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Télécom Paris, Multimedia Group, France4

zhangjesse, yanyan, csjyang@njust.edu.cn

stephane.lathuiliere, e.ricci, niculae.sebe@unitn.it

Abstract

Online depth learning is the problem of consistently

adapting a depth estimation model to handle a continu-

ously changing environment. This problem is challenging

due to the network easily overfits on the current environ-

ment and forgets its past experiences. To address such prob-

lem, this paper presents a novel Learning to Prevent Forget-

ting (LPF) method for online mono-depth adaptation to new

target domains in unsupervised manner. Instead of updat-

ing the universal parameters, LPF learns adapter modules

to efficiently adjust the feature representation and distri-

bution without losing the pre-learned knowledge in online

condition. Specifically, to adapt temporal-continuous depth

patterns in videos, we introduce a novel meta-learning ap-

proach to learn adapter modules by combining online adap-

tation process into the learning objective. To further avoid

overfitting, we propose a novel temporal-consistent regu-

larization to harmonize the gradient descent procedure at

each online learning step. Extensive evaluations on real-

world datasets demonstrate that the proposed method, with

very limited parameters, significantly improves the estima-

tion quality.

1. Introduction

Monocular depth estimation is a fundamental task in vi-

sual scene understanding, which has attracted increasing

attention in computer vision and robotics [8, 58, 47, 54]

communities. With the success of deep learning algo-

rithms [46, 21], recent works usually propose methods
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Figure 1. The proposed framework for online monocular depth

learning. The model is firstly trained on synthetic dataset through

un-and supervised loss Lsource. Then, a series of online adapters

are learned from synthetic video sequences through an online-

learning objective Lmeta. Finally, when adapting on the target

real-world video, we only update the learned adapters and regres-

sors (decoder) by unsupervised loss Ltarget.

based on deep neural networks [13, 27, 31, 53, 56, 59, 57].

Despite the attractive performance of these approaches, they

mainly learn depth information from ground truth in a su-

pervised manner. As such setting may not be practical in

real-world applications due to the expensiveness of data col-

lecting, many works turn to design unsupervised depth esti-

mation methods [63, 17, 55, 1, 18], and show good perfor-

mance compared with supervised approaches.

Despite the attractiveness of the above unsupervised

methods, they may have limitations on open-world appli-

cations. Due to the classical paradigm in machine learning,

after training phase, the model is frozen and used for infer-

encing without any change in the model parameters. How-

ever, in real-world applications, the deployment environ-

ment (i.e. target domain) may differ significantly from the

training one (i.e. source domain), and keeps changing con-

tinuously over time. Several recent works are proposed to

tackle this practical open-world problem for stereo match-

ing [62, 50, 49], but few work focus on online monocu-

lar depth adaptation. Compared with online stereo, online
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mono-depth learning is even more challenging from two as-

pects: (i) scale ambiguity and lack of support from geomet-

rical information inherent to a monocular setting make the

model extremely dependent on domain-specific visual fea-

tures and prone to overfit on the current domain [11, 10]; (ii)

the environmental variation (e.g., speed or scene changes)

introduces additional challenges both for depth or pose es-

timation, making the whole model fragile. On the top of

these, as deep networks are not flexible in an online learn-

ing setting, there is catastrophic forgetting issue. In other

words, the model, while updating to the novel domain, will

easily forget the pre-learned knowledge. In such perspec-

tive, in this paper we argue that preventing forgetting while

performing robust adaptation is the key point for online

mono-depth learning.

To achieve such goal, as the training data on the source

is usually of large amount, we could adjust the reliable

pre-learned knowledge rather than update it entirely during

adaptation. Firstly we propose to adjust the basic model

to overcome domain shift. According to recent works

[28, 2, 34] aligning domain shift through batch normaliza-

tion (BN) [23] layers, although in online condition we never

have access to full target data, we are inspired to smoothly

adjust model statistics through online data stream of target

videos. Besides the statistics, works [20, 37, 41, 40] on

multi-domain or incremental learning inspire us to selec-

tively tune a small subset of learned basic parameters while

keeping all the other fixed. In our setting this is meant to

ensure that visual appearance variations arising from scene

changes will never influence the networks weights encoding

the reliable knowledge. Following these ideas, we propose

novel adapters that enable to adjust the source model online.

Furthermore, inspired by recent learning to learn algorithm

[12, 38], we develop a novel meta-learning based method to

incorporate online learning procedure to the learning objec-

tive, which drives adapters for stable long-range adaptation.

