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Abstract

For real-time semantic video segmentation, most recent
works utilised a dynamic framework with a key scheduler
to make online key/non-key decisions. Some works used a
fixed key scheduling policy, while others proposed adaptive
key scheduling methods based on heuristic strategies, both
of which may lead to suboptimal global performance. To
overcome this limitation, we model the online key decision
process in dynamic video segmentation as a deep reinforce-
ment learning problem and learn an efficient and effective
scheduling policy from expert information about decision
history and from the process of maximising global return.
Moreover, we study the application of dynamic video segmen-
tation on face videos, a field that has not been investigated
before. By evaluating on the 300VW dataset, we show that
the performance of our reinforcement key scheduler outper-
forms that of various baselines in terms of both effective
key selections and running speed. Further results on the
Cityscapes dataset demonstrate that our proposed method
can also generalise to other scenarios. To the best of our
knowledge, this is the first work to use reinforcement learning
for online key-frame decision in dynamic video segmentation,
and also the first work on its application on face videos.

1. Introduction

In computer vision, semantic segmentation is a compu-
tationally intensive task which performs per-pixel classifi-
cation on images. Following the pioneering work of Fully
Convolutional Networks (FCN) [25], tremendous progress
has been made in recent years with the propositions of var-
ious deep segmentation methods [5, 2, 52, 59, 24, 8, 22,
34, 6, 58, 30]. To achieve accurate result, these image
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segmentation models usually employ heavy-weight deep
architectures and additional steps such as spatial pyramid
pooling [59, 6, 5] and multi-scaled paths of inputs/features
[7, 58, 23, 5, 4, 22, 35], which further increase the compu-
tational workload. For real-time applications such as au-
tonomous driving, video surveillance, and facial analysis
[49], it is impractical to apply such methods on a per-frame
basis, which will result in high latency intolerable to those
applications. Therefore, acceleration becomes a necessity for
these models to be applied in real-time video segmentation.

Various methods [40, 64, 54, 20, 16, 29, 17, 31, 11] have
been proposed to accelerate video segmentation. Because
adjacent frames in a video often share a large proportion
of similar pixels, most of these works utilise a dynamic
framework which separates frames into key and non-key
frames and produce their segmentation masks differently. As
illustrated in Fig. 1 (up), a deep image segmentation model
N is divided into a heavy feature extraction part Nfeat and
a light task-related part Ntask. To produce segmentation
masks, key frames would go through both Nfeat and Ntask,
while a fast feature interpolation method is used to obtain
features for the non-key frames by warping Nfeat’s output
on the last key frame (LKF), thus to avoid the heavy cost
of running Nfeat on every frame. On top of that, a key
scheduler is used to predict whether an incoming frame
should be a key or non-key frame.

As an essential part of dynamic video segmentation, deci-
sions made by the key scheduler could significantly affect the
overall performance [20, 54, 62] of the video segmentation
framework. However, this topic is somewhat underexplored
by the community. Recent works have either adopted a fixed
key scheduler [29, 64, 17, 16], or proposed adaptive sched-
ulers [54, 20, 62] which are trained to heuristically predict
similarities (or deviations) between two video frames. Those
key schedulers lack awareness of the global video context
and can lead to suboptimal performance in the long run.

To overcome this limitation, we propose to apply Re-
inforcement Learning (RL) techniques to expose the key
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Figure 1: Up: The dynamic video segmentation framework
in which a key scheduler is used to make online key/non-key
predictions. Bottom: a comparison between previous key
schedulers and ours. Previous works only consider devia-
tions between current frame (C) and the last key frame (K),
while our scheduler takes into account C, K and historical
information from non-key frames (N), aiming to maximise
the global return.

scheduler to the global video context. Leveraging additional
expert information about decision history, our scheduler is
trained to learn key-decision policies that maximise the long-
term returns in each episode, as shown in Fig. 1 (bottom).

We further study the problem of dynamic face video seg-
mentation with our method. Comparing to semantic im-
age/video segmentation, segmentation of face parts is a less
investigated field [13, 61, 18, 45, 32, 50, 39, 55, 19, 12],
and there are fewer works on face segmentation in videos
[49, 37]. Existing works either used engineered features
[18, 45, 50, 39, 55, 19], or employed outdated image segmen-
tation models like FCN [25] on a per-frame basis [32, 37, 49]
without a dynamic acceleration mechanism. Therefore, we
propose a novel real-time face segmentation system utilising
our key scheduler trained by Reinforcement Learning (RL).

