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Abstract

Few-shot learning has attracted intensive research at-
tention in recent years. Many methods have been proposed
to generalize a model learned from provided base classes
to novel classes, but no previous work studies how to se-
lect base classes, or even whether different base classes
will result in different generalization performance of the
learned model. In this paper, we utilize a simple yet effec-
tive measure, the Similarity Ratio, as an indicator for the
generalization performance of a few-shot model. We then
formulate the base class selection problem as a submodular
optimization problem over Similarity Ratio. We further pro-
vide theoretical analysis on the optimization lower bound
of different optimization methods, which could be used to
identify the most appropriate algorithm for different experi-
mental settings. The extensive experiments on ImageNet [4],
Caltech256 [8] and CUB-200-2011 [27] demonstrate that
our proposed method is effective in selecting a better base
dataset.

1. Introduction
Few-shot Learning [6, 13] is a branch of Transfer Learn-

ing, its basic setting is to train a base model on the base
dataset consisting of base classes with ample labeled sam-
ples, then adapt the model to a novel support set consisting
of novel classes with few samples, and finally evaluate the
model on the novel testing set consisting of the same novel
classes as the novel support set.

Traditionally, many works focus on how to learn meta-
knowledge from a fixed base dataset. The generation process
of the base datasets generally depends on random selection or
human experience, which is not necessarily perfect for few-
shot learning. Due to the fact that the fine-tuning mechanism
on the novel support set is not as effective as learning with
large-scaled training samples on novel classes [25], the base
dataset plays a critical role for the performance of few shot
learning. Till now, however, we have little knowledge on
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how to measure the quality of a base dataset, and not to
mention how to optimize the its selection process.

The targeting problem described above is somewhat re-
lated to Curriculum Learning [1, 24] and data selection in
transfer learning [19–21]. Different from Curriculum Learn-
ing aiming to speed up learning of provided classes, we
focus on learning to select base classes in a transfer learn-
ing manner, where the selected base classes are used for
classification on novel classes. With respect to the data se-
lection methods in transfer learning, first, our problem is
a class-based selection instead of sample-based selection
problem, which significantly decreases the search space for
selection. Second, we consider the problem in a few-shot
learning scenario, where there is no validation dataset on
novel classes, and modern methods with feedback mecha-
nism on validation performance (e.g. Bayesian Optimization
in [21], Reinforcement Learning in [19]) are not applicable.

Here we consider a realistic and practical setting that M
base classes are to be selected from N candidate classes, and
each candidate class contains only a small number of labeled
samples before selection. Once the M classes are selected,
one could expand the samples of these selected classes to a
sufficient size by manually labeling, which are further used
to construct the base dataset and train the base model. The
selection process could be conducted either in an one-time
or incremental manner.

To solve the problem, we confront two challenges. First,
the problem is a discrete optimization problem. The com-
plexity of naive enumeration method is O(NM ), which is
intractable in real cases. Second, there is no touchable way
to optimize the classification performance of novel classes
directly, hence we need to find a proxy indicator that is both
easy to optimize and highly correlated with the classification
performance on novel classes.

In this paper, we find a simple yet effective indicator
Similarity Ratio, first proposed by our previous work [30].
For a candidate class, the Similarity Ratio considers both its
similarities with novel classes and diversity in base classes.
We demonstrate that this indicator is highly and positively
correlated with the performance of few-shot learning on the
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novel testing set. We theoretically prove that this indicator
satisfies submodular property, which pledges us to obtain a
sub-optimal solution in polynomial time complexity. Thus,
the base class selection problem could be surrogated by
optimizing a variant of Similarity Ratio. We carry out ex-
tensive experiments on three different cases: the Pre-trained
Selection, the Cold Start Selection, and the General Selec-
tion on ImageNet, Caltech256, and CUB-200-2011 datasets.
Results show that our method could significantly improve
the performance of few-shot learning in both general im-
age classification and fine-grained image classification. The
performance improvement margin is rather stable regard-
less of the distribution transfer from the support set to the
query set, change of few-shot model, or change of few-shot
experimental settings.

2. Related Work

Few-shot Learning The concept of One-shot Learning is
proposed by [6], and a more general concept is Few-shot
Learning. Three mainstreams of approaches are identified
in the literature. The first group is based on a meta-learning
manner, including Matching Network [25], MAML [7], Pro-
totypical Network [22], Relation Network [23], SNAIL [14]
etc, which learn an end-to-end task-related model on the
base dataset that could generalize across all tasks. The sec-
ond group of methods is learning to learn image classifiers
for unseen categories via some transfer mechanism while
keeping the representation space unchanged. The advan-
tage of these methods is to avoid drastically re-training the
model and more friendly to extremely large base datasets
and model, e.g. classification on ImageNet. Common meth-
ods are MRN [29], CLEAR [11], Weight Imprinting [18],
VAGER [30] etc. The third group of methods is to apply
data generation. The core idea is to use a pre-defined form
of generation function to expand the training data of unseen
categories. Typical work includes [9] and [28].
Data Selection The underlying assumption of data selec-
tion is that not all training data is helpful to the learning
process; some training data may even perform negative ef-
fects. Thus, it’s important to distinguish good data points
from bad data points to improve both the convergence speed
and the performance of the model. Roughly there are two
branches of work: one is to assume training data and testing
data are sampled from the same distribution, a common way
to deal with this problem is to reweight the training sam-
ples [5, 12, 24], which is out of the scope and will not be
covered in this paper. The other branch is data selection in
a transfer learning manner. Mainstream approaches include
that [20] proposes a method based on heuristically defined
distance metric to find most related data points in the source
domain to the target domain; [21] views the effect of data
selection process to final performance of the classification
on target domain as a black box model and uses Bayesian

Optimization to iteratively adjust the selection through per-
formance on validation dataset and further [19] substitutes
Bayesian Optimization to Reinforcement Learning, which
is more suitable to introduce deep model to encourage more
flexibility in designing selection algorithms.

3. Preliminary Study
3.1. Similarity Ratio

[30] first proposes a concept called Similarity Ratio (SR)
defined for each novel class as:

SR =
Average Top-K Similarity with Base Classes

Average Similarity with Base Classes
. (1)

Here the similarity of two classes is determined by a specific
metric on the representation space, e.g. the cosine distance
of two class centroids. Among all base classes, we sort the
similarity of each base class with the corresponding novel
class in a descent order. The numerator is calculated by aver-
aging the similarity of the top-K similar base classes and the
denominator is calculated by averaging the similarity of all
base classes. To improve SR, the numerator indicates there
should be some similar base classes with the corresponding
novel class and the denominator indicates the base classes
should be diversified conditioned on each novel class. [30]
further points out that the few-shot performance is positively
correlated with this indicator.

3.2. The Relationship Between SR and Few-shot
Learning Performance

In this part, we will show more evidence from a statistical
perspective of the relationship between SR and few-shot
learning performance.

Specifically, a preliminary experiment is conducted as
follows: we randomly choose 500 classes from ImageNet
dataset, and further split them into 400 base classes and
100 novel classes. For each few-shot classification setting,
we randomly select 100 base classes over 400 as the base
dataset, and using all 100 novel classes to perform a 100-
way 5-shot classification. A ResNet-18 [10] is trained on the
base dataset, and we extract the high-level image features
(512-dimensional features after conv5_x layer) for novel
support set and novel testing set. We calculate the average
feature for each novel class in the novel support set as the
class centroid and directly use 1-nearest neighbor based
on the cosine distance metric defined on the representation
space to obtain the Top-1 accuracy for each novel class
of the testing set. The base dataset selection, training and
evaluating process is repeated for 100 times and for each
novel class, we run the regression model:

Acc = β1 · x1 + β2 · x2 + α+ ε (2)
{
x1 = Average Top-K Similarity with Base Classes
x2 = Average Similarity with Base Classes



where Acc represents for the Top-1 accuracy for the corre-
sponding novel class, α represents for the residual term and
ε represents for noise. The similarity of two classes in this
regression model is calculated by the cosine distance of two
centroids defined on the representation space of ResNet-18
trained by all 400 candidate base classes. Hence, totally we
could obtain 100 regression models, each for a novel class,
and each model is learned under 100 data points related to
100 different choices of base dataset.

