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Abstract

The best performing methods for 3D human pose esti-
mation from monocular images require large amounts of
in-the-wild 2D and controlled 3D pose annotated datasets
which are costly and require sophisticated systems to ac-
quire. To reduce this annotation dependency, we propose
Multiview-Consistent Semi Supervised Learning (MCSS)
framework that utilizes similarity in pose information from
unannotated, uncalibrated but synchronized multi-view
videos of human motions as additional weak supervision
signal to guide 3D human pose regression. QOur frame-
work applies hard-negative mining based on temporal re-
lations in multi-view videos to arrive at a multi-view con-
sistent pose embedding. When jointly trained with limited
3D pose annotations, our approach improves the baseline
by 25% and state-of-the-art by 8.7%, whilst using substan-
tially smaller networks. Lastly, but importantly, we demon-
strate the advantages of the learned embedding and estab-
lish view-invariant pose retrieval benchmarks on two popu-
lar, publicly available multi-view human pose datasets, Hu-
man 3.6M and MPI-INF-3DHP, to facilitate future research.

1. Introduction

Over the years, the performance of monocular 3D human
pose estimation has improved significantly due to increas-
ingly sophisticated CNN models [54, 33, 52, 44, 43, 29,

]. For training, these methods depend on the availability
of large-scale 3D-pose annotated data, which is costly and
challenging to obtain, especially under in-the-wild setting
for articulated poses. The two most popular 3D-pose anno-
tated datasets, Human3.6M [14] (3.6M samples) and MPI-
INF-3DHP [28] (1.3M samples), are biased towards indoor-
like environment with uniform background and illumina-
tion. Therefore, 3D-pose models trained on these datasets
don’t generalize well for real-world scenarios [8, 54].

Limited training data, or costly annotation, poses se-
rious challenges to not only deep-learning based meth-
ods, but other machine-learning methods as well. Semi-
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supervised approaches [10, 21, 41, 24] have been exten-
sively used in the past to leverage large-scale unlabelled
datasets along with small labelled dataset to improve perfor-
mance. Semi-supervised methods try to exploit the struc-
ture/invariances in the data to generate additional learn-
ing signals for training. Unlike classical machine-learning
models that use fixed feature representation, deep-learning
models can learn a suitable feature representation from data
as part of training process too. This unique ability calls
for semi-supervised approaches to encourage better features
representation learning from large-scale unlabelled data for
generalization. Intuitively its more appealing to leverage
semi-supervised training signals that are more relevant to
the final application. Therefore, given the vast diversity
of computer-vision tasks, it remains an exciting area of re-
search to innovate novel semi-supervision signals.

To this end, we leverage projective multiview con-
sistency to create a novel metric-learning based semi-
supervised framework for 3D human-pose estimation. Mul-
tiview consistency has served as a fundamental paradigm in
computer vision for more than 40 years and gave rise to
some of the most used algorithms such as stereo [39], struc-
ture from motion [19], motion capture [31], simultaneous
localization and mapping [4], etc. From human-pose es-
timation perspective, the intrinsic 3D-pose of the human-
body remains the same across multiple different views.
Therefore, a deep-CNN should ideally be able to map 2D-
images corresponding to a common 3D-pose, captured from
different viewpoints, to nearby points in an embedding
space. Intuitively, such a deep-CNN is learning feature
representations that are invariant to different views of the
human-pose. Therefore, we posit that perhaps it can learn to
project 2D images, from different viewpoints, into a canon-
ical 3D-pose space in R™ . In Fig. 1b, we show a few em-
bedding distances between different images from the Hu-
man3.6M [14] and provide empirical evidence to the afore-
mentioned hypothesis via a novel cross-view pose-retrieval
experiment. Unfortunately, embedding-vectors, =, from
such a space do not translate directly to the 3D coordinates
of human-pose. Therefore, we learn another transformation
function from embedding to pose space and regress with
small 3D-pose supervision while training. Since, the em-
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Figure 1: (a) Training framework for learning our pose embedding and subsequent canonical pose estimation. Zanchor and
Tpositive are a batch of anchor and positive image pairs taken from different camera views. Tgupervise 18 the batch of images
with 3D-pose supervision. F is the ResNet based feature extractor. G maps features extracted from J to our embedding ¢.
The Hard Negative Sampling module performs in-batch hard mining as given in Eq. 1. Module H regresses pose p from our
embedding ¢. (b) Distances between a few images in our learned embedding space. Each column represents images in the
same pose from different view. Images across rows have different poses. The numbers between a pair of images represent
its embedding distance. The distance is low for pairs with the same pose irrespective of viewpoint and high for those having

different poses.