We evaluate the performances of the proposed method
on the 300 Videos in the Wild (300VW) dataset [41] for the
task of real-time face segmentation. Comparing to several
baseline approaches, we show that our reinforcement key
scheduler can make more effective key-frame decisions at
the cost of fewer resource. Through further experiment
conducted on the Cityscapes dataset [10] for the task of
semantic urban scene understanding, we demonstrate that
our method can also generalise to other scenarios.

2. Related works
Semantic image segmentation Fully Convolutional

Networks (FCN) [25] is the first work to use fully convo-

lutional layers and skip connections to obtain pixel-level
predictions for image segmentation. Subsequent works
have made various improvements, including the usage of
dilated convolutions [4, 5, 6, 56, 57], encoder-decoder ar-
chitecture [2, 22, 8], Conditional Random Fields (CRF) for
post-processing [60, 4, 5], spatial pyramid pooling to cap-
ture multi-scale features [59, 5, 6] and Neural Architecture
Search (NAS) [65] to search for the best-performing archi-
tectures [3, 24]. Nonetheless, such models usually require
intensive computational resources, and thus may lead to
unacceptably high latency in video segmentation.

Dynamic video segmentation Clockwork ConvNet
[40] promoted the idea of dynamic segmentation by fixing
part of the network. Deep Feature Flow (DFF) [64] acceler-
ated video recognition by leveraging optical flow (extracted
by FlowNet [63, 15] or SpyNet [36]) to warp key-frame
features. Similar ideas are explored in [54, 17, 31, 11]. Inter-
BMV [16] used block motion vectors in compressed videos
for acceleration. Mahasseni et al. [26] employed convolu-
tions with uniform filters for feature interpolation, while Li et
al. [20] used spatially-variant convolutions instead. Potential
interpolation architectures were searched in [29].

On the other hand, studies of key schedulers are compara-
tively rare. Most existing works adopted fixed key schedulers
[29, 64, 17, 16], which is inefficient for real-time segmenta-
tion. Mahasseni et al. [26] suggested a budget-aware, LSTM-
based key selection strategy trained with reinforcement learn-
ing, which is only applicable for offline scenarios. DVSNet
[54] proposed an adaptive key decision network based on the
similarity score between the interpolated mask and the key
predictions, i.e., low similarity scores leading to new keys
and vice versa. Similary, Li et al. [20] introduced a dynamic
key scheduler trained to predict the deviations between two
video frames by the inconsistent low-level features, and [62]
proposed to adaptively select key frames depending on the
pixels with inconsistent temporal features. Those adaptive
key schedulers only consider deviations between two frames,
and therefore lack understandings of global video context,
leading to suboptimal performances.

Semantic face segmentation Semantic face parts seg-
mentation received far less attention than that of image/video
segmentation. Early works on this topic mostly used engi-
neered features [18, 45, 50, 39, 55, 19] and were designed
for static images. Saito et al. [37] employed graphic cut al-
gorithm to refine the probabilistic maps from a FCN trained
with augmented data. In [32], a semi-supervised data col-
lection approach was proposed to generate more labelled
facial images with random occlusions to train FCN. Re-
cently, Wang et al. [49] integrated Conv-LSTM [53] with
FCN [25] to extract face masks from video sequence, while
the run-time speed did not improve. None of the se works
considered to adopt video dynamics for accelerations, and
we are the first to do so for real-time face segmentation.
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Reinforcement learning In model-free Reinforcement
Learning (RL), an agent receives a state st at each time step
t from the environment, and learns a policy πθ(aj |st) with
parameters θ that guides the agent to take an action aj ∈ A
to maximise the cumulative rewards J =

∑∞
t=1 γ

t−1rt. RL
has demonstrated impressive performance on various fields
such as robotics and complicated strategy games [21, 43,
28, 48, 42, 47]. In this paper, we show that RL can be
seamlessly applied to online key decision problem in real-
time video segmentation, and we chose the policy gradient
with reinforcement [51] to learn πθ, where gradient ascend
was used for maximising the objective function Jπ(θ).