With a different choice of K, the regression model may
show different properties. We conclude our findings from
Figure 1, 2, 3.

We calculate the average of β1 and β2 for all novel classes,
denoted as β̄1 and β̄2. β̄1 is constantly positive in all choices
of K, demonstrating the positive effect of Average Top-
K Similarity to accuracy. Figure 1 shows the change of
coefficient β̄2/β̄1 with K. The result shows that K = 5 is a
demarcation point in this specific setting. The positive effect
of Average Similarity (i.e. x2) will become negative after
K = 5. The reason is that when K is small, the positive
classes are insufficient, there is need to add more positive
classes to improve the performance, and with the increase
of K, the positive classes tend to saturate and there is an
increasing need of negative classes to enhance diversity. In
later main experiments, we set K to be a hyper-parameter.

Figure 2 is a snapshot for the two settings withK = 3 and
K = 10, which further proves the viewpoint above. More-
over, Figure 2 gives more information about the distribution
of β1 and β2.

Figure 3 shows that the two components of the SR are
relatively good proxy of the performance for few-shot learn-
ing when K is a small number (i.e. The average R2 reaches
above 0.3 whenK ≤ 10). WhenK = 1 the two components
of SR explain about 45% of the dependent variable.

0 20 40 60 80 100
K

-1.0

-0.5

0.0

0.5

1.0

be
ta

2 
/ b

et
a1

Figure 1. The coefficient β̄2/β̄1 changed with K.

Based on our findings, an optimization process could be
designed to select core base classes.
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Figure 2. We plot the coefficients β1, β2 of each novel class after
sorting increasingly. The red bar represents for the 95% confidence
interval and the blue dot shows the exact coefficients. Top: result
for Regression withK = 3, β̄1 = 0.99, β̄2 = 0.29; Bottom: result
for Regression with K = 10, β̄1 = 1.52, β̄2 = −0.39.
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Figure 3. R2 with the change of K for 100 regression models, the
red bar represents for the interval from 25-quantile to 75-quantile,
and the blue dot represents for the average R2.

4. Algorithm
4.1. A Brief Introduction to Submodularity

Definition 1. Given a finite set V = {1, 2, · · · , n}, a set
function f : 2V → R is submodular if for every A,B ∈ V :
f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

A better way to understand submodularity property is that
of diminishing returns: denote f(u|A) as f(A ∪ u)− f(A),
then we have f(u|A) ≥ f(u|B) for every A ⊆ B ⊆ V and
u /∈ B. These two definitions are proved to be equivalent
[15]. It has been proved that maximizing a submodular
objective function f(·) is an NP-hard problem. However,
with polynominal time complexity, several algorithms have
been proposed to obtain a sub-optimal solution.

A function is monotone non-decreasing if ∀A ⊆
B, f(A) ≤ f(B). f(·) is called normalized if f(∅) = 0.

In this paper we mainly introduce a submodular opti-
mization setting with cardinality constraint. The problem



is formulated as: maxS⊆V,|S|=kf(S), where f(·) is a sub-
modular function. [15] shows that a simple greedy algorithm
could be used to maximize a normalized monotone non-
decreasing submodular fuction with cardinality constraints,
with a worst-case approximation factor of 1− 1/e ≈ 0.632.
[2] shows that a normalized submodular function (may
not be monotone non-decreasing) with an exact cardinal-
ity constraint |S| = k could reach an approximation of
max{ 1−k/ene − ε, (1 + n

2
√

(n−k)k
)−1 − o(1)} with a com-

bination of random greedy algorithm and continuous double
greedy algorithm, where k is the exact number of chosen
elements and n is the total number of elements. The pro-
posed algorithm guarantees a 0.356-approximation, which is
smaller than 0.632.

4.2. Formulation

LetBu represent for collection of unselected base classes,
Bs for selected base classes and N for novel classes. The
selection process is to select a subset U with m elements
from Bu and the base dataset is composed of U and Bs.
For each class l, we denote cl as certain class feature (e.g.
its centroid of high-level feature), and for each class set A,
we denote cA = [cl1 , cl2 , · · · cl|A| ], l1, l2 · · · l|A| ∈ A as a
collection of class features.

Next, we define an operator max-k-sum as follows:

Mk(y) := max
|K|=k

∑

i∈K
yi =

k∑

j=1

y[j],

where y is a numerical vector, y[1], · · · , y[n] are the yi’s
listed in nonincreasing order. Based on our findings that SR
is highly and positively correlated to the performance on
novel classes in Section 3, the base class selection problem
could be formulated as an optimization process on SR as a
proxy. Concretely we have:

max
U⊂Bu
|U|=m

1

|N |
∑

n∈N

1

K
·MK(f(cn, {cBs

, cU}))

− λ

|N | ·
∑

n∈N

1

|Bs|+m

∑

u∈Bs∪U
f(cn, cu),

(3)

where f(ca, {cb1, · · · , cbn}) = [f(ca, cb1), · · · , f(ca, cbn)]
is a similarity function (e.g. Cosine Distance). The opti-
mization function is the same form of Equation 2, where
the first term is the numerator of SR and the second term
is the denominator). λ is seen as a hyper-parameter, whose
meaning is equivalent to −β̄2/β̄1 in Section 3.2. K is also a
hyper-parameter. For simplicity we may assume λ ≥ 0, as
when λ < 0 the two terms of optimization function 3 has
a strong positive correlation, experiment results show there
is not much improvement compared with directly setting
λ = 0. |U | = m is the cardinality constraint that exact m
base classes are needed to be selected.

The next corollary shows that Problem 3 is equivalent to
a submodular optimization.

Corollary 4.1. Considering optimization problem 3, when
λ = 0, Problem 3 is equivalent to a submodular mono-
tone non-decreasing optimization with exact cardinality con-
straint and when λ > 0, Problem 3 is equivalent to a sub-
modular optimization with exact cardinality constraint.

4.3. Optimization
4.3.1 Case 1: λ = 0

The case λ = 0 could be seen as a standard submodular
monotone non-decreasing optimization, hence we could di-
rectly use a greedy method on the value of target function,
as Algorithm 2 shows. However, for this specific target
function, a trivial setting with m ≥ K · |N | needs further
consideration. For this setting, a greedy algorithm on novel
class (Algorithm 1) could be proved to reach an optimal
solution, while Algorithm 2 could just reach sub-optimal.
Thus, the two different greedy algorithms are proposed to
deal with the trivial and non-trivial case separately. For our
description of the algorithms below, f(·, ·) denotes for the
similarity function and h(·) denotes for the optimization
function of Problem 3 with λ = 0.

Algorithm 1 Greedy Algorithm on Novel Class (f,m)
1: Let U0 ← ∅, S ← N
2: for i = 1 to m do
3: Let u ∈ Bu\Ui−1, n ∈ S be the samples maximizing

f(cu, cn).
4: Let Ui ← Ui−1 + u, S ← S − n.
5: if S = ∅ then
6: S ← N .
7: end if
8: end for
9: return Um

Algorithm 2 Greedy Algorithm on Target Function (h, m)
1: Let U0 ← ∅
2: for i = 1 to m do
3: Let ui ∈ Bu\Ui−1 maximizing h(ui|Ui−1).
4: Let Ui ← Ui−1 + ui.
5: end for
6: return Um

We further give Thm. 1, 2 to show the optimization bound
of the two algorithms. For this specific problem, the bounds
are much tighter than the generic version in [15].

Theorem 1. For Bs = ∅ and λ = 0, when m ≥ K · |N |,
using Algorithm 1 to solve for optimization problem 3, the
solution will be optimal.