bedding is shared between the pose-supervision and semi-
supervised metric-learning, it leads to better generalizeable
features for 3D-pose estimation. We name our proposed
framework as Multiview Consistent Semi-Supervised learn-
ing, or MCSS for short.

The proposed framework fits really well with the practi-
cal requirements of our problem because it’s relatively eas-
ier to obtain real-world time-synchronized video streams of
humans from multiple viewpoints vs. setting up capture rigs
for 3D-annotated data out in-the-wild. An alternative ap-
proach could be to setup a calibrated multi-camera capture
rig in-the-wild and use triangulation from 2D-pose anno-
tated images to obtain 3D-pose. But, it still requires hand-
annotated 2D-poses or an automated 2D-pose generation
system . In [18], a pre-trained 2D-pose network has been
used to generate pseudo 3D-pose labels for training a 3D-
pose network. Yet another approach exploits relative cam-
era extrinsics for cross-view image generation via a latent
embedding [36]. We, on the other hand, don’t assume such
requirements to yield a more practical solution for the lim-
ited data challenge.

We use MCSS to improve 3D-pose estimation perfor-
mance with limited 3D supervision. In Sec. 5, we show
the performance variation as 3D supervision is decreased.
Sec. 6 demonstrates the richness of view-invariant MCSS
embedding for capturing human-pose structure with the
help of a carefully designed cross-view pose-retrieval task
on Human3.6M and MPI-INF-3DHP to serve as a bench-

mark for future research in this direction. A summary of
our contributions is,

e Proposed a novel Multiview-Consistent Semi-
Supervised learning framework for 3D-human-pose
estimation.

e Achieved state-of-the-art performance on Human
3.6M dataset with limited 3D supervision.

e Formulated a cross-view pose-retrieval benchmark on
Human3.6M and MPI-INF-3DHP datasets.

2. Related Work

This section first reviews prior approaches for learning
human-pose embedding followed by a discussion of previ-
ous weakly supervised methods for monocular 3D human
pose estimation to bring out their differences with our ap-
proach.

2.1. Human Pose Embedding

Historically, human-pose embeddings have been em-
ployed in tracking persons [48, 23]. Estimation of 3D hu-
man pose and viewpoint from input silhouettes via learning
a low dimension manifold is shown in [9]. 2D-pose regres-
sion and retrieval by pose similarity embedding is shown
in [22, 32], but they require 2D-pose labels. In [42], the
need for 2D-pose labels is eliminated by using human mo-
tion videos and temporal ordering as weak supervision in a



metric learning framework. Unlike the aforementioned ap-
proaches, we learn a 3D-pose embedding by leveraging in-
trinsic 3D-pose consistency from synchronized multi-view
videos. In [45], a 3D-pose embedding is learnt using an
over-complete auto-encoder for better structure preserva-
tion, but it still requires requires 3D-pose labels for the en-
tire dataset.

2.2. Weakly Supervised 3D Human Pose Estimation

Majority of supervised 3D-pose Estimation algo-
rithms [29, 27, 47, 35, 44, 53, 43, 54, 40] require 3D-
pose labels in conjunction with either 2D-pose labels or a
pre-trained 2D pose estimator to learn a deep-CNN map-
ping from images to 3D-pose or images to 2D-pose fol-
lowed by 2D-to-3D lifting task. Some methods refine these
pose estimates using either temporal cues, anthropometric
constraints, geometric constraints or additional supervision
[8, 51,50, 3,25, 12]. A complete decoupling between 2D
and 3D pose estimation is presented in [50] with the use
of generative lifting network followed by a back-projection
constraint to achieve generalization. Another line of work
focuses on augmenting 2D/3D-pose labels using mesh rep-
resentation [15, 16, 3, 20] or a dense pose representation
[1, 11] to improve pose estimation. All the aforementioned
approaches require large amount of annotated 2D and/or 3D
labels while our method is designed for limited 3D-pose la-
bels only.