Driven by the aforementioned motivation, in this paper

we proposed a novel Learning to Prevent Forgetting (LPF)

framework for online mono-depth learning. As illustrated

in Fig. 1, we first train a monocular depth prediction model

using synthetic data. Second, we employ a series of on-

line adapters to adjust model statistics and weights, and

train them with a novel meta-learning based strategy to

properly update the basic knowledge. Specifically, we in-

corporate the learning objective Lmeta with online adap-

tation procedures, thus Lmeta will derive initial adapters

to adapt temporal-continuous depth patterns in videos. Fi-

nally, while performing online adaptation on target real-

world videos, we only update the learned online adapters

and regressors (decoder) by unsupervised loss Ltarget. In

this way, we achieve our main purpose of adapting fast to a

target video and long-range adaptation with less forgetting.

We also propose a novel temporal-consistent regularization

to harmonize the gradient descent during each online learn-

ing step.

In summary, this paper has four main contributions: (i)

We propose a novel Learning to Prevent Forgetting frame-

work for online depth learning in monocular videos, which

is effective for rapid and long-range online adaptation on

target data streams; (ii) We introduce a new adapter to han-

dle the problem of domain shift in the case of continuous

online data streams; (iii) We propose a novel meta-learning

based method which permits to derive adapters for online

learning condition; (iv) We perform an extensive evaluation

to validate the effectiveness of our methods, showing that

our approach achieve superior performance than state-of-

the-art methods on real-world datasets.

2. Related Works

Monocular Depth Estimation. Early works on mono-

depth estimation are mainly based on geometric priors

[45, 30, 24]. With the availability of large-scale datasets, re-

cently deep learning based methods have become the main-

stream [9, 31, 27, 13, 56]. However, supervised meth-

ods require a large amount of pairs of images and ground

truth depth maps. To overcome this limitation, unsu-

pervised or self-supervised methods have been proposed

[63, 17, 15, 55, 1, 18, 33, 3]. However, none of these pa-

pers focus on open-world setting, where the target sequence

is gathered from a different environment with respect to

the source and keeps changing with sequentially available

data stream. Some recent works [5, 19] provide solution for

open-world problem, but they need heavy extra annotation

or computation like object motion and optical flow.

Domain Adaptation, Multi-domain and Continual

Learning. There is a wide range of works on domain

adaptation [7]. Recent deep learning-based methods mostly

reduce the domain shift by considering distribution losses

[32], alignment layers [28, 2, 35] and Generative Adver-

sarial Network [43, 44]. Recently, cross-domain adapta-

tion problems have also been studied for stereo depth es-

timation [50, 48]. However, these works did not explicitly

address the domain shift problem while performing online

adaptation. Some cross-domain monocular depth estima-

tion works [61, 60] are also related to our paper, but they

tackle no open-world problem.

Works that learn models for multi-domain problem

through specific adapters [41, 40] are also related to our

work. Besides, continual learning methods are loosely re-

lated to our works, where the task is to incrementally up-

date a model trying to prevent catastrophic forgetting [36].

However, previous [26, 4, 29, 42] works mostly focus on

classification problems, while we target a dense regression

tasks. Further, our problem is in real-time condition with

very limited learning stage.

Meta-Learning. Meta-learning, i.e. learning to learn, at-
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tempts to design models that can adapt to new environments

with few samples. In [51, 20, 12], meta-learning has been

utilized for rapid generalization of models to novel domains

and categories. Recently, Park et al. [38] introduced a

method based on meta-learning to obtain an initial network

for online tracking. A more closely related work to ours is

[49], where an approach for learning to better adapt models

to stereo videos is proposed. In contrast, our paper focuses

on online mono-depth learning. Instead of learning a better

initial model, our method learns how to exploit pre-existing

knowledge for better online adaptation in a continuous data

stream, thus aiming at robust adaptation to prevent forget-

ting. Therefore, the task, the goal and the approach con-

sidered in our work are radically different from previous

papers.

3. Preliminary

In this section, we present the employed unsupervised

framework for monocular depth estimation and its online

learning algorithm.

Unsupervised Framework: We follow the approach firstly

introduced in [63] for unsupervised depth estimation in

monocular videos. The framework contains two sub-

networks: depth net for predicting depth maps Dt of tar-

get frame It, and pose net for predicting relative poses

Pt−1, Pt+1 between adjacent frame pairs (It−1, It) and

(It+1, It). Many works extended this method by jointly

learning optical flow [55] and employing geometric con-

straints [33, 3]. In this paper we mainly implement and vali-

date our method based on [63] and more recent work [1] but

we would like to remark that, in principle, our framework

can also integrate most of theses recent advances.