3. Methodology

3.1. System Overview

Our target is to develop an efficient and effective key
scheduling policy πθ(a|s) for the dynamic video segmenta-
tion system. To this end, we use Deep Feature Flow [64] as
the feature propagation framework, in which the optical flow
is calculated by a light-weight flow estimation model F such
as FlowNet [63, 15] or SpyNet [36]. Specifically, an image
segmentation modelN can be divided into a time-consuming
feature extraction moduleNfeat and a task specified module
Ntask. We denote the last key frame as Ik and its features
extracted byNfeat as fk, i.e., fk = Nfeat(Ik). For an incom-
ing frame Ii, if it is a key frame, the feature is fi = Nfeat(Ii)
and the segmentation mask is yi = Ntask(fi); if not, instead
of using the resource-intensive module Nfeat for feature ex-
traction, its feature fi will be propagated by a feature interpo-
lation functionW , which involves the flow field Mi→k from
Ii to Ik, the scale field Si→k from Ii to Ik, and key frame fea-
ture fk, hence the predicted mask becomes yi = Ntask(fi).
Please check [64] for more details on the feature propagation
process.

On top of the DFF framework, we design a light-weight
policy network πθ to make online key predictions. The state
si at frame Ii consists of two parts, the deviation information
Di→k which describes the differences between Ik and Ii, and
the expert information Ei regarding key decision history (see
Section 3.2 for details), i.e., si = {Di→k, Ei}. Feeding si
as input, the policy network outputs the action probabilities
πθ(aj |si) where aj ∈ {a0, a1} and πθ(a0|si)+πθ(a1|si) =
1.0 (we define a0 for non-key action and a1 for the key one).
For an incoming frame Ii, if πθ(a1|st) > τ where τ is a
threshold, it will be identified as a key frame, vice versa. In
general, key action a1 will lead to a segmentation mask with
better quality than the ones given by action a0.

In this work, we utilise the FlowNet2-s model [15] as
the optical flow estimation function F . DVSNet [54] has
shown that the high-level features from FlowNet models
contain sufficient information about the deviations between
two frames, and it can also be easily fetched along with

optical flow without additional cost. Therefore, we adopt the
features of FlowNet2-s model for Di→k. It is worthwhile
to notice that by varying Di→k properly, our key scheduler
can be easily integrated into other dynamic segmentation
frameworks [17, 20, 29, 16, 62] which do not use optical
flow. Fig. 2 gives an overview of our system.

3.2. Training Policy Network

Network structure Our policy network comprises of
one convolution layer and four fully connected (FC) layers.
The FlowNet2-s feature Di→k is fed into the first convolu-
tion layer Conv0 with 96 channels, followed by FC layers
(FC0, FC1 and FC2) with output size being 1024, 1024 and
128 respectively. Two additional channels containing expert
information about decision history Ei are concatenated to
the output of FC2 layer. The first channel records the Key
All Ratio (KAR), which is the ratio between the key frame
and every other frames in decision history, while the sec-
ond channel contains the Last Key Distance (LKD), which
is the interval between the current and the last key frame.
KAR provides information on the frequency of historical
key selection, and LKD gives awareness about the length
of continuous non-key decisions. Hence, the insertion of
KAR and LKD extends the output dimension of FC2 to 130,
while FC3 layer summarises all these information and gives
action probabilities πθ(aj |si) where aj ∈ {a0, a1}, a0 and
a1 stand for non-key and key action correspondingly.

Reward definition We use mean Intersection-over-
Union (mIoU) as the metric to evaluate the segmentation
masks. We denote the mIoU of yi from a non-key action a0
as U ia0 , the mIoU from key action a1 as U ia1 , and the reward
ri at frame Ii is defined in Eq. 1. Such definition encourages
the scheduler to choose key action on the frames that would
result in larger improvement over non-key action, and it also
reduces the variances of mIoUs across the video.

ri =

{
0, aj = a0.

U ia1 − U
i
a0 , aj = a1.

(1)

If no groundtruth is available (such that mIoU could not
be calculated), we use the segmentation mask from key ac-
tion as the pseudo groundtruth mask. In this case, the reward
formulation is changed to Eq. 2, in which yia0 and yia1 denote
the segmentation mask on ith frame from non-key action a0
and key action a1 respectively, and Acc(yia0 , y

i
a1) stands for

the accuracy score with yia0 as the prediction and yia1 as the
label.

ri =

{
0, aj = a0.

1−Acc(yia0 , y
i
a1), aj = a1.