Theorem 2. For Bs = ∅ and λ = 0, using Algorithm 2 to
solve for optimization problem 3, let h(·) be the optimization
function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes
and novel classes, we have h(U) ≥ (1− 1/e) · h(OPT ) +
1/e · Q, where h(OPT ) is the global optimal value of the
optimization problem.

4.3.2 Case 2: λ > 0

The case λ > 0 could be seen as a non-monotone submodu-
lar optimization, with the technique in [2], we combine both
Random Greedy Algorithm (Algorithm 3) and Continuous
Double Greedy Algorithm (Algorithm 4) for better optimiza-
tion. The Random Greedy Algorithm is an extension of the
standard Greedy Algorithm (Algorithm 2), which is fit for
settings with extremely low m. Details of the algorithm are
given in Algorithm 3.

Algorithm 3 Random Greedy Algorithm (h, m)
1: Let U0 ← ∅
2: for i = 1 to m do
3: LetMi ⊂ Bu\Ui−1 be a subset of sizemmaximizing∑

u∈Mi
h(u|Ui−1).

4: Let ui be a uniformly random sample from Mi.
5: Let Ui ← Ui−1 + ui.
6: end for
7: return Um

For much larger m, we will introduce the Continuous
Double Greedy Algorithm. The core idea is to convert the
discrete optimization of Problem 3 to a continuous version.

Let F (x) be the multilinear extension of the optimization
function h(·) as:

F (x) =
∑

S⊆Bu

h(S)
∏

u∈S
xu

∏

u/∈S
(1− xu) (4)

where x ∈ [0, 1]|Bu|. Given a vector x, F (x) represents for
the expectation of function h given a random subset of Bu
with every element u ∈ Bu i.i.d. sampled with probability
xu . For two vectors x and y, define x ∨ y and x ∧ y to
be coordinate-wise maximum and minimum separately, i.e.
(x ∨ y)u = max(xu, yu) and (x ∧ y)u = min(xu, yu). An
important property for multilinear form function F is:

∂F (x)

∂xu
= F (x ∨ u)− F (x ∧ (Bu − u)) (5)

For simplicity, in this part, notation for a subset could also be
represented as a 0-1 vector where the corresponding elements

belonging to the subset are 1 and otherwise 0, consistent
with [2]. In the double continuous greedy algorithm, we
don’t need to calculate the exact value for F (x), the only
difficulty is to calculateF (x∨u)−F (x∧(Bu−u)). Theorem
3 gives a dynamic programming for fast calculation.
Theorem 3. Let S ⊆ Bu be a random set, with each element
v in Bu i.i.d. sampled with probability (x∧ (Bu−u))v . For
each novel class n ∈ N , sort the similarity function f(cn, cb)
for each base class b ∈ B = Bu ∪ Bs in descent order,
denoting as qn,[1], qn,[2], · · · qn,[|B|], also, sort the similarity
function for every base class in S ∪ Bs in descent order,
denoting as sn,[1], sn,[2], · · · sn,[|S|+|Bs|], then we have:
F (x ∨ u)− F (x ∧ (Bu − u))

=
1

|N |·K
∑
n∈N

|B|∑
i=1

P (sn,[K]=qn,[i])max(f(cn, cu)−qn,[i], 0)

− λ ·
1

|N | ·m
∑
n∈N

f(cn, cu)

(6)

The probability term P (sn,[K] = qn,[i]) for n ∈ N is
defined over all random subsets S, where sn,[K] could be
seen as a random variable. This probability term could be
solved using dynamic programming in O(K · |B| · |N |) time
complexity by the following recursion equations:

P (sn,[j] ≥ qn,[i]) = (1− x[i]) · P (sn,[j] ≥ qn,[i−1])

+ x[i] · P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bu

P (sn,[j] ≥ qn,[i]) = P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bs

P (sn,[j]=qn,[i])=P (sn,[j] ≥ qn,[i])− P (sn,[j] ≥ qn,[i−1])

(7)

where j runs for 1 · · ·K and i runs for 1 · · · |B|. 1

Algorithm 4 shows the complete process of the Contin-
uous Double Greedy Algorithm. The algorithm first uses a
gradient-based method to optimize the surrogate multilinear
extension of the submodular target function and returns a
sub-optimal continuous vector x, which represents for the
probability each element is selected. Then, certain round-
ing technique such as Pipage Rounding [3, 26] is used to
transform the resulting fractional solution into an integral
solution. 2

A similar optimization bound analysis of Algorithm 3
and Algorithm 4 is given in Theorem 4.

Theorem 4. For Bs = ∅ and λ > 0, using a combination of
Algorithm 3 and 4 to solve for optimization problem 3 with
λ > 0, h and Q are defined same as Theorem 2, we have

E(h(U)) ≥ max (
1−m/er

e
· h(OPT ) + C1 ·Q,

(1 +
r

2
√

(r −m)m
)−1 · h(OPT ) + C2 ·Q)

For 0 < λ < 1
e−1 , we have C1 = 1

e + (1− 1
e )mr − (1− 1

e ) ·
λ > 0 and C2 = (1−λ)r

2
√

(r−m)m+r
− ε ≥ 1

2 (1− λ) > 0,where

r = |Bu|. The first term is the lower bound for Algorithm 3
and the second term for Algorithm 4.

1Details are shown in Appendix 2.2 and 2.3.
2See Appendix 2.4.



Algorithm 4 Continuous Double Greedy Algorithm (F , m)
1: Initialize: x0 ← ∅, y0 ← Bu
2: for time step t ∈ [1, T ] do
3: for every u ∈ Bu do
4: Let au← ∂F (xt−1)

∂xu
, bu← ∂F (yt−1)

∂yu
by Eq. 6, 7.

5: Let a′u(l)←max(au− l, 0),b′u(l)←max(bu+ l, 0)

6: Let dxu

dt (l, t−1)← a′u
a′u+b

′
u

, dyudt (l, t−1)←− b′u
a′u+b

′
u

.
7: end for
8: Find l∗ satisfying

∑
u∈Bu

dxu

dt (l∗, t− 1) = m.
9: Do a step of Gradient Ascent for x and Gradient

Descent for y: xtu = xt−1u + 1
T · dxu

dt (l∗, t − 1),
ytu = yt−1u − 1

T ·
dyu
dt (l∗, t− 1).

10: end for
11: Process certain rounding technique using xT to get U .
12: return U

Theorem 4 indicates that if neglecting the term with Q,
when m < 0.08r or m > 0.92r, we should use Algorithm 3
and otherwise Algorithm 4 by comparing two bounds.

As a conclusion of this section, we list the applicability
of different algorithms for this specific problem in Table 1.

5. Experiments
5.1. Experimental Settings

Basically, we design three different settings to show the
superiority of our proposed algorithm:
Pre-trained Selection A pre-trained model is given, and
the base classes selection could be conducted with the help
of the pre-trained model. Generally we could use the pre-
trained model to extract image representations. The setting
also supposes that we know about the novel support set. In
this paper, we evaluate the generalized performance only via
the base model trained on the selected base classes, while
in practice we could also use these selected base classes to
further fine-tune the given pre-trained model.
Cold Start Selection No pre-trained model is given, hence
the base classes selection is conducted in an incremental
manner. For each turn, the selection of the incremental base
classes is based on the trained base model from the previous
turn. The novel support set is also given. Note that the
setting is somewhat like a curriculum learning [1].
General Selection The novel support set is not known be-
forehand (i.e. Select a general base dataset that performs
well on any composition of novel classes). In this paper for
simplicity, we also suppose a pre-trained model is given as
in the Pre-trained Selection setting.

In our experiments, we use two datasets for validating
general classification: ImageNet and Caltech256, and one
for fine-grained classification: CUB-200-2011. For Ima-
geNet, we use the other 500 classes in addition to those used

in the preliminary experiment in Section 3, which are further
split into 400 candidate base classes and 100 novel classes.
For all three tasks, the base dataset is selected from these
400 candidate base classes, and further evaluate the gener-
alization performance on the 100 novel ImageNet classes,
Caltech256 and CUB-200-2011.