Online Learning: Here we discuss the paradigm for online

mono-depth learning. To better formulate the problem, we

first employ a source dataset VS (usually synthetic and with

ground truth) to pre-train our monocular depth estimation

model with a supervised loss Ls (e.g., L1 regression) and

unsupervised loss Lu (defined in [63, 1]). Then, the model

is deployed and evaluated on target videos VT . In previ-

ous works, VT is usually fixed and from the same domain

as VS . However, in practical applications, VT is usually

from different domains (e.g., real-world scenes) and keeps

changing (e.g., models implemented on a car have to work

in changing environments). In such open-world condition,

we process the video frames sequentially and continuously

adapt our model at each time step in order to predict more

accurate depth maps with t increasing. Similar to [49, 62]

on open-world stereo, we follow the paradigm for learning

and evaluating. At time t, we first predict depth from It (the

current frame). Then, we evaluate our prediction according

to the supervised loss Ls, and finally, we update the model

using Lu. The learning process at each time step is obtained

via gradient descent as follows:

[θdt+1, θ
p
t+1] ← [θdt , θ

p
t ]− α∇θp,θdLu([θ

d
t , θ

p
t ], It, It−1),

(1)

where θd, θp are parameters of depth net and pose net.

4. Learning to Prevent Forgetting

In this section we introduce our proposed Learning to

Prevent Forgetting (LPF) framework for online mono-depth

learning, including online adapters for depth estimation (in

Section 4.1 and 4.2) and corresponding algorithm to learn

them (in Section 4.3). A novel Temporal-Consistent Reg-

ularization for stable online learning is also introduced in

Section 4.4.

4.1. Online Statistics Adapter

As discussed in Section 1, scale ambiguity and lack

of geometric prior information make monocular depth es-

timation frameworks over-reliant on appearance cues and

domain-specific information. As a consequence, they are

especially susceptible to domain shift when deployed on

new target data. According to [28, 2], domain discrepancy

between source domain S and target domain T can be re-

duced by transforming statistics recorded in batch normal-

ization (BN) layer. However, in our case we have no access

to the full data but sequential stream of T . This inspires

us to develop a new adapter that smoothly updates statistics

over data stream in an online fashion. After pre-training on

source dataset, the model gathers statistics BS = (µS ,ΣS)
aligned with S . Here for sake of notation, we only analyse

mean µ and covariance matrix Σ in one BN layer but the

approach described below applies to all the others. When

adapting on the target, using source statistics BS would

make the model suffer from domain shift since the statis-

tics BT are different from BS statistics. However, in the

beginning of the sequence, we have not disposed of enough

frames to have a robust estimation of BT . Furthermore,

by only using the observed statistics of target frames, the

model would completely forget the source knowledge. Mo-

tivated by this, we design a more robust way for aligning

model statistics. Based on the theory in [52] which analy-

ses statistics across different layers, we can also model the

statistics along time axis into a Kalman filtering process. At

time t, given the state transition matrix A
t and feature xt

with m examples, we can estimate statistics as:

µ̂t|t−1 = A
tµ̂t−1|t−1,

µ̂t|t = (1− at)µ̂t|t−1 + atx̄t,

Σ̂t|t−1 = A
tΣ̂t−1|t−1(At)T +R,

Σ̂t|t = (1− at)Σ̂t|t−1 + atSt, (2)

where µ̂t|t−1 and Σ̂t|t−1 are the calculated mean and covari-

ance matrix from time t − 1, R and St are the covariance
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Figure 2. One single training loop of our proposed meta-learning based method for learning online adapters. The adapters start with weight

θ0, and then continuously adapt to a video sequence of length T on source dataset, with the weight updated to θT through unsupervised loss

Lu. After that we evaluate the adapter using frames that randomly selected from the following time points T + n, and perform gradient

descent with respect to the initial weight θ0. In this way, we learn a series of better initial adapters for adapting temporal-continuous depth

patterns. More details can be seen in Section 4.3.