(2)

Constraining key selection frequency The constraints
on key selection frequency are necessary in our task. Since
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Figure 2: An overview of our system. Ik is the last key frame (key decision process not shown) with feature fk extracted by
Nfeat. For an incoming frame Ii, its input state si includes two components: the deviation information Di→k between Ii
and Ik, and the expert information Ei about decision history. Di→k is fed into Conv0 layer of policy network πθ, while Ei is
concatenated to the output of FC2 layer. Basing on si, πθ gives probabilities output πθ(aj |si) regarding taking key or non-key
actions. For a non-key action, the optical flow between Ii and Ik will be used to warp fk to fi, while for a key action, Ii will
go through Nfeat to obtain a new key feature fi.

a key action will generally lead to a better reward than a
non-key one, the policy network inclines to make all-key
decisions if no constraint is imposed on the frequency of key
selection. In this paper, we propose a stop immediately ex-
ceeding the limitation approach. Particularly, for one episode
consisting of M + 1 frames {It, It+1, ..., It+M}, the agent
starts from It and explores continuously towards It+M . At
each time step, if the KAR in decision history has already
surpassed a limit η, the agent will stop immediately and thus
this episode ends, otherwise, it will continue until reaching
the last frame It+M . By using this strategy, a policy network
should limit the use of key decision to avoid an over-early
stopping, and also learn to allocate the limited key budgets
on the frames with higher rewards. By varying the KAR limit
η, we could train πθ with different key decision frequencies.

Episode settings Real-time videos usually contains
enormous number of high-dimensional frames, thus it is
impractical to include all of them in one episode, due to
the high computational complexity and possible huge vari-
ations across frames. For simplicity, we limit the length of
one episode {It, It+1, ..., It+M} to 270 frames (9 seconds)
for 300VW and 30 frames (snippet length) for Cityscapes
respectively. We vary the starting frame It during train-
ing to learn the global policies across videos. For each
episode, we let the agent run K times (with the aforemen-
tioned key constraint strategy) to obtain K trials to reduce
variances. The return of each episode can be expressed
as J(θ) = 1

K

∑K
v=1

∑t+pv
u=t γ

u−trvu, where t is the starting
frame index of the episode, and pv denotes the total step num-
ber at the vth trail (since agent may stop before M steps),

and rvu refers to the reward of frame u in vth trail. J(θ) is
the main objective function to optimise.

Auxiliary loss In addition to optimise the cumulative
reward J(θ), we employ the entropy loss H(πθ(a|s)) as
in [27, 33] to promote the policy that retains high-entropy
action posteriors so as to avoid over-confident actions. Eq. 3
shows the final objective function L to optimise using policy
gradient with reinforcement method [51].

L = J(θ) + λ1H(πθ(a|s)) (3)

Epsilon-greedy strategy During training, agent may
still fall into over-deterministic dilemmas with action poste-
riors approaching nearly 1, even though the auxiliary entropy
loss have been added. To recover from such dilemma, we
implement a simple strategy similar to epsilon-greedy al-
gorithm for action sampling, i.e., in the cases that action
probabilities πθ(aj |s) exceed a threshold ε (such as 0.98),
instead of taking action aj with probability πθ(aj |s), we use
ε to stochastically pick action aj (and 1.0 − ε for picking
action a1−j).

4. Experiments
4.1. Datasets

We conducted experiments on two datasets: the 300
Videos on the Wild (300VW) dataset [41] and the Cityscapes
dataset [10]. 300VW is used for evaluating the proposed
real-time face segmentation system with the RL key selector.
To the best of our knowledge, 300VW is the only publicly
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available face video dataset that provides per-frame segmen-
tation labels. Therefore, to demonstrate the generality of our
method, we also evaluate our method on Cityscapes [10],
which is a widely used dataset for scene parsing, and thus
we show how our RL key scheduler can generalise to other
datasets and scenarios.

The 300VW dataset contains 114 face videos (captured
at 30 FPS) with an average length of 64 seconds, all of
which are taken in unconstrained environment. Following
[49], we have cropped faces out of the video frames and
generated the segmentation labels with facial skin, eyes,
outer mouth and inner mouth for all the 218,595 frames.
For experiment purpose, we divided the videos into three
subject-independent parts, namely A/B/C sets containing
51 / 51 / 12 videos. In detail, for training N , we randomly
picked 9,990 / 1,0320 / 2,400 frames from sets A/B/C
for training/validation/testing. To train F , we randomly
generate 32,410 / 4,836 / 6,671 key-current image pairs with
a varying gap between 1 to 30 frames from sets A/B/C
for training/validation/testing. We intentionally excluded
set A for policy network learning, since this set has already
been used to train N and F , instead, we used the full B set
(51 videos with 98,947 frames) for training and validating
the RL key scheduler, and evaluated it on the full C set (12
videos with 22,580 frames).

