 1st and 2nd rank, re-
spectively.

Datasets Rain100L Rain100H Rain1400 Rain12
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Input 26.90 0.8384 13.56 0.3709 25.24 0.8097 30.14 0.8555

DSC[51] 27.34 0.8494 13.77 0.3199 27.88 0.8394 30.07 0.8664
GMM[28] 29.05 0.8717 15.23 0.4498 27.78 0.8585 32.14 0.9145
JCAS[13] 28.54 0.8524 14.62 0.4510 26.20 0.8471 33.10 0.9305
Clear[8] 30.24 0.9344 15.33 0.7421 26.21 0.8951 31.24 0.9353
DDN[9] 32.38 0.9258 22.85 0.7250 28.45 0.8888 34.04 0.9330

RESCAN[27] 38.52 0.9812 29.62 0.8720 32.03 0.9314 36.43 0.9519
PReNet[35] 37.45 0.9790 30.11 0.9053 32.55 0.9459 36.66 0.9610
SPANet[41] 35.33 0.9694 25.11 0.8332 29.85 0.9148 35.85 0.9572

JORDER E[49] 38.59 0.9834 30.50 0.8967 32.00 0.9347 36.69 0.9621
SIRR[44] 32.37 0.9258 22.47 0.7164 28.44 0.8893 34.02 0.9347
RCDNet 40.00 0.9860 31.28 0.9093 33.04 0.9472 37.71 0.9649

5.3. Experiments on synthetic data

Comparison methods and datasets. We then com-
pare our network with the current SOTA single image
derainers, including model-based DSC [51], GMM [28],
and JCAS [13]; DL-based Clear [8], DDN [9], RES-
CAN [27], PReNet [35], SPANet [41], JORDER E [49],
and SIRR [44]6, based on four benchmark datasets, in-
cluding Rain100L, Rain100H [49], Rain1400 [9], and
Rain12 [28].

Fig. 5 illustrates the deraining performance of all com-
peting methods on a rainy image from Rain100L. As shown,
the deraining result of RCDNet is better than that of other
methods in sufficiently removing the rain streaks and finely
recovering the image textures. Moreover, the rain layer ex-
tracted by RCDNet contains fewer unexpected background
details as compared with other competing methods. Our
RCNet thus achieves the best PSNR and SSIM.

Table 2 reports the quantitative results of all competing
methods. It is seen that our RCDNet attains best derain-
ing performance among all methods on each dataset. This
substantiates the flexibility and generality of our method, in
diverse rain types contained in these datasets.

5.4. Experiments on real data

We then analyze the performance of all methods on two
real datasets from [41]: the first one (called SPA-Data) con-
tains 638492 rainy/clean image pairs for training and 1000
testing ones, and the second one (called Internet-Data) in-
cludes 147 rainy images without groundtruth.

6The code/project links for these comparison methods are listed in
supplementary material.
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Figure 6. Rain removal performance comparisons on a rainy image from SPA-Data. The images are better to be zoomed in on screen.
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Figure 7. Derained results for two samples with various rain patterns from Internet-Data. The images are better to be zoomed in on screen.

Table 3. PSNR and SSIM comparisons on SPA-Data [41].
Methods Input DSC GMM JCAS Clear DDN
PSNR 34.15 34.95 34.30 34.95 34.39 36.16
SSIM 0.9269 0.9416 0.9428 0.9453 0.9509 0.9463

Methods RESCAN PReNet SPANet JORDER E SIRR RCDNet
PSNR 38.11 40.16 40.24 40.78 35.31 41.47
SSIM 0.9707 0.9816 0.9811 0.9811 0.9411 0.9834

Table 3 and Fig. 6 compare the derained results on SPA-
Data of all competing methods visually and quantitatively.
It is easy to see that even for such complex rain patterns, the
proposed RCDNet still achieves an evident superior perfor-
mance than other methods. Especially, similar to its supe-
riority in synthetic experiments, it is also observed that our
method better removes the rain streaks and recovers image
details than other competing ones.

Further, we select two real hard samples with various
rain densities to evaluate the generalization ability of all
competing methods. From Fig. 7, we can find that tra-
ditional model-based methods tend to leave obvious rain
streaks. Although DL-based comparison methods remove
apparent rain streaks, they still leave distinct rain marks or
blur some image textures. Comparatively, our RCDNet bet-
ter preserves background details as well as removes more
rain streaks. This shows its good generalization capability

to unseen complex rain types.

6. Conclusion
In this paper, we have explored the intrinsic prior struc-

ture of rain streaks that can be explicitly expressed as con-
volutional dictionary learning model, and proposed a novel
interpretable network architecture for single image derain-
ing. Each module in the network can one-to-one corre-
spond to the implementation operators of the algorithm de-
signed for solving the model, and thus the network is al-
most “white-box” with easily visualized interpretation for
all its module elements. Comprehensive experiments im-
plemented on synthetic and real rainy images validate that
such interpretability brings a good effect of the proposed
network, and especially facilitates the analysis for how it
happens in the network and why it works in testing predic-
tion process. The extracted elements through the end-to-end
learning by the network, like the rain kernels, are also po-
tentially useful for the related tasks on rainy images.
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