For all experiments, we train a standard ResNet-18 [10]
backbone as the base model on the selected base classes. For
few-shot learning task on novel classes, we use two different
heads: one is the cosine similarity on the representation
space (512-dimensional features after conv5_x layer), which
is a simplified version of Matching Network [25] without
meta training step, representing the branch of metric-based
approaches in few-shot learning. The other is the softmax
regression on the representation space, which is a simple
method from the branch of learning-based approaches. 3 We
use different heads to show our proposed selection method
is model-agnostic.

As for the details of the experiment, we use an active
learning manner as mentioned in Section 1. Each candidate
base class only contains 50 images before selected. We uti-
lize these images to calculate class representation. When
a base class is selected, the number of training images for
this class could be expanded to a relatively abundant num-
ber (For this experiment all training images of this class in
ImageNet are used, which locates at the interval from about
800 to 1,300). We allow for a slight difference in the number
of images per class to simulate a practical scenario. For a
p-way k-shot setting, we randomly select p novel classes and
then choose k samples per novel class as the novel support
set; another 100, 50, 40 samples disjoint with the support
set per novel class as the novel testing set for ImageNet,
Caltech and CUB-200-2011. The flow of the experiment
is to run selection algorithms, expand the selected classes,
train a base model on the expanded base dataset and evaluate
performance on testing set. The process is repeated for 10
times with different randomization, and we report the aver-
age Top-1 accuracy for each experiment setting. For settings
containing pre-trained model, in this paper we use ResNet-18
trained on full training images from randomly selected 100
classes extracted from the candidate base classes in Section
3, which is disjoint with the base and novel classes used in
this section. We also emphasize that when comparing with
different methods within the same setting, the same novel
support set and novel testing set are used for each turn of the
experiment for a fair comparison.

We consider three baselines in our experiments: the first
is the Random Selection, which draws the base classes uni-
formly, which is a rather simple baseline but common in
the real scenario, the second is using the Domain Similarity
metric which is generally used in [17, 20, 21]. The idea is
to maximize a pre-defined domain similarity between rep-

3The result of softmax regression head is shown in 4.



Table 1. Conclusion of Applicability of Different Algorithms
Parameter Algorithm Applicability Complexity

λ = 0 Greedy on Novel Class m > γ ·K · |N |, with γ slightly larger than 1 O(|B| · log|B| · |N |)
λ = 0 Greedy on Target Function m < γ ·K · |N |, with γ slightly larger than 1 O(m · (|B|+ |N | · logK))
λ > 0 Random Greedy m < 0.08 · |Bu| or m > 0.92 · |Bu| O(m · (|B| · logm+ |N | · logK))
λ > 0 Continuous Double Greedy 0.08 · |Bu| < m < 0.92 · |Bu| O(T ·K · |B|2 · |N |)

resentation for each selected element in the source domain
and the representation for the target domain. The method
is first proposed for sample selection, and in this paper we
extend to the class selection by viewing the centroid of fea-
tures for a class as a sample and viewing the centroid of
the novel support set as representation for the target domain.
The baseline will be used in Pre-trained Selection and Cold
Start Selection. The third is the K-medoids algorithm [16],
which is a clustering algorithm as a baseline of the General
Selection setting. For all baselines and our algorithm, cosine
similarity on representation space is used for calculating the
similarity of two representations.

5.2. Results

5.2.1 Pre-trained Selection

Table 2, 3, 4 show the results of the Pre-trained Selection.
When setting K = 1, the algorithm reaches the best perfor-
mance in all cases. For the ImageNet dataset in Table 2, we
show that Algorithm 1 and Algorithm 2 are fit for different
cases, depending on the number of selected classes, as Table
1 describes. For m = 100 and m = 20 case, our algorithm
obtains a superior accuracy of about 4% and 2% separately
compared with random selection, which is a relatively huge
promotion in few-shot image classification. Besides, the
promotion is rather stable concerning the shot number. The
Domain Similarity algorithm performs worse because of the
cluster effect, where the selected base classes are concen-
trated around the centroid of the target domain, in contrast
with the idea of enhancing diversity we show in Section
3. For Caltech256 as novel classes in Table 3, a transfer
distribution on dataset is introduced. It shows that in such
case, the improved margin compared to random selection is
much larger, reaching about 10% when m = 100. This is be-
cause our algorithm enjoys the double advantages of transfer
effect and class selection effect; the former also promotes
the Domain Similarity algorithm. For the CUB-200-2011
dataset in Table 4, we further show that our algorithm im-
proves the margin much more significantly in a fine-grained
manner, reaching about 11.2% for 5-shot setting and 13.6%
for 20-shot setting.

5.2.2 Cold Start Selection

The Cold Start Selection is more difficult than the Pre-trained
Selection in that there is no pre-trained model at the early
stage, leading to an unknown or imprecise image represen-

tation space. Hence the representation space needs to be
learned incrementally. For each turn, the selection of the
incremental base classes is based on the trained base model
from the previous turn. Noticing that in this incremental
learning manner both the complexity and the effectiveness
of selection should be considered. To limit the complexity
we increasingly select the same number of classes in each
turn as the total number of selected base classes in the previ-
ous turn (i.e. doubling the number of selected classes in each
turn). This double-increasing mechanism could guarantee a
linear time complexity of m in training the base model. For
example, in Table 5 a 6-12-25-50-100 mechanism represents
for selecting 6 classes randomly in Turn 1, and continue
selecting another 6 classes based on the model trained by
classes from Turn 1 to form a selection of 12 classes in Turn
2 and so on. As the representation space is not so stable as
the Pre-trained Selection, a larger K with K = 3, λ = 0 is
much better. Table 5 shows the result of the algorithms. Our
proposed method exhibits a 2.8% promotion compared to
random selection. We also highlight that the upper bound
of the algorithm is limited by the Pre-trained selection (with
a pre-trained model on 100 classes with K = 3), which is
42.89%. By using the double-increasing mechanism, the
performance is just slightly lower than this upper bound in
linear time complexity.

We also show some ablation studies by changing the
selection of K and the selection mechanism. As for the se-
lection mechanism, comparing 6-12-25-50-100 and 50-100,
we draw a conclusion that the incremental learning of the
representation space is much more effective, and compared
to 10-20-40-80-100 it shows that the selection in the early
stage of Cold Start Selection is more important than the later
stage.

5.2.3 General Selection

General Selection is the most difficult setting in this paper,
as we do not know the novel classes previously. The goal
is to select a base dataset that could perform well on any
composition of novel classes. In dealing with this problem,
we make a slight change to our optimization framework that
we take all candidate base classes as the novel classes.
The implicit assumption is that the candidate base classes
represent for a subsample of the global world categories. In
this setting, we should choose a much largerK and λ for this
setting, especially for fine-grained classification, to enhance
representativeness and diversity for each selected class.