The Cityscapes dataset contains 2,975 / 500 / 1,525 anno-
tated urban scene images as training/validation/testing set,
while each annotated image is the 20th frame of a 30-frame
(1.8 seconds) video snippet. To ensure a fair comparison on
this dataset, we have adopted the same preliminary models
(N and F) and the model weights provided by the authors
of DVSNet [54], such that we only re-trained the proposed
RL key schedulers using the Cityscapes training snippets.
Following DVSNet [54], our method and the baselines are
evaluated on the validation snippets, where the initial frame
is set as key and performances are measured on the 20th

annotated frame.

4.2. Experimental Setup

Evaluation metric We employed the commonly used
mean Intersection-over-Union (mIoU) as the evaluation met-
ric. For the performance evaluation of different key sched-
ulers, we measure: 1. the relationship between Average Key
Intervals (AKI) and mIoU, as to demonstrate the effective-
ness of key selections under different speed requirements,
and 2. the relationship between the actual FPS and mIoU.

Training preliminary networks On 300VW, we
utilised the state-of-the-art Deeplab-V3+ architecture [8]
for image segmentation model N , and we adopted the
FlowNet2-s architecture [15] as the implementation of flow
estimation function F . For training N , we initialised the
weights using the pre-trained model provided in [8] and then
fine-tuned it. We set the output stride and decoder output

stride to 16 and 4, respectively. We divided N into Nfeat
and Ntask, where the output of Nfeat is the posterior for
each image pixel, we then fine-tuned the FlowNet2-s model
F as suggested in [64] by freezing Nfeat and Ntask. Also,
we used the pre-trained weights provided in [15] as the start-
ing point of training F . The input sizes for N and F are
both set to 513*513.

On Cityscapes, we have adopted identical N and F ar-
chitectures as DVSNet [54] and directly use the weights
provided by the authors, such that we only re-trained the pro-
posed policy key scheduler. Besides, we have also adopted
the frame division strategy from DVSNet and have divided
the frame into four individual regions. We refer interested
readers to [54] for more details.

Reinforcement learning settings For state si =
{Di→k, Ei}, following DVSNet [54], we leveraged the fea-
tures from the Conv6 layer of the FlowNet2-s model as the
deviation information Di→k, and we obtained the expert in-
formation Ei = {KAR,LKD} from the last 90 decisions.
During the training of policy network, Nfeat, Ntask and F
were frozen to avoid unnecessary computations. We chose
RMSProp [46] as the optimiser and set the initial learning
rate to 0.001. The parameters λ1 in Eq. 3 were set to 0.14.
We empirically decided the discount factor γ to be 1.0, as
the per frame performance was equally important in our task.
The value of epsilon ε in epsilon-greedy strategy was set to
0.98. During training, we set the threshold value τ for deter-
mining the key action to 0.5. We used the reward formulation
as defined in Eq. 1 for 300VW. For Cityscapes, the modified
reward as defined in Eq. 2 was used because most frames
in the Cityscapes dataset are not annotated. The maximum
length of each episode was set to 270 frames (9 seconds)
for 300VW and 30 frames (snippet length) for Cityscapes
respectively, and we repeated a relatively large number of 32
trials for each episode with a mini-batch size of 8 episodes
for back-propagation in πθ. We trained each model for 2,400
episodes and validated the performances of checkpoints on
the same set. We also varied the KAR limit η to obtain policy
networks with different key decision tendencies.

Baseline comparison We compared our method with
three baseline approaches on both datasets: (1) The adap-
tive key decision model DVSNet [54]; (2) The adaptive key
scheduler using flow magnitude difference in [54]; (3) Deep
Feature Flow (DFF) with a fixed key scheduler as in [64].
We utilised the same implementations and settings for the
baselines as described in DVSNet paper, and we refer the
readers to [54] for details. Note that for the implementa-
tion of DVSNet on Cityscapes, we directly used the model
weights provided by the authors, but we have re-trained the
DVSNet model on 300VW. For our method, to obtain key de-
cisions with different Average Key Intervals, we have trained
multiple models with various KAR limit η, and also varied
the key threshold values τ of those models.
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Table 1: The performances of various image segmentation
models and the flow estimation model FlowNet2-s. For train-
ing FlowNet2-s, Deeplab-V3+ with ResNet-50 backbone is
used as the key feature extractor Nfeat. FPS is evaluated on
a Nvidia 1080Ti GPU. ‘N/A’ refers to “Not Applicable”.