matrix of bias and observed feature. x̄t = 1

m

∑m

i xt
i, and

at is a balancing weight and µ̂t|t and Σ̂t|t are the final esti-

mations. As At and R are difficult to get during the online

adaptation, we simply assume A
t is an identity matrix and

bias is zero. In addition, Σ is usually vectors in convolution

neural networks so that St = 1

m

∑m

i (xi − x̄t). In this way,

we can simply Eqn. 2 as

µ̂t|t = µt = (1− at)µ̂t|t−1 + atx̄t,

= (1− at)µt−1 + atµ̃t

Σ̂t|t = Σt = (1− at)Σ̂t|t−1 + atSt

= (1− at)Σt−1 + atΣ̃t (3)

where µ̃t, Σ̃t are the observed mean and variance at time

t respectively, and µt,Σt are the final estimations of the

statistics. at is a learnable dynamic weight to decide how

much the layer should adapt to the current frame. Note that,

different from standard BN operation, we perform Eqn. 3

during forward process of training step, i.e., the input x of a

layer in training step will be transformed by

x̂ = ω
x− µt

√

Σt2 + ǫ
+ ρ. (4)

ω, ρ are scaling and shifting factor, and ǫ is a small con-

stant. In this way, BS is smoothly aligned to BT with time

t increasing, and pre-learned knowledge is stably updated.

4.2. Online Weight Adapter

To preserve the pre-learned knowledge during online

adaptation, we use adapters to adjust the feature represen-

tation without updating the main network parameters. This

will weaken the misguidance caused by scene changing and

benefit long-range adaptation. Besides, these adapters need

to be efficient enough with very limited parameters to avoid

Conv

1x1 Conv

BN

+

ϕ

φ 

Conv

1x1 Conv

x

ϕ

φ 

Softmax

+

Conv 1x1 Conv

+

ϕ φ 

fin

fout

fin

fout

fin

fout

Figure 3. The proposed online weight adapters. Each adapter is

able to adjust basic model through operations with very limited

cost. The total amount of parameter is 4.7M, about 1/9 of DispNet

encoder.

computational overload. Here, we borrow some ideas from

multi-domain and incremental learning works [40, 41] to

design our adapters. The employed adapters are shown in

Fig. 3. Considering a given convolutional layer of the main

model, φ(·, λ) denotes its computed function parametrized

with weights λ. Let fin and fout be the input and output fea-

ture maps. We further define ϕ(·, γ) as the adapter with pa-

rameter γ. In this work we consider three different adapters.

First, the original layer φ(·, λ) can be adjusted as follows:

fout = φ(fin) + ϕ(φ(fin)). (5)

Considering that ϕ is a 1 × 1 convolution, we obtain the

series adapters introduced in [40] (see Fig. 3(a)). Second,

if we employ a 1× 1 convolution, a sigmoid activation and

a scaling operation into ϕ, it becomes the attention module

proposed in [22]. This adapter is able to re-weight the out-

put of φ using attention mechanism. In our case we slightly

modify this attention adapter by removing the squeezing op-

eration and computing softmax response along each chan-

nel, in order to enhance the most related spatial information.

This adapter is referred to as attention adapter and is shown

in Fig. 3(b). Finally, φ(·, λ) can also be adapted as follows:

fout = φ(fin) + ϕ(fin), (6)

that is known as parallel adapter [41] (See Fig. 3(c)). The

use of these low-cost adapters avoid losing reliable previ-
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ous knowledge, which is beneficial to fast and long-range

adaptation.

4.3. Learning to Learn Online Adapter

Through the adapters proposed in Section 4.1 and 4.2,

the model obtains capacity to adjust statistics and weight

for online adaptation. However, standard off-line training

on the source is not satisfactory for learning these adapters

which need to work in online mode. To overcome this lim-

itation, we propose a novel learning objective in Fig. 2,

which is able to evaluate how well the adapter is for online

adaptation. Given adapter weights θ0 and a video sequence

with length T , we first perform online learning through

Lu on every frame pair It−1, It, and finally obtain adapter

weight θT. In practical condition, as our goal is to make

the model perform well in the following frames, we then

evaluate the adapter with θT on a randomly selected follow-

ing frame pair IT+n−1, IT+n. The un-and supervised loss

Ls+u reveals the prediction quality after online adaptation

with initial adapter θ0. Based on recent meta-learning the-

ory proposed in [12], we can perform gradient descent w.r.t.

θ0 to derive the initial adapter that can perform fast and sta-

ble online adaptation.

We now provide the technical details of our meta-

learning approach. We consider a sampled video Vk

from source dataset VS and composed of the frames

[I0, ..., IT+N−1, IT+N ]. Let BS be the obtained main

model statistics after pre-training. The approach is detailed

in Alg. 1. T is the length of each video sequence for online

Algorithm 1 Learning to learn online adapter

Require: Initial weight θ for adapters, training set VS ,

hyper-parameter T , N , K, α, β.