Table 2. ImageNet: Pre-trained Selection, 100-way novel classes
Algorithm m=100, 5-shot m=100, 20-shot m=20, 5-shot m=20, 20-shot

Random 39.39%± 0.82% 49.47%± 0.67% 23.89%± 0.56% 33.06%± 0.47%
DomSim 38.00%± 0.36% 48.80%± 0.79% 23.15%± 0.43% 31.81%± 0.58%

Alg. 1, K = 1, λ = 0 43.42%± 0.78% 53.79%± 0.37% 25.71%± 0.43% 34.67%± 0.36%
Alg. 2, K = 1, λ = 0 43.20%± 0.76% 53.61%± 0.27% 26.13%± 0.44% 34.97%± 0.45%
Alg. 2, K = 3, λ = 0 42.89%± 0.43% 53.13%± 0.27% 25.10%± 0.48% 34.52%± 0.51%

Table 3. Caltech256: Pre-trained Selection, 100-way
Algorithm m=100, 5-shot m=100, 20-shot

Random 45.31%± 1.32% 54.97%± 1.23%
DomSim 49.55%± 1.28% 58.84%± 1.01%

Alg. 1, K = 1, λ = 0 55.41%± 1.25% 64.46%± 0.99%
Alg. 2, K = 3, λ = 0 54.94%± 1.14% 63.58%± 0.98%

Table 4. CUB-200-2011: Pre-trained Selection, 100-way
Algorithm m=100, 5-shot m=100, 20-shot

Random 18.46%± 1.19% 26.14%± 1.44%
DomSim 28.11%± 0.44% 38.26%± 0.45%

Alg. 1, K = 1, λ = 0 29.65%± 0.82% 39.77%± 0.41%
Alg. 2, K = 3, λ = 0 28.04%± 1.82% 37.22%± 0.69%

Table 5. ImageNet: Cold Start Selection, 100-way
Algorithm Mechanism Top-1 Accuracy

Random - 39.39%± 0.82%
DomSim 6-12-25-50-100 39.30%± 0.40%

Alg. 1, K = 1, λ = 0 6-12-25-50-100 40.96%± 0.50%
Alg. 2, K = 1, λ = 0 6-12-25-50-100 41.75%± 0.59%
Alg. 2, K = 3, λ = 0 6-12-25-50-100 42.17%± 0.67%
Alg. 2, K = 5, λ = 0 6-12-25-50-100 41.33%± 0.36%
Alg. 2, K = 3, λ = 0 10-20-40-80-100 41.61%± 0.76%
Alg. 2, K = 3, λ = 0 50-100 40.88%± 0.66%

Pre-trained (Upperbound) [100]-100 42.89%± 0.43%

Results of ImageNet and Caltech256 (Table 6, 7) show
that our algorithms perform much better when the number
of selected classes is larger. Specifically, in m = 100 case
we promote 0.9% and 4.5% in two datasets separately com-
pared with random selection, however in m = 20 case the
promotion is not so obvious, only 0.3% and 0.9%, which
shows that a larger base dataset may contain more general
image information. As for the result of CUB-200-2011 (Ta-
ble 8), our proposed algorithm performs much better due
to the effect of diversity, reaching an increase of 6.4% in
m = 100 case. Besides, the result also shows that the per-
formance reaches the best with a positive λ in fine-grained
classification, illustrating the necessity of diversity (Accord-
ing to Table 1, we choose Algorithm 3 for m = 20 and
Algorithm 4 for m = 100). The results also show that the
baseline K-Medoids is rather unstable in different cases. It
may reach the state-of-the-art in some cases but may perform
even worse than random in other cases.

Table 6. ImageNet: General Selection, 100-way
Algorithm m=20, 20-shot m=100, 20-shot

Random 33.06%± 0.47% 49.47%± 0.67%
K-Medoids 33.50%± 0.28% 49.17%± 0.38%

Alg. 2, K = 3, λ = 0 33.38%± 0.25% 50.00%± 0.38%
Alg. 2, K = 5, λ = 0 33.32%± 0.30% 50.35%± 0.29%

Alg. 2, K = 10, λ = 0 33.01%± 0.38% 50.21%± 0.26%
Alg. 3/4, K = 5, λ = 0.2 32.82%± 0.35% 49.19%± 0.34%

Table 7. Caltech256: General Selection, 100-way
Algorithm m=20, 20-shot m=100, 20-shot

Random 40.26%± 0.90% 54.97%± 1.23%
K-Medoids 40.16%± 0.83% 59.27%± 1.01%

Alg. 2, K = 3, λ = 0 40.72%± 0.92% 59.23%± 0.94%
Alg. 2, K = 5, λ = 0 40.98%± 0.84% 58.68%± 0.94%

Alg. 2, K = 10, λ = 0 41.18%± 0.88% 59.52%± 0.91%
Alg. 3/4, K = 5, λ = 0.2 40.31%± 1.24% 57.79%± 0.94%

Table 8. CUB-200-2011: General Selection, 100-way
Algorithm m=20, 20-shot m=100, 20-shot

Random 15.25%± 0.91% 26.14%± 1.44%
K-Medoids 14.96%± 0.47% 24.38%± 0.59%

Alg. 2, K = 3, λ = 0 14.74%± 0.48% 27.08%± 0.52%
Alg. 2, K = 5, λ = 0 16.06%± 0.59% 28.33%± 0.57%

Alg. 2, K = 10, λ = 0 16.21%± 0.33% 27.63%± 0.66%
Alg. 3/4, K = 5, λ = 0.2 16.61%± 0.36% 32.50%± 0.58%
Alg. 3/4, K = 5, λ = 0.5 17.09%± 0.33% 31.01%± 0.58%

6. Conclusions
This paper focuses on how to construct a high-quality

base dataset with limited number of classes from a wide
broad of candidates. We propose the Similarity Ratio as a
proxy of the performance of few-shot learning and further
formulate the base class selection problem as an optimization
process over Similarity Ratio. Further experiments in differ-
ent scenarios show that the proposed algorithm is superior
to random selection and some typical baselines in selecting
a better base dataset, which shows that, besides advanced
few-shot algorithms, a reasonable selection of base dataset
is also highly desired in few-shot learning.
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Appendix of Learning to Select Base Classes for Few-shot Classification

1. Proof of the Main Theories
1.1. Proof for Corollary 4.1

Lemma 1. ∀n ∈ N, gn : 2Bu → R≥0, gn(U) := MK(f(cn, {cBs , cU})) is a submodular function.

Proof. ∀A ⊆ B ⊆ BU , let u ∈ BU\B, define the top-K similar classes with class n in Bs ∪A and Bs ∪B are KA and KB

separately, we also define that after adding class u to both A and B, the top-K similar classes become Ku
A and Ku

B . Next, we
discuss four cases:

(1) u ∈ Ku
A but u ∈ Ku

B: In this case, gn(A + u) − gn(A) = f(cn, cu) − min
x∈KA

f(cn, cx) and gn(B + u) − gn(B) =

f(cn, cu) − min
x∈KB

f(cn, cx). As (Bs ∪ A) ⊆ (Bs ∪ B), there must be min
x∈KA

f(cn, cx) ≤ min
x∈KB

f(cn, cx). Thus we have

gn(A+ u)− gn(A) ≥ gn(B + u)− gn(B).
(2) u ∈ Ku

A but u /∈ Ku
B : In this case, easy to show that gn(A+ u)− gn(A) > 0 = gn(B + u)− gn(B).

(3) u /∈ Ku
A but u ∈ Ku

B: This case will not exist, as it represents that f(cn, cu) ≤ min
x∈KA

f(cn, cx) and f(cn, cu) ≥
min
x∈KB

f(cn, cx). This will induce a contradictory to min
x∈KA

f(cn, cx) ≤ min
x∈KB

f(cn, cx).

(4) u /∈ Ku
A but u /∈ Ku

B : In this case, easy to show that gn(A+ u)− gn(A) = gn(B + u)− gn(B) = 0.
In conclusion, ∀A ⊆ B ⊆ BU , u ∈ BU\B, we have gn(A+ u)− gn(A) ≥ gn(B + u)− gn(B), which demonstrates that

gn(·) is a submodular function.

Corollary 1. (Corollary 4.1 in original paper) Considering optimization problem 3 (in original paper), when λ = 0, Problem
3 is equivalent to a submodular monotone non-decreasing optimization with exact cardinality constraint and when λ > 0,
Problem 3 is equivalent to a submodular optimization with exact cardinality.

Proof. When λ = 0, by Lemma 1 and the property of the additivity of submodular function that if f and g are both submodular,
then h = f + g is also submodular, easy to show that the optimization function is submodular. Easy to show that gn(U) is
also monotone non-decreasing, so Problem 3 with λ = 0 is a submodular monotone non-decreasing optimization with exact
cardinality constraint. Also, the regularizer term of the optimization function

R(U) =
∑

n∈N

1

|Bs|+m

∑

u∈Bs∪U
f(cn, cu)

is a modular function satisfying R(A + u) − R(A) = R(B + u) − R(B),∀A ⊆ B ⊆ V . By the property of submodular
function, the whole optimization function 3 with λ > 0 is also a submodular function (but not monotone non-decreasing).