Strong 2D and limited/no 3D supervision In recent
years, weak-supervision from limited 3D-pose labels along
with in-the-wild 2D-pose labels has gained popularity, be-
cause labelling 2D-pose is easier than labelling 3D-pose
[34, 18,37, 6,49, 5]. A weak-supervision in the form of re-
projection constraints on the predicted 3D pose is proposed
[34]. Mostly, such approaches take advantage of multi-view
images during training by means of geometric constraints
[37, 18, 5], domain adaptation and adversarial constraints
[5], or cross-view reprojection constraints [0]. In [6], a la-
tent 3D-pose embedding is learned by reconstructing 2D-
pose from the embedding in a different view. A shallow net-
work with limited 3D-pose supervision is learned to regress
3D-pose from the embedding. A network with pre-trained
weights for 2D-pose estimation is used for 3D-pose esti-
mation in [37] followed by multi-view geometric consis-
tency loss. Pseudo 3D-pose labels are generated in [ 18] for
training, while adversarial losses between the 2D skeleton
and re-projection of predicted 3D-pose on different views
is used for learning in [5]. In [49], starting with 2D pose
inputs, a lifting network is trained with siamese loss on the
embedding from multiple views to achieve a weak supervi-
sion for 3D-pose. Unlike us, [37, 5, 18] require strong 2D-
pose estimation systems trained on MPII or COCO datasets
while [34, 49, 6] directly work on 2D-pose detections. We,
on the other hand, don’t need any 2D-pose labels or pre-

trained 2D-pose estimation systems.

limited/no 2D and limited 3D supervision - To alle-
viate the need for a large amount of 2D-pose labels, [30]
learns an unsupervised geometry aware embedding and es-
timates 3D-pose from embedding with limited 3D supervi-
sion. Novel view synthesis using multi-view synchronized
videos of human motions is used to learn a geometry-aware
embedding. This method however still requires camera ex-
trinsics and background extraction and performs worse than
our approach.

Our approach falls in the same category as we don’t use
any 2D-pose labels. We utilize synchronized videos from
multiple views to learn a pose embedding with limited 3D-
pose labels such that similar pose samples are mapped close
to each other in the embedding space. Unlike [36], we don’t
require camera extrinsics and background extraction. More-
over, we exploit multiview-consistency to directly obtain a
canonical pose instead of performing image-reconstruction,
which affords smaller networks, Resnet-18 [13] vs. Resnet-
50.

3. Proposed Approach

Our proposed MCSS approach consists of two modules-
1) Multiview-consistent metric-learning from time synchro-
nised videos (Sec. 3.1) and ii) 3D-pose regression with lim-
ited 3D supervision (Sec. 3.2). Both the modules are jointly
trained as shown in Fig. la. Metric-learning acts as semi-
supervision signal to reduces the dependency on large-scale
3D-pose labels while pose-regression encourages to learn
pose-specific features.

3.1. Multiview-Consistent Metric Learning

We utilize Hardnet framework [30] to learn pose embed-
ding. The datasets used for training is divided into images
belonging to one of S = {57, 55,...5,} set of subjects.
P c IR'®*3 is the set of all possible poses and each pose is
viewed from V = {vy, va,...v,} viewpoints. For training
hardnet, each batch consists of paired anchor (X (S;) €
X) and positive (X;*(S;) € X) images, from subject S;,
with the same pose, p € P, taken from two different view-
points v, and vy, here X C IR3*?56%2%6 i the set of im-
ages.