1: while not done do

2: Sample {Vk}
K
k=1 from VS

3: Initialize evaluation score L = 0
4: for all Vk do

5: θ0 = θ, B0 = BS

6: for t ← 1, 2, ..., T do

7: Bt ← Bt−1 by Eqn. 3

8: θt ← θt−1 − α∇θt−1
Lu(θt−1,Bt; It−1, It)

9: end for

10: Uniform sampling n ∈ [1, N ]
11: BT+n ← BT , IT+n−1, IT+n by Eqn. 3

12: L = L+ Ls+u(θT ,BT+n; IT+n−1, IT+n)
13: end for

14: θ = θ0 − β∇θ0L

15: end while

learning, and N is the number of following frames. K is

the number of selected video sequences Vk, and α, β are

learning rate for online adaptation and meta-gradient de-

scent step, respectively. In one single loop, we start initial

adapter weight and model statistics as θ0 = θ,B0 = BS

in line 5. Then in Line 6 to 9 we adapt the model on a

selected sequence and finally get θT and BT . In line 10

to 12, we randomly select following frames IT+n−1, IT+n

to simulate possible future changes, and perform evaluation

on them to obtain score L. Finally after learning and eval-

uating on all {Vk}
K
k=1 we conduct a gradient descent step

w.r.t. θ0 to find a good initial weight for online adaptation.

Our method is different from the approach in [49] from

two aspects: i) it meta-learns and updates adapters rather

than the whole model, which preserves and adjusts (rather

than totally changes) reliable basic knowledge against dras-

tic changes; ii) it performs evaluation and meta-gradient de-

scent after adapting on video sequences rather than single

frame, aiming to achieve good long-range adaptation for fu-

ture frames.

4.4. Online Adaptation on Target Videos

After meta-training the adapters through Alg. 1, we can

perform online adaptation on the target videos. However,

although updating the adapters with fixed original knowl-

edge prevents forgetting to some extent, the model may

still get influenced from various environmental changing on

real-world scenes and tends to overfit on the current frame.

To further guarantee a stable adaptation process, we pro-

pose a Temporal-consistent Regularization (denote by Lr).

At the time step t of online adaptation, besides the current

frame we also make the model predict depth map Ḋt−∆t

from a randomly selected previous frame It−∆t. Then, we

force the prediction Ḋt−∆t to be similar to the previous pre-

diction Dt−∆t at time step t − ∆t, which can be achieved

by computing

Lr = ||Ḋt−∆t −Dt−∆t||1. (7)

Here we just let 1 < ∆t ≤ 5, thus only small memory

is needed to store the previous frames and predictions. In

this way, the model is constrained to preserve its ability

learned from previous frames. Even if drastic environmen-

tal variation happens at time t, Lr can harmonize the gra-

dient and penalize model’s overfitting to current time step.

Finally, the total unsupervised loss for adaptation on the tar-

get videos can be written as:

Ltarget = Lu + δLr, (8)

where δ is a weight to balance the regularization. Impor-

tantly, we also employ Lr in our meta learning algorithm

(second step of Fig. 2) in order to simulate the learning pro-

cess on the target that will use this loss.

5. Experiment

5.1. Datasets

Virtual-KITTI: Virtual Kitti [14] (vKitti) is a synthetic

dataset for urban driving environment. It contains 6 differ-
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Table 1. Analysis on Each Component of LPF for Fast Adaptation

Lower is better Higher is better

Method Training Abs Rel Sq Rel RMSE RMSElog < 1.25 < 1.252 < 1.253

Basic (no adaptation) standard 0.3641 6.2917 9.9467 0.4124 0.5070 0.7703 0.8867

Basic + Naive standard 0.2242 2.1311 7.1179 0.2991 0.6558 0.8709 0.9486

Basic + SA Standard 0.2150 1.9834 6.9069 0.2883 0.6628 0.8783 0.9539

Basic + SA + WA Standard 0.2143 1.9576 6.9055 0.2885 0.6625 0.8790 0.9543

Basic + SA + WA + Lr Standard 0.2105 1.8732 6.7656 0.2820 0.6758 0.8802 0.9553

Basic + SA Lmeta 0.2087 1.9003 6.8342 0.2833 0.6695 0.8901 0.9560

Basic + SA + WA Lmeta 0.2045 1.7549 6.7022 0.2791 0.6783 0.8957 0.9591

Basic + SA + WA + Lr Lmeta 0.2033 1.6076 6.5613 0.2778 0.6935 0.8965 0.9621

ent scenes in monocular videos with ground truth depth and

different weather conditions. We treat it as source domain

and use the videos in all conditions (except for foggy and

raining) from all 6 scenes for pre-training our model. The

total training set contains 85k images.