1.2. Proof for Theorem 1

Theorem 1. For Bs = ∅ and λ = 0, when m ≥ K · |N |, using Greedy on Novel Class to solve for optimization problem 3,
the solution will be optimal.

Proof. The maximum number of base classes for top-K most similar classes with each novel class is K · |N |, thus when
m ≥ K · |N |, a greedy algorithm on finding top-K most similar classes for each novel class is optimal.

1.3. Proof for Theorem 2

Theorem 2. For Bs = ∅ and λ = 0, using Greedy on Target Function to solve for optimization problem 3, let h(·) be the
optimization function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes and novel classes, we have h(U) ≥ (1−1/e) ·h(OPT )+1/e ·Q.



Proof. Let us supposeAi denotes the chosen subset after greedy step i. Let function γ(u) = 1
N

∑
n∈N f(cn, cu). According to

the greedy algorithm, AK should be top-k elements in Bu maximizing γ(u). Easy to show that h(AK) = 1
K

∑
u∈AK

γ(u) ≥
Q.

[3] shows that for submodular monotone non-decreasing problem, we have

h(OPT )− h(Ai) ≤ (1− 1/k) · (h(OPT )− h(Ai−1)),

Combining the inequality for every K ≤ i ≤ m and take limitations we have

h(U) = h(Am) ≥ (1− 1/e) · h(OPT ) + 1/e · h(AK) ≥ (1− 1/e) · h(OPT ) + 1/e ·Q.

1.4. Proof for Theorem 3

Theorem 3. Let S ⊆ Bu is a random set, with each element v in Bu i.i.d sampled with probability (x ∧ (Bu − u))v. For
each novel class n ∈ N , we sort the similarity function f(cn, cb) for every base class b ∈ B in descent order, denoting as
qn,[1], qn,[2], · · · qn,[|B|]. Similarly, we also sort the similarity function for every base class in S ∪Bs in descent order, denoting
as sn,[1], sn,[2], · · · sn,[|S|+|Bs|], then we have:

F (x ∨ u)− F (x ∧ (Bu − u))

=
1

|N | ·K
∑

n∈N

|B|∑

i=1

P (sn,[K] = qn,[i]) max(f(cn, cu)− qn,[i], 0)

− λ · 1

|N | ·m
∑

n∈N
f(cn, cu)

(1)

Proof.

F (x ∨ u)− F (x ∧ (Bu − u))

=
∑

S⊆Bu\u
h(S + u)

∏

v∈S
v 6=u

xv
∏

v/∈S
v 6=u

(1− xv) · 1−
∑

S⊆Bu\u
h(S)

∏

v∈S
v 6=u

xv
∏

v/∈S
v 6=u

(1− xv) · 1

=
∑

S⊆Bu\u
(h(S + u)− h(S))

∏

v∈S
v 6=u

xv
∏

v/∈S
v 6=u

(1− xv)

=
∑

S⊆Bu\u
(

1

|N | ·K
∑

n∈N
max(f(cn, cu)− sn,[K], 0))

∏

v∈S
v 6=u

xv
∏

v/∈S
v 6=u

(1− xv)

− λ · 1

|N | ·m
∑

n∈N
f(cn, cu)

∑

S⊆Bu\u
(
∏

v∈S
v 6=u

xv
∏

v/∈S
v 6=u

(1− xv))

=
1

|N | ·K
∑

n∈N

|B|∑

i=1

P (sn,[K] = qn,[i]) max(f(cn, cu)− qn,[i], 0)

− λ · 1

|N | ·m
∑

n∈N
f(cn, cu)

1.5. Proof for Equation 7 (in Original Paper)

The only unknown term P (sn,[K] = qn,[i]) for n ∈ N could be solved using dynamic programming in O(K · |B| · |N |)
time complexity by the following two recursion equations:

{
P (sn,[j] ≥ qn,[i]) = (1− x[i]) · P (sn,[j] ≥ qn,[i−1]) + x[i] · P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bu
P (sn,[j] ≥ qn,[i]) = P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bs

(2)



P (sn,[j] = qn,[i]) = P (sn,[j] ≥ qn,[i])− P (sn,[j] ≥ qn,[i−1]) (3)

Proof. Equation 3 is obvious. Below we give the proof of 2, for the case of [i] ∈ Bu:

P (sn,[j] = qn,[i])

= {P (sn,[j−1] ≥ qn,[i−1])−
i−1∑

m=1

P (sn,[j] = qn,[m])} · x[i]

= {P (sn,[j−1] ≥ qn,[i−1])−
i−1∑

m=1

(P (sn,[j] ≥ qn,[m])− P (sn,[j] ≥ qn,[m−1]))} · x[i]

= {P (sn,[j−1] ≥ qn,[i−1])− P (sn,[j] ≥ qn,[i−1])} · x[i]
Plug Equation 3 to the equation above and that will be Equation 2.

Note that the vector x could also be seen as an extension form in [0, 1]|B|: x[i] represents for the probability of element [i]
being selected, when using these two equations, if [i] ∈ Bs we set x[i] = 1; if [i] = v ∈ Bu\u, we set x[i] = xv; and if [i] = u
we set x[i] = 0. Hence for [i] ∈ Bs we have x[i] = 1 and plug into the first equation of 2 to obtain the second equation.

1.6. Proof for Theorem 4

Theorem 4. For Bs = ∅ and λ > 0, using a combination of Random Greedy Algorithm and Continuous Double Greedy
Algorithm to solve for optimization problem 3, let h(·) be the optimization function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes and novel classes, and let r be the cardinality of Bu, we have

E(h(U)) ≥ max(
1−m/er

e
· h(OPT ) + C1 ·Q, (1 +

r

2
√

(r −m)m
)−1 · h(OPT ) + C2 ·Q)

For 0 < λ < 1
e−1 , we have C1 = 1

e + (1− 1
e )mr − (1− 1

e ) · λ > 0 and C2 = (1−λ)r
2
√

(r−m)m+r
− ε ≥ 1

2 (1− λ) > 0.

Proof. 1. For random greedy algorithm, our proof follows the Lemma 4.7 and Lemma 4.8 in [2] with slight differences. We
suggest the readers read the proof of [2] foreahead. The first difference is that h(Bu) may be negative, and it should not be
taken away while calculating E(h(Ai−1 ∪M ′i)). Considering h(Bu) < 0 we have:

m−Xi−1
r

· h(Bu) ≥ m

r
· h(Bu) =

m

r
(1− λ · r

m
) ·Q (4)

The inequality follows by the definition of Xi−1: Xi−1 = |OPT\Ai| ≥ 0. And this term should be added to RHS of Lemma
4.7 in [2] with a m−1 coefficient according to the process of proof. Thus Lemma 4.7 could be rewritten in our problem as: for
every K ≤ i ≤ m:

E(hui(Ai−1)) ≥ [r/m− 1 + (1− 1/m)i−1] · (1− 1/k)i−1

n
· h(OPT )

− E(h(Ai−1)

k
+

1

r
(1− λ · r

m
) ·Q− Ei−1

The second difference is that we start our algorithm from i = K and similar to Theorem 1 we have

h(AK) = (
1

K
− λ

m
)
∑

u∈AK

γ(u) ≥ (1− λ ·K
m

) ·Q. (5)

Thus compared to Lemma 4.8 in [2], we need to add two terms related to Equation 4 and 5. After repeated applications of
Lemma 4.7, the term related to 4 is calculated by:

lim
K→0

m→+∞

m∑

i=K

(1− 1

m
)i · (1

r
(1− λ · r

m
) ·Q) = (1− 1

e
)
m

r
(1− λ r

m
) ·Q.



And the term related to 5 is calculated by:

lim
K→0

m→+∞

(1− 1

m
)m−Kh(Ak) ≥ 1

e
·Q.