We pass both the anchor and positive images through
feature extractor (Fp, : X — ¥; U C RO12¥4%4y o
generate features {1, ¥;*} € W. The feature extrac-
tor network is parameterised by 6. The features are then
finally passed through an embedding generating network
(Go : ¥ — &;® C RY™; where dim, is dimension
of our embedding). Let’s assume we feed anchor and pos-
itive images to F in batches of m. Once corresponding
features {¢pi", ..., dpom } and {Gp",. .., Ppom } are com-
puted, we create a distance matrix D of size of m x m with
D(i,5) = 95 — ;" - Negatives g7 and gy

min



for each of ¢;f and ngZf are then sampled from the current
batch which lie closest in the embedding space from d)Z?i
and the (bf,'f respectively. Mathematically, the sampling is
formulated in Eq. 1. Here, 5 denotes the minimum dis-
tance between a hard-mined negative and anchor/positive
in embedding space. The threshold 3 is necessary for stable
training and to avoid similar poses as negatives.

Jmin = arg;}ind(D(i,j)) x D(1,7);
VES)
kmin = argmin §(D(k, 1)) * D(k, )
ki (D
0(z) = 1ifx > B, 0otherwise

The average contrastive loss is given in Eq. 2, with « being
the margin.

1 & . i
Lonstr = — > D(i,i) + max(0,a — D) (2)
=1

Note that the above learning framework has the follow-
ing two objectives, namely, a) to bring the anchors and
positives closer and b) to separate out the negatives from
anchors and positives. Intuitively, the goal is to learn em-
bedding that captures 3D-pose information while ignoring
irrelevant information, such as subject appearance or back-
ground. To this end, we propose the following mini-batch
selection mechanism to promote the aforementioned goal:

3.1.1 Mini-batch Selection

We compose each mini-batch using anchor and positive
pairs from the same subject, and in many cases with over-
lapping backgrounds, and the negatives are also from the
same subject since Hardnet chooses the hardest negatives
from the same mini-batch. The presented mini-batch selec-
tion scheme encourages the resulting embedding to capture
pose information while discarding subject-appearance and
background features when separating the hardest negatives
from anchors and positives. 1t’s due to the inclusion of same
personal-appearance and background in both the negatives
and anchor/positives, which cannot be used to separate neg-
atives. We take care to not include temporally close images
in a mini-batch by sub-sampling and appropriately choosing
B. Specific hyper-parameter choices are detailed in supple-
mentary material. In Sec. 6, we show pose retrieval ability
of the learned embedding to show that it has indeed suc-
cessfully captured 3D-pose information.

3.2. Pose Regression

Most 3D-pose estimation approaches focus on regress-
ing for pose in the local camera coordinate system [54, 33,
]. In our framework, however, 2D-images
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captured from different views are all mapped to nearby em-
bedding locations, if their intrinsic 3D-poses are the same.
Therefore, 3D-pose regression using our embedding is am-
biguous because the local camera coordinate system is lost.
Moreover, the relation from our embedding to the view-
specific 3D-pose is one-tfo-many. In order to address this
issue, we make use of the MoCap system’s global coor-
dinate to represent the 3D-poses instead of view-specific
3D-poses. Hence, synchronous frames captured from dif-
ferent views are labelled as one global-coordinate 3D-pose.
However, asynchronous frames can contain poses which are
rigid transformations of one another with same 2D projec-
tions. In such cases, the mapping from our embedding to
3D-pose is again an ill-posed one-to-many mapping. In
Fig. 2, an example of such ambiguity is illustrated.

z R - Root, LH - Left Hip, RH - Right Hip,
X LK - Left Knee, RK - Right Knee
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(Time T1, View V1) (Time T2, View V2) (Time T1,T2)

Figure 2: Shows top view of bottom half of a human skele-
ton taken at two different time instants and view points.
The left and middle images show two poses having different
joint co-ordinates when presented in the global pose while
having same projections in their respective cameras. On the
contrary canonical pose provides provides a uniform repre-
sentation.