Cityscapes: Cityscpes [6] is a urban dataset for au-

tonomous driving and scene understanding. We use the se-

quential data from 41 different monocular videos for pre-

training our model. Although it is in real-world scenes, the

environment is still very different from our target domain

and we treat it as source domain to validate our method.

KITTI: KITTI [16] is a widely-used real-world dataset

for autonomous driving. Following the setting in [63, 1],

we use Eigen’s test split [10] as target domain for evalua-

tion. Note that, as our method is for online depth learning,

we perform online evaluation and adaptation using all the

frames in all target videos.

5.2. Implementation Details

The proposed method is implemented using PyTorch Li-

brary [39]. We validate the method using the framework

proposed in SfM-Learner [63] and SC-SfM-Learner [1],

which are widely-used or most recent mono-depth estima-

tion approach. Following these two frameworks, we use

DispNet and PoseNet for predicting depth and relative pose,

respectively. For SfM-Learner, we use a pytorch implemen-

tation with input size of 128 × 416; for SC-SfM-Learner

we just use the authors’ released code with input size of

256 × 832. We add BN layer after each conv-layer in the

encoder as needed by our model statistics adapter. This al-

most gives no changes to reproduce the results of original

papers. We use the combination Lu+s of the supervised and

unsupervised losses to train the basic model on source do-

main for 100 epochs, and use Lu to train for another 100

epochs to guarantee the learning of PoseNet. For training

adapters, we select T = 5, N = 5,K = 8 and learning rate

α = 1e − 4, β = 1e − 5 in Alg. 1. We give at in Eqn. 3

a upper bound of 0.05 during training to avoid too largely

changing, and the adapters are trained for 20 epochs. For

online adaptation on the target, we use the same learning

rate as α to update adapters and regressors. δ in Eqn. 7 is

set to 0.2. Adam optimizer [25] is used during pre-training

and online adaptation.

Table 2. Analysis on Different Weight Adapters

Method Abs Rel RMSE < 1.25 < 1.252

Basic + Naive 0.2242 7.1179 0.6558 0.8709

LPF (WA-series) 0.2054 6.5423 0.6976 0.8960

LPF (WA-parallel) 0.2033 6.5613 0.6935 0.8965

LPF (WA-attention) 0.2072 6.6107 0.6920 0.8933

5.3. Evaluation Protocol

We use an evaluation protocol suited for online condi-

tion in which frames are sequentially fed into the network.

At each time step, we first measure the performance of our

model on the current input frame, and then adapt this frame

by a step of back-propagation and weight update. We con-

catenate all of the videos in Eigen’s testing split with a ran-

dom order and start adaptation from the 1st frame. Such

randomly concatenation can further simulate environment

changes to some extent. We calculate average scores on all

the frames as final results, and we also show the scores on

last 20% frames of a video to analyse performance when the

model has adapted on a series of frames. These scores can

tell how fast and stable the model adapt to each video. We

employ metrics used in [63, 1] to perform evaluation.

5.4. Fast Online Adaptation

In this section we analyse if the components and mech-

anisms in our method can help for fast online adaptation.

Without specially noting, the models are built based on

SfM-Learner [63] and pre-trained on vKitti dataset. More

additional experiments can be seen in supplementary mate-

rial.

Analysis on Method Component: For sake of notation, we

use Basic to define the basic model without our approach,

and WA and SA to define the proposed weight adapter and

statistic adapter. We also use Lr to denote the proposed

Temporal-Consistent Regularization in Eqn. 7. In Naive

method, we employ the main model without adapters, and

update all the parameters in learning steps. Concerning pre-

training, Standard refers to the classical pretraining with-

out the meta-learning formulation of Alg. 1. The results

are illustrated in table 1. Here for sake of clarity, we just

show results with parallel weight adapter (Eqn. 6). We ob-

serve that the model without online adaptation cannot pro-

vide satisfactory results, and naive online learning shows
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Table 3. Comparison of different frameworks and source datasets.