Thus combine these term with the coefficient h(OPT ) unchanged we could prove that:

C1 =
1

e
+ (1− 1

e
)
m

r
− (1− 1

e
) · λ

And for λ > 1/(e− 1), C1 guarantees to be non-negative.
2. For double continuous greedy algorithm, refer to the Theorem 3.2 in [2] with some deformation we have:

h(U) ≥
h(OPT ) + 1

2 (
√

r−m+K
m−K )h(AK) +

√
m−K
r−m+Kh(Bu))

1 + 1
2

r√
(r−m+K)(m−K)

(6)

From Theorem 1, we could conclude that h(AK) = ( 1
K − λ

m )
∑
u∈AK

γ(u) ≥ (1 − λ·K
m ) · Q. Also, easy to show that

h(Bu) ≥ (1− λ·r
m ) ·Q. Thus we could put these two inequality to Equation 6 and as K << m and K << r, we could omit

the term with K. Then Equation 6 is equivalent to the inequality below:

h(U) ≥ (1 +
r

2
√

(r −m)m
)−1 · h(OPT ) + C2 ·Q) (7)

And we have:

C2 = (1 +
r

2
√

(r −m)m
)−1 · 1

2
· (
√
r −m
m

+

√
m

r −m −
λ · r√

(r −m)m
)− ε

=
(1− λ)r

2
√

(r −m)m+ r
− ε

Let α = m/r ∈ (0, 1) denote for the proportion of chosen classes with respect to all classes, we find that C = (1 +
2
√

(1− α)α)−1(1− λ). Thus, the extremum is taken at α = 1/2, and we have C ≥ 1
2 · (1− λ), which is our theorem.

Theorem 2 shows that when combining random greedy algorithm and double continuous greedy algorithm, and for
0 < λ < 1/(e − 1), we could reach a 0.356-approximation. It could be easily shown by comparing the two bounds that
when m < 0.082r or m > 0.918r we choose random greedy algorithm and when 0.082r ≤ m ≤ 0.918r we choose double
continuous greedy algorithm.

2. Details of Continuous Double Greedy Algorithm
2.1. Reduction

To simplify our discussion in the original paper, we assume the following reduction of the original problem [2] is applied:

Reduction 1. For the problem of max {h(U) : |U | = m,U ⊂ Bu}, we may assume 2m < |Bu|.
Proof. If this is not the case, let m̄ = |Bu| −m and h̄(U) = h(Bu\U), it could be easily checked that 2m̄ < |Bu| and the
problem max {h̄(U) : |U | = m̄, U ⊂ Bu} is equivalent to the original problem.

The details of Algorithm 4 in the original paper are based on the assumption 2m ≤ |Bu|.
2.2. Initial State of Dynamic Programming

The explanation for P (sn,[j] ≥ qn,[i]) is the probability of the jth-largest similarity between base classes in the random set
S ∈ Bs and the novel class n larger than qn,[i], i.e. the ith-largest similarity between base classes in Bu and the novel class n.
From this definition, the initial state of the dynamic programming process is:

P (sn,[1] ≥ qn,[1]) = x[1]

P (sn,[j] ≥ qn,[1]) = 0 for j = 2, 3, · · ·K
P (sn,[1] ≥ qn,[i]) = (1− P (sn,[1] ≥ qn,[i−1])) · x[i] for i = 2, 3, · · · |B|



2.3. Pruning of Dynamic Programming

According to Equation 6 and 7 in original paper, we need to calculate Pu(sn,[j] ≥ qn,[i]) for j = 1 · · ·K and i = 1 · · · |B|,
for each u ∈ Bu and novel class n. Noticing that here we use Pu instead of P because for each u ∈ Bu, we must set
xu = (x ∧ (Bu − u))u = 0 and run dynamic programming by Equation 7. Thus the result for P (sn,[j] ≥ qn,[i]) is different
considering selecting different u. Traditionally, we need to fix and loop u ∈ Bu, n ∈ N to calculate Pu(sn,[j] ≥ qn,[i]) in
O(K · |B|2 · |N |). However, in this section, we introduce a pruning method, which could largely decrease the time complexity.
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Figure 1. Example of Pruning Methods

The keypoint is that we could pre-compute Ppre(sn,[j] ≥ qn,[i]), as Figure 1 shows. The dynamic programming (DP) table
of Ppre(sn,[j] ≥ qn,[i]) is constructed by setting the probability vector x as its original value, without setting certain xu to
be 0. In this way, when different u ∈ Bu is selected, we could utilize this pre-calculation DP table. The unique difference
for calculating Ppre(sn,[j] ≥ qn,[i]) and Pu(sn,[j] ≥ qn,[i]) is that we need to set corresponding xu = 0, as the right part
of Figure 1 shows. Let us suppose u = [a] and we encourage two pruning methods in this paper: First, if |Ppre(sn,[j] ≥
qn,[a])− Ppre(sn,[j] ≥ qn,[a−1])| < ε for all j = 1, · · · ,K, then there is no need to re-calculate Pu(sn,[j] ≥ qn,[i]), and we
could directly use Ppre(sn,[j] ≥ qn,[i]) instead. Noticing that when a is relatively large, there is a high probability satisfying
the condition above, thus we could decrease the constant number of the time complexity of the algorithm substantially. Second,
even though there is need to re-calculate DP table for Pu(sn,[j] ≥ qn,[i]), we find that the left part of the DP table of column
a does not need to re-calculate as well, as Figure 1 shows. In this way, we could only re-calculate the right part (the green
area). By using these two pruning methods simultaneously, the general complexity of the algorithm is relatively low compared
with the worst case O(T ·K · |B|2 · |N |). The algorithm could further be easily extended to parallel computing version for a
greater acceleration.

2.4. Pipage Rounding

The original paper mentions that, to transform the fractional solution obtained by Algorithm 4 to an integral solution, we
may use some rounding techniques. One of the classical trick is Pipage Rounding.

We need three things to make Pipage Rounding work:
1. For any x ∈ P , we need a vector v and α, β > 0 such that x + αv ∈ P or x − βv ∈ P have strictly more integral

coordinates.
2. For all x, the function gx(t) := F (x+ tv) needs to be convex.
3. Finally, we need a starting fractional x with a guarantee that F (x) ≥ ρ ·OPT .
where P = {x ∈ [0, 1]|Bu| :

∑|Bu|
j=1 xj = m} is a polytope constraint and F (·) is the multi-linear extension of the original

optimization function h(·).
Noticing that the assumption 2 and 3 are satisfied in Non-monotone Submodular Optimization, where assumption 2 is

proved by [1], and assumption 3 is consistent with Theorem 4 in original paper. Next we focus on assumption 1.



Suppose x is a non-integral vector in P and there are at least two fractional coordinates. Let it be xp and xq. Define
v = ep − eq, where ep is the vector with 1 in the pth coordinate and 0 elsewhere. Let α = min(1 − xp, xq) and
β = min(1 − xq, xp). After constructing v, α, β, easy to show that x + αv and x − βv are both in P and both of
them have strictyly more integral coordinates.

We show that all three assumptions are satisfied, for running Pipage Rounding, we select two coordinates of x at each time,
selecting v, α, β as above, compare F (x+ αv) and F (x− βv) and pick the probability vector making the value larger (i.e.
x+ αv or x− βv) as the new probability vector x. When calculating the value of the function, we still just need to calculate
F (x+ αv)− F (x) instead of directly calculating F (x+ αv) by the equation:

F (· · · , 1, · · · , x′q, · · · )− F (· · · , xp, · · · , xq, · · · ) =

(F (· · · , 1, · · · , x′q, · · · )− F (· · · , xp, · · · , x′q, · · · ))+
(F (· · · , xp, · · · , x′q, · · · )− F (· · · , xp, · · · , xq, · · · )),

and convert the problem of change in two coordinates to change in only one coordinate, which could be solved using dynamic
programming the same as Equation 6 and 7 with a slight difference, as is the case of F (x− βv). Repeat this process until
the component of x is all integral (i.e. 1 or 0). From assumption 1 we know that the algorithm will definitely converged to
an integral solution. [1] also shows that the integral solution x∗ after running Pipage Rounding also satisfies F (x∗) ≥ F (x),
which does not change the lower bound of Continuous Double Greedy Algorithm.