3.2.1 Canonical Pose Representation

In order to resolve the aforementioned ambiguities, we for-
mulate a multiview-consistent and rigid rotation invariant
3D-pose representation and refer to it as canonical pose.
Canonical pose is obtained by constraining the bone con-
necting the pelvis to the left hip joint to be always parallel
to XZ plane. In Human3.6M dataset, the upward direction
is +Z axis while XY plane forms the horizontal. Therefore,
we rotate the skeleton about the +Z axis until the above
mentioned bone is parallel to the XZ plane. We don’t re-
quire any translation since the joint positions are relative to
the pelvis. Mathematically, the transformation from global
to canonical is given in Eq. 3,

glb glb

~ Pin = Proot . ~ qui + uij
U = "5 _gib 0 Yoy = Tx =
”plh - p'r‘ootH ||’u’93Z + uy]” (3)

0 = cos M(upy -1); p" = RExpItt
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where, p;.,.; and pf,llb are the root and left-hip joint respec-

tively in the global representation. The unit vector along
(P3P — p9% ) is represented as @, and @ is the required
angle of rotation along the +Z-axis to obtain the canoni-
cal pose representation. A positive side-effect of canoni-
cal pose representation vs. view-specific representation is
that our predicted canonical pose doesn’t change orienta-
tion with variations in camera view. A similar approach to
achieve a rotation-invariant pose is suggested in [47]. Note
that the canonical pose is constructed directly from MoCap
system’s coordinates and doesn’t require camera extrinsics.

Finally, we regress for canonical pose from the latent em-
bedding ® with the help of a shallow network (Hg,, : & —
‘P), as shown in Fig. 1a. The loss-function is L1-norm be-
tween the predicted, p, and target, p € P, canonical 3D-

pose: Lpose = [lp = pll;-

4. Implementation and Training Details

We use the first 4 residual blocks of an ImageNet [38]
pre-trained ResNet-18 as our backbone. In addition, we
modify the batch-norm (BN) layers by turning off the affine
parameters as suggested in [30]. For an input image of size
224 x 224 pixels, the output of ResNet is a 512 X 7 x 7
blob, which is further down-sample by 2 using a max-pool
operation to get ¥. The embedding network G is FC lay-
ers followed by L2-normalization and it maps ¥ to an em-
bedding of dimension dim, (128 in our case), following
usual [30, 46].

For 3D-pose regression, the input data is normalized for
each joint. The pose regression network G consists of FC
layers FC(128, 48), with & C IR'?®. The margin a for
Leonrst 18 set at 0.6 and § at 0.3. Adam [17] optimized is
used with default parameters (0.9,0.99) with initial learn-
ing rate 1073, The model is trained for 40 epochs with a
drop in learning-rate by 0.1 at every 20 epochs. In our joint
training frame work, ratio of the batch size for metric learn-
ing to pose regression is kept at 3 : 1 with batch size for
regression is 22. A schematic diagram of our network ar-
chitecture is shown in Fig. la.

4.1. Datasets

We use the popular Human3.6M [14] and MPI-INF-
3DHP [28] datasets for our experiments.

e Human3.6M [14] contains 3.6 million frames cap-
tured from an indoor MoCap system with 4 cam-
eras (V). It comprises of 11 subjects (S), each per-
forming 16 actions with each action having 2 sub-
actions. Following the standard Protocol 2 [44], we
use subjects (S1, S5, S6, S7, S8) for training and (S9,
S11) for testing. Like several other methods, we also
use cropped subjects’ using bounding-boxes provided
with the dataset and temporal sub-sampling is done

to include every 5" and 64" frame for training and
testing phase, respectively.

e MPI-INF-3DHP [28] is generated from a MoCap sys-
tem with 12 synchronized cameras in both indoor and
outdoor settings. It contains 8 subjects(S) with di-
verse clothing. We use the 5 chest height cameras())
for both training and test purposes. Since the test set
doesn’t contain annotated multi-view data, we use S1-
S6 for training and S7-S8 for evaluation.