SfM-Learner [63]

Method data Abs Rel RMSE < 1.25 < 1.252

Naive vKitti 0.2242 7.1179 0.6558 0.8709

Cityscapes 0.2016 6.7935 0.7166 0.8982

LPF vKitti 0.2033 6.5613 0.6935 0.8965

Cityscapes 0.1751 6.0677 0.7499 0.9186

SC-Sfm-Learner [1]

Naive vKitti 0.1782 5.9408 0.7473 0.9021

Cityscapes 0.1675 5.8185 0.7754 0.9163

LPF vKitti 0.1528 5.5081 0.7762 0.9234

Cityscapes 0.1383 5.3478 0.8194 0.9307

Table 4. Long-range Adaptation: Ktrain→vKitti→Ktest

SfM-Learner [63]

Method Abs Rel RMSE < 1.25 < 1.252

Naive 0.2070 6.5248 0.7041 0.8806

Regressor 0.2002 6.4325 0.7156 0.8879

L2A [49] 0.1937 6.3804 0.7221 0.8980

LPF 0.1794 6.1090 0.7307 0.9126

SC-Sfm-Learner [1]

Method Abs Rel RMSE < 1.25 < 1.252

Naive 0.1735 5.6528 0.7743 0.9140

Regressor only 0.1702 5.5883 0.7769 0.9153

L2A [49] 0.1692 5.5500 0.7881 0.9197

LPF 0.1505 5.4452 0.7990 0.9325

only limited improvements. In the case of standard pre-

training, although our SA and Lr benefit the adaptation

procedure, the WA brings very limited improvement. A

possible explanation is that standard offline training does

not provide online adaptation ability to the model. In con-

trast, with our proposed meta learning method Lmeta for

pre-training, SA shows higher improvements and our WA

is also able to show better performance, which reveals that

our meta-learning method makes WA efficiently work. Our

full method achieves best performance compared with other

baselines in the table. These results demonstrate that our

proposed LPF method obviously leads to a faster online

adaptation on target videos.

Besides, we also show the effectiveness of different WA

in table 2. In each experiment we just change the weight

adapter in our full method. WA-series and WA-attention

mean adapters defined in Eqn. 5 but with different ϕ as de-

scribed in Fig. 3(a) and (b). WA-parallel means adapter

defined in Eqn. 6 and shown in Fig. 3(c). We observe that

all of the three adapters show consistent improvement in

the metrics. These results reveal that our LPF method can

be implemented with different kinds of adapters and consis-

tently improve performance.

Comparison with Different Frameworks and Dataset:

We evaluate the effectiveness of our method on different

unsupervised frameworks and datasets. In each experiment

we use parallel adapter. The results are shown in table 3. We

first observe that both framework are benefitted by our LPF

method, which reveals that LPF can be successfully imple-

mented into different frameworks. Then we observe that the

improvement brought by LPF is consistent across different

datasets, which further demonstrates the generalization of

our method.
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Figure 4. Illustration of online learning process of different model

on a same Kitti video. According to the video picture and choppy

performance of ideal offline model, there exists environmental

changing near t = 200. Naive method cannot deal with it and

brings slower convergence, while our LPF method obtains stable

and robust adaptation process.

5.5. Long-range Adaptation across Domains

In this section, we analyse how LPF perform in the case

of very long-range online adaptation. To simulate a long

online learning scenario, we first pre-train the model on

Kitti Eigen’s training split (Ktrain). Then, we perform on-

line adaptation on Virtual Kitti (vKitti) dataset using all of

the videos that we described in Section 5.1. Finally, after

adaptation on Virtual Kitti, we perform online learning on

Kitti Eigen’s testing split (Ktest) and calculate the evalua-

tion scores based on Section 5.3. This experiment is able to

show whether our LPF method prevents forgetting in such

a long-range cross-domain adaptation procedure. Indeed,

adapting on vKitti may make the model lose the reliable

knowledge learned on Ktrain and harm the performance

on Ktest. Results are reported in table 4. In this com-

parison, we include the L2A method [49] which can also

be implemented in our model. Importantly, this method is

not design to prevent catastrophic forgetting. Besides, we

also consider a model where only the decoder is updated

(Regressor). We observe that only updating the regression

layer obtains scores that are slightly better than updating

the whole network. This reveals that freezing the encoder is

even better to address the catastrophic forgetting issue. L2A

also provides improvement thanks to its meta-learning for-

mulation that makes the method adapt fast. Nevertheless,

our LPF method obtains the best performances in the two

frameworks. It shows that the knowledge learned on Ktrain

is still preserved after adapting on vKitti. It confirms that

properly adjust the main knowledge rather than updating it

mitigate forgetting.

5.6. Comparison with Ideal and SOTA Method

In this section we compare our method with ideal and

state-of-the-art approaches. The experiment settings are the

same as Section 5.4 to analyse fast online adaptation per-

formance on target videos. The results are illustrated in ta-

ble 5, where the methods are all implemented in the two

considered frameworks. To show the upper bound of perfor-

mance, we also illustrate scores of ideal condition where the
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Table 5. Comparisons with Ideal and State-of-the-art Method. Evaluation scores are computed on all the frames of Eigen’s testing videos.