2.5. Extensions

We also note that Algorithm 4 (along with Algorithm 3) in original paper has more applicability in real cases, especially
when there are some modular constraints. For example, we could add a constraint to the original problem that the difficulty of
obtaining a sufficient image set for each base class could be quantified as a real number, and we should balance the accuracy
of classification on novel classes and the total difficulty of obtaining base dataset when selecting base classes. The setting is
equivalent to substact a hyper-parameter µ multiplying the total difficulty from the original optimization function. Noticing the
total difficulty is a modular term, thus the new optimization function is also submodular and we could still solve this new
problem by non-monotone submodular optimization.

3. Complexity Analysis
For Algorithm 1, we use a balanced binary search tree to record the similarity of base classes with each novel class.

Establishing and updating the search tree cost O(|B| · log|B| · |N |) totally.
For Algorithm 2 and 3, we use a minimum heap to record current top-K similar base classes for each novel class. For each

turn, the calculation of all h(ui|Ui−1) costs O(|B|), for Algorithm 2 finding the top-1 of h(ui|Ui−1) costs O(|B|) and for
Algorithm 3 finding top-m elements costs O(|B| · logm). Finally the update of the minimum heap costs O(|N | · logK). Thus
totally the complexity is O(m · (|B|+ |N | · logK)) for Algorithm 2 and O(m · (|B| · logm+ |N | · logK)) for Algorithm 3.

For Algorithm 4, for each turn t and for each u ∈ Bu, the dynamic programming process costs O(K · |B| · |N |). Thus, the
worst-case complexity of the Double Continuous Greedy Algorithm is O(T ·K · |B|2 · |N |). However, with some pruning
strategy (see Appendix), the constant number of the complexity is relatively low (much smaller than 1).

4. More Ablation Studies
4.1. Effects of Model Head

Table 1. ImageNet: Pre-trained Selection, 100-way novel classes
Algorithm Head m=100, 5-shot m=100, 20-shot m=20, 5-shot m=20, 20-shot

Random 1-NN 39.39%± 0.82% 49.47%± 0.67% 23.89%± 0.56% 33.06%± 0.47%
SR 38.74%± 0.76% 50.20%± 0.40% 24.29%± 0.49% 36.38%± 0.37%

DomSim 1-NN 38.00%± 0.36% 48.80%± 0.79% 23.15%± 0.43% 31.81%± 0.58%
SR 38.84%± 0.74% 52.81%± 0.20% 23.62%± 0.29% 36.31%± 0.45%

Alg. 1, K = 1, λ = 0 1-NN 43.42%± 0.78% 53.79%± 0.37% 25.71%± 0.43% 34.67%± 0.36%
SR 43.72%± 0.47% 55.84%± 0.38% 26.08%± 0.45% 37.75%± 0.22%

Alg. 2, K = 1, λ = 0 1-NN 43.20%± 0.76% 53.61%± 0.27% 26.13%± 0.44% 34.97%± 0.45%
SR 43.70%± 0.56% 55.87%± 0.46% 26.60%± 0.55% 38.28%± 0.28%

Alg. 2, K = 3, λ = 0 1-NN 42.89%± 0.43% 53.13%± 0.27% 25.10%± 0.48% 34.52%± 0.51%
SR 43.02%± 0.11% 55.74%± 0.21% 25.71%± 0.41% 37.68%± 0.25%



The goal of this section is to prove that our proposed algorithm is not influenced by the choice of few-shot learning
algorithm. We try different model heads after extracting the high-level features of the backbone. We select the Pre-trained
Selection setting on ImageNet to demonstrate the viewpoint. The result is shown in Table 1. 1-NN means that we use a 1-NN
algorithm based on cosine similarity to give the label of a test sample as the one with the nearest class centroid. SR means
Softmax Regression on the high-level representation space. (i.e. Fine-tuning the classification layer in original backbone). The
two methods represent for an easy realization of metric-based method and learning-based method. From Table 1 we show
that the promotion of SR compared with 1-NN for all selection algorithms is rather stable in the same experiment setting and
our algorithm is model-agnostic. Moreover, comparing 5-shot with 20-shot, we find that when the shot number is increasing,
the margin of our algorithm and the baselines is shrinking when using SR as model head, which shows that the effect of
fine-tuning gradually surpasses the effect of class selection with the increase of the shot number, demonstrating that our
algorithm performs much better on few-shot setting.

4.2. Effects of the Number of Novel Classes

Table 2. ImageNet: Pre-trained Selection, 10-way
Algorithm m=100, 20-shot

Random 84.33%± 1.71%
DomSim 85.78%± 2.06%

Alg. 1, K = 10, λ = 0 88.36%± 1.15%
Alg. 2, K = 3, λ = 0 87.62%± 1.38%
Alg. 2, K = 10, λ = 0 88.02%± 1.58%

Alg. 4, K = 10, λ = 0.2 88.52%± 1.88%

In this section, we show the experiment result for 10-way 20-shot setting with m = 100 with 1-NN head in Table 2. We
could draw three conclusions: First, in 10-way setting, our algorithm promotes about 4.19% compared with Random Selection,
which is at the same level with 100-way 20-shot setting shown in Table 1, demonstrating the effectiveness of our proposed
algorithm in different number of novel classes. Second, we find that we need to increase K compared with 100-way 20-shot
setting as the number of base classes far exceeds the number of novel classes, thus we could provide more similar base classes
for each novel class to improve the performance. Third, compared with λ > 0 and λ = 0 case, we show that diversity may be
helpful when the number of base classes is much larger than the number of novel classes. In this setting diversity brings about
a promotion of 0.5%.

4.3. Cold Start Selection on Caltech and CUB dataset

Table 3. Cold Start Selection, 100-way
Algorithm m=100, 5-shot, Caltech m=100, 5-shot, CUB

Random 18.46%± 1.19% 45.31%± 1.32%
DomSim 27.32%± 0.82% 51.72%± 1.24%

Alg. 2, K = 1, λ = 0 27.59%± 0.76% 53.48%± 1.19%
Alg. 2, K = 3, λ = 0 29.33%± 0.69% 53.56%± 1.34%
Alg. 2, K = 5, λ = 0 28.83%± 0.60% 53.33%± 1.18%

Pre-trained (Upperbound) 29.65%± 0.82% 55.41%± 1.25%

In this section, we also test cold start selection on Caltech256 and CUB-200-2011 as Table 3. All our algorithms use a
mechanism of 6-12-25-50-100. The conclusion is the same as the original paper and there is nothing to discuss more about the
results.

5. Detailed Experiment Settings in Training Phase
For all experiments, when training the base model, we use a standard ResNet-18 structure. The output dimension of the

high-level feature is 512. The preprocessing step of the images is the same as original ResNet-18 paper. The base model is
trained for 120 epoches, the learning rate is set to 0.1 for Epoch 1 to Epoch 25, 0.01 for Epoch 25 to Epoch 50, 0.001 for
Epoch 50 to Epoch 80, 0.0001 for Epoch 80 to Epoch 105 and 0.00001 for Epoch 105 to Epoch 120. A weight decay with
hyperparameter 0.0005 is used. We use a momentum SGD and the momentum coefficient is set to 0.9. The batch size is set to
64. We train the whole base model on 8*Nvidia Tesla V100. For each base model, the training time is about 4 hours and for



each experiment setting this training process is repeated for 10 times, the total training hours for each experiment setting (i.e.
each result number in the result tables) is about 40 hours. (The cold start problem may spend much longer time, about 75
hours per experiment setting). The main framework of the training process is based on Tensorflow, and the selection algorithm
is based on C++11 for speed-up.
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