5. Quantitative Evaluation for Pose Estimation

We perform the same quantitative experiment as pre-
sented in [36] to assess the benefits of the learned em-
bedding in 3D-pose estimation on Human 3.6M dataset.
We evaluate using three well adopted metrics, MPJPE, PA-
MPIJPE and Normalized MPJPE (N-MPJPE) (introduced in
[37]) which incorporates a scale normalization to make the
evaluation independent of person’s height. We compare
our proposed approach and its variants against a baseline
which only uses L. In addition, we compare our method
against the approach proposed by Rhodin et al. [36] and
[37], although it estimates human poses in the camera co-
ordinate system. We also report the performance of Rhodin
et al. [36] using ResNet-18 as the feature extractor instead
of ResNet-50. It is to be noted that [36] uses additional
information at training time in the form of relative camera
rotation and background extraction which requires sophisti-
cated, well calibrated setup. We acknowledge the existence
of more accurate methods like [5, 18, 7] than [36, 37] on
Human3.6M when abundant 2D and limited 3D labels are
available. For comparison with these approaches, however,
we report results from [6] that requires limited 3D super-
vision but complete 2D supervision from both Human3.6M
and MPII [2] dataset. Since, our focus is advancing the re-
search in monocular 3D-pose estimation without using 2D
labels under limited 3D-pose labels, we restrict our compar-
ison to cases with limited supervision from both 2D and 3D
labels. We don’t include the results of [34] as it requires
multiple temporally adjacent frames at inference-stage and
uses pre-trained 2D-pose estimation models learned from
large-scale 2D-pose annotated datasets.

In order to show performance variation as a function of
3D-pose supervision, we report N-MPJPE values for mod-
els trained using different amount of 3D-pose labels, in
Fig. 3. In this experiment, 3D-pose supervision is reduced
gradually using all 5 subjects, to S1+S5, only S1, 50% S1,
10%S1 and finally 5% S1. MVSS clearly outperforms the
baseline by a margin of 37.34 N-MPJPE when only S1 is
used for supervision. Moreover, MVSS degrades gracefully
as 3D-pose supervision is reduced, which validates the im-
portance of L.,,s¢ in providing weak supervision to cap-
ture 3D-pose. Qualitative comparison of our method against
the baseline is shown in Fig. 3.
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Figure 3: N-MPJPE vs. 3D-pose supervision on test split of
Human3.6M. Our proposed model outperforms the baseline
and the current state-of-the-art Rhodin et al. [36].

In Tab. 1, we compare MPJPE, N-MPJPE and PA-
MPIJPE values of our approach against baseline and [36].
Clearly, our method outperforms [36] by 22.4 N-MPJPE
when fully supervised on 3D data and by 10.7 N-MPJPE
with 3D-pose supervision limited to S1. For MPJPE how-
ever, the margin is 10.75. Interestingly as mentioned in
[36], the performance of [37] drastically falls when pre-
trained model from strong 2D-pose supervision is not used
(reported in Tab. 1 as Rhodin [37]" and Rhodin [37]).

As part of ablation studies, we also compare the per-
formance of our learning framework when target pose is
represented in MoCap’s(global pose) against our canoni-
cal representation in Tab. 2. We observe dramatic decrease
in performance, 45 MPJPE, which validates the importance
of canonical representation. We also show the results for
a deeper ResNet-34 [13] back-end network. We observe a
slight drop in performance, 3 MPJPE points, perhaps due to
over-fitting.

An additional benefit of our proposed framework is in
the use of a much smaller ResNet-18 feature extractor as
compared to ResNet-50 used in Rhodin et al [36]. This af-
fords an inference time of 24.8ms vs. 75.3ms by [36] on a
NVIDIA 1080Ti GPU. Note that Rhodin et al. [36] shows
degradation in performance when using the smaller ResNet-
18 backbone. We attribute it to direct latent embedding sim-
ilarity learning instead of generative modelling that requires
more representation capacity.