Online Evaluation Scores Evaluation Scores on Last 20% frames

Method Training Set Abs Rel ↓ RMSE ↓ < 1.25 ↑ < 1.252 ↑ Abs Rel ↓ RMSE ↓ < 1.25 ↑ < 1.252 ↑

SfM-Learner [63]

Ideal (no adapt.) Kitti 0.2024 6.5597 0.7180 0.8935 0.2091 6.5403 0.7111 0.8879

Ideal + Naive Kitti 0.2032 6.5080 0.7220 0.8989 0.2113 6.4522 0.7075 0.8962

Naive vKitti 0.2242 7.1179 0.6558 0.8709 0.2195 6.9022 0.6683 0.8798

L2A [49] vKitti 0.2171 6.8024 0.6759 0.8762 0.2103 6.7256 0.6783 0.8791

LPF (Ours) vKitti 0.2033 6.5613 0.6835 0.8965 0.1962 6.3887 0.7147 0.8996

SC-SfM-Learner [1]

Ideal (no adapt.) Kitti 0.1537 5.6295 0.8086 0.9338 0.1535 5.6412 0.8027 0.9335

Ideal + Naive Kitti 0.1468 5.2768 0.8203 0.9431 0.1399 5.1413 0.8320 0.9479

Naive vKitti 0.1782 5.9408 0.7473 0.9021 0.1662 5.7583 0.7596 0.9198

L2A [49] vKitti 0.1708 5.8764 0.7548 0.9157 0.1615 5.6831 0.7728 0.9213

LPF (Ours) vKitti 0.1628 5.6581 0.7762 0.9234 0.1495 5.4327 0.7936 0.9301

(a) Image (b) GT (c) Ideal (d) Basic + Naive (e) Ours

Figure 5. Illustration of visual results. The ideal model is pre-trained on Kitti, while the models of (d) and (e) are pre-trained on vKitti and

online adapted to Kitti videos. Results of our method are superior than naive baseline, and even competitive with those of ideal method.

model is offline pre-trained on Kitti Eigen’s training split.

For methods implemented on Sfm-Learner, we first observe

the performance gain brought by naive online learning is

very limited even in ideal condition, and L2A [49] is able to

improve the online evaluation scores. Then compared with

L2A, our method further improve the performance and ob-

tain best results. These analyses reveal that our LPF method

outperforms L2A and naive method. Compared with upper

bound i.e., the ideal scenario of the models, our method ob-

tains competitive scores, or even better performance espe-

cially on the last % 20 frames. These results further demon-

strate that our LPF method leads to a stable and fast on-

line adaptation process even if the model never sees data

in target domain before. For the models implemented on

SC-Sfm-Learner, we observe that our LPF method still ob-

tain best results among online learning models in all met-

rics. Compared with ideal models, our method is slightly

weaker but closest to the upper bound than other online ap-

proaches. It is worthy noting that the performance gain on

SC-Sfm-Learner is comparatively smaller than that on Sfm-

Leaner. One possible explanation is that SC-Sfm-Learner is

able to capture more geometric constraints between two ad-

jacent frames and provide more reliable visual cues, which

makes the model depend less on appearance information

and robust to environmental changes. Even though, our LPF

method still shows its power for online depth learning.

To further analyse our method, we illustrate online learn-

ing process of different models in Fig. 4. All models are

built on Sfm-Leaner. We observe that at beginning all mod-

els perform similarly. However, when environment changes

largely around t = 200, two models of naive method show

unstable behavior which leads to worse performance. In

contrast, our LPF method properly deals with such environ-

mental changing and shows a more robust and faster learn-

ing procedure. Finally, we show qualitative results in Fig. 5.

We observe our LPF method predicts more accurate depth

maps than naive model, and shows close performance to

ideal approach and ground truth. These qualitative results

are inline with the quantitative results.

6. Conclusion

In this paper we propose a novel Learning to Prevent

Forgetting (LPF) framework for unsupervised online adap-

tation in monocular videos. Two adapters are designed for

adjusting model statistics and weights against forgetting is-

sue. A novel meta-learning based algorithm is developed to

learn adapters for better online learning procedure. Exten-

sive experiments demonstrate that LPF contributes to fast

and stable long-range online adaptation, and obtains com-

petitive or better performance than ideal models.
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