6. Analysis of Learned Embedding

In this section, we demonstrate the quality of our learned
embedding in capturing 3D human-pose by showing i) pose
based cluster formation in our embedding space through
retrieval tasks, ii) the correlation between embedding and
pose distances. In Fig. 5, we show qualitative image re-
trieval results based on embedding distance. We can clearly
see that the closest images from other subjects and other

Super- N- PA-

vision ~ Method b ibE  MPIPE  MPIPE
Rhodin [37]° 6330  66.80  51.60
Chen [6]* NA 8020 5820
All Baseline 95.07 97.90 77.18
Rhodin [37]  95.40 NA NA
Rhodin [36]  115.00 NA NA
MCSS(Ours)  92.60 9425  72.48
Rhodin [37]°  78.20 NA NA
Chen [6]* NA 9190  68.00
St Baseline 149.28 154.78 113.69
Rhodin [37] NA 15330 128.60
Rhodin [36] 122.60 131.70  98.20
Rhodin [36]-  136.00 NA NA

Res18

MCSS(Ours) 111.94 120.95  90.76

Table 1: Comparing N-MPJPE and MPJPE values between
different approaches on Human 3.6M dataset when super-
vised on all 5 subjects and on only S1. Note: Pre-trained
ImageNet weights are used to initialize the networks by all
the methods. Methods or its variants marked with ‘*’ are
supervised with large amount of in-the-wild 2D annotations
from MPII [2] dataset either during training or by means
of a pre-trained 2D pose estimator. All other methods use
much weaker supervision by assuming no 2D annotations
and MCSS outperforms the state-of-the-art [36] in such set-
tings. NA is assigned against a method if the corresponding
result is not reported by the authors.

viewpoints to the query image in embedding space share
similar poses. We additionally provide T-SNE [26] plots of
our learned embedding space and experiments on general-
ization to novel view-point in the supplementary material.

6.1. Cross-View and Cross-Subject Pose Retrieval

Our learned embedding tries to project similar pose-
samples close to each other irrespective of the subject, view-
point and background. To validate this claim, we seek mo-

Supervision Method N-MPJPE
St MCSS 111.94
MCSS-global 157.30
MCSS-ResNet34 115.85

Table 2: Comparing N-MPJPE values when pose estimation
is done in Mocap’s (MCSS-global) and canonical(MCSS)
representations when only subject S1 is used for supervi-
sion. Performance of using ResNet-34 as back-end is re-
ported against MCSS-ResNet34.
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Figure 4: Qualitative results on canonical pose estimation by our proposed framework (MCSS) against our Baseline on
Human 3.6M test split (S9, S11). Both the models are trained with supervision from labels of subject S1. Our method
produces more accurate estimates for even for challenging poses like ‘sitting’ and ‘bending’.

Figure 5: Qualitative image retrievals on Human 3.6M (S9,
S11) and MPI-INF-3DHP (S7, S8) test sets. The first row
represents query image and the rows below are the top 3
closest images in embedding space. For the left-most and
right-most columns, the retrieval database is composed of
images from different subject and viewpoint from that of
query’s. For the middle two columns, retrieval database is
composed of images of same subject but different viewpoint
from that of query’s. Note how the retrieved poses are very
similar to query poses.

tivation from [42], [22] and propose Mean-PA-MPJPE@ K
to measure the Procrustes Aligned Mean Per Joint Position
Error (PA-MPJPE) of K closest neighbours from different
views. Since, similar poses in terms of the intrinsic human-

body pose can still have different orientations, we use Pro-
crustes Aligned MPJPE to remove this artifact. We com-
pare our model against an Oracle, which uses ground truth
3D-pose labels. Given a query image, we ensure that the
retrieval database contains images taken from viewpoints
other than that of the query image. It is done to clearly bring
out the view invariance property of the proposed embed-
ding. First, we report the Mean-PA-MPJPE@ K between
query pose and its K nearest neighbors in the embedding
space. In Fig. 6, we show the comparison of Mean-PA-
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Figure 6: Mean-PA-MPJPE for increasing number of re-
trievals K on Human3.6M dataset. Prefix ‘Cross-’ indi-
cates retrieval done on different subjects from that of query.
Lpose is from subject S1 in both the cases. All values re-
ported are relative to an Oracle. Low values indicates our
retrieved poses are similar to that of the Oracle. PAMPJPE
is in mm.



MPJPE@ K of retrieved poses when retrieval is done from
images with:

Case 1: all test subjects including that of query’s.

Case 2: all test subjects except that of query’s - cross.

We report our results relative to the Oracle. The nearly hor-
izontal plots with low errors suggest that our model picks
poses similar to that of the Oracle irrespective of K. The
error rate is slightly higher for K = 1, 2 since our model
retrieves images from clusters and does not always pick the
one with the lowest error as done by the oracle. The er-
ror is lower for Case 1 than Case 2 due to the presence
of images in the query database that share the exact same
pose as that of query, but from different viewpoints. We can
also note that upon L., from S1, the clustering and mean
mpjpe improves in both same subject, Case 1, and cross-
subject, Case 2, settings falling in line with our expectation
that small amount of pose supervision improves clustering.

Method K=1 K=5 K=10 K=20

Lenstr 48.40 62.46 56.29 55.63
Cross-Lenstr 82.29 83.53 80.65 76.00

Table 3: Mean-PA-MPJPE (mm) for increasing number of
retrievals (K) on MPI-INF-3DHP dataset after finetuning
with L., 5. Prefix Cross- indicates retrieval is done on sub-
ject other than query’s. All values are reported with respect
to the Oracle.

6.2. Correlation between Embedding and Pose

In this section, we illustrate the variation exhibited by
our learned embedding with change in human pose. To this
end, we plot mean embedding distance between a query im-
age and stacks of images with increasing pose difference
with that of the query in Fig. 7. Both the query and the im-
age stacks belong to the same subject. One can observe a
clear positive co-relation between embedding distance and
corresponding pose difference. Further, same view and dif-
ferent view show similar correlations with poses justifying
the fact that our learned embedding is multi-view consis-
tent.

6.3. Generalization & Limitations:

To test cross-dataset generalization, we applied a model
trained on Human 3.6M dataset and performed cross-view
pose retrievals on MPI-INF-3DHP dataset. We obtained a
mean MPJPE of 119.6mm and 101.9mm for K = 10 and
K = 20 respectively. Further fine-tuning with L.,,,s¢ us-
ing multi-view images from MPI-INF-3DHP improved the
performance to 62.46mm and 56.29mm, see Tab. 3. The
dip in performance on cross dataset can be attributed to
the fact that our feature extractor and embedding generat-
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Figure 7: Variation of mean embedding distance with in-
creasing pose variation. We use the show results on (S9,
S11) with model being trained with L., s on (S1, S5, S6,
S7,S8) and L,,sc on (S1). Images are stacked in bins based
on the MPJPE difference of their corresponding poses with
that of the query. On the Y-axis, the mean embedding dis-
tance between the query and the image stacks is plotted.
In Same View, the query image and image stacks belong
to the same viewpoint while in Different View, the query
stacks belong to different viewpoints. The results are aver-
aged over 200 random queries for each subject.

ing network has learnt a mapping from Human 3.6M im-
ages to a pose space and the same mapping is not applicable
to the domain of MPI-INF-3DHP images because of huge
variation in appearance and more challenging variations of
poses. However, upon adding L.,,,s¢, as shown in Tab. 3
the weak supervision generalizes to new dataset.

7. Conclusion and Future Work

In this paper, we demonstrated a novel Multiview-
Consistent Semi-Supervised learning approach to capture
3D human structure for pose estimation and retrieval tasks.
With the help of our semi-supervised framework, the need
for 3D-pose is reduced. It enables our method to out-
perform contemporary weakly-supervised approaches even
while using a smaller network. Furthermore, we provided
strong benchmarks for view-invariant pose retrieval on pub-
licly available datasets.

In future, we plan to use multi-view synchronised videos
captured in-the-wild from a larger set of viewpoints to im-
prove generalisation further. We also plan to extend our
framework to capture very fine grained pose variations with
our embedding by learning distributions of pose variations
in temporally consecutive frames using limited 3D annota-
tions.
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