Model Eval
Scales mIoU(%) FPS

FCN (VGG16) N/A 63.54 45.5
Deeplab-V2

(VGG16) N/A 65.80 3.44

Deeplab-V3+
(Xception-65)

1.0 68.25 24.4
1.25, 1.75 68.98 6.4

Deeplab-V3+
(MobileNet-V2)

1.0 67.07 58.8
1.25, 1.75 68.20 21.7

Deeplab-V3+
(ResNet-50)

1.0 67.50 33.3
1.25, 1.75 69.61 10.1

FlowNet2-s N/A 64.13 153.8

Implementation We implemented our method in Ten-
sorflow [1] framework. Experiments were run on a cluster
with eight NVidia 1080 Ti GPUs, and it took approximately
2.5 days to train a RL model per GPU.

4.3. Results

Preliminary networks on 300VW We evaluated five
image segmentation models on 300VW dataset: FCN
[25] with VGG16 [44] architecture, Deeplab-V2 [5] of
VGG16 version, the Deeplab-V3+ [8] with Xception-65
[9] / MobileNet-V2 [38] / RestNet-50 [14] backbones. We
have also tested two different eval scales (refer [8] for de-
tails) for Deeplab-V3+ model. As can be seen from Table 1,
Deeplab-V3+ with ResNet-50 backbone and multiple eval
scales (1.25 and 1.75) has achieved the best mIoU with an
acceptable FPS, therefore we selected it for our segmentation
model N . Its feature extraction part Nfeat was used to ex-
tract key frame feature in key-current images pairs during the
training of FlowNet2-s [15] model F , whose performance
was evaluated by the interpolation results on current frames.
From Table 1 we can discover that the interpolation speed
with F is generally much faster than those segmentation
models at the cost of a slight drop in mIoU (from 69.61%
to 64.13%). Under live video scenario, the loss of accuracy
can be effectively remedied by a good key scheduler.

RL training visualisation on 300VW In the upper row
of Fig. 3, we demonstrate the average return during RL train-
ing with different KAR limits η (0.04, 0.06, 0.14) on 300VW
dataset. It can be seen that even though we select the starting
frames of each episode randomly, those return curves still
exhibit a generally increasing trend despite several fluctua-
tions. This validates the effectiveness of our solutions for
reducing variances and stabilising gradients, and it also veri-

fies that the policy πθ is improving towards more rewarding
key actions. Besides, as the value of η increases and allows
for more key actions, the maximum return that each curve
achieves also becomes intuitively higher.

We also visualised the influences of two expert informa-
tion KAR and LDK by plotting their weights in πθ during
RL training on 300VW. In the bottom row of Fig. 3, we have
plotted the weights of the two channels in πθ that received
KAR and LDK as input and contributed to the key posteriors
πθ(a1|s), and we can observe that the weights of the LDK
channel show a globally rising trend, while that of the KAR
channel decrease continuously. Such trends indicate that the
KAR/LDK channels become increasingly important in key
decisions as training proceeds, since a large LDK value (or a
small KAR) will encourage πθ to take key action. This obser-
vation is consistent with the proposed key constraint strategy.
Furthermore, we can also imply that the key scheduler relies
more on the LDK channel than the KAR with a lower η
like 0.04, conversely, KAR becomes more significant with a
higher η like 0.14.

Performances evaluations The upper plot of Fig. 4
shows the Average Key Intervals (AKI) versus mIoU of vari-
ous key selectors on the 300VW dataset and the bottom plot
depicts the corresponding FPS versus mIoU curves. Note
that in the AKI vs. mIoU graph, we include two versions
of DFF: the one with fixed key intervals and the variant
with randomly selected keys. We can easily see that our key
scheduler have shown superior performance than others in
terms of both effective key selections and the actual running
speed. Although the performance of all methods are similar
for AKI less than 20, this is to be expected as the perfor-
mance degradation on non-key frames can be compensated
by dense key selections. Our method starts to show supe-
rior performance when the key interval increases beyond 25,
where our mIoUs are consistently higher than that of other
methods and decreases slower as the key interval increases.

The evaluation results on Cityscapes can be found in Fig.
5, which demonstrates a similar trend with those results on
300VW and therefore validates the generality of our RL key
scheduler to other datasets and tasks. However, it should be
noted that, in the case of face videos, selecting key frames
by a small interval (� 20) does not significantly affect the
performance, which is not the same as in the autonomous
driving scenarios of Cityscapes. This could be attributed to
the fact that variations between consecutive frames in face
videos are generally less than those in autonomous driving
scenes. As a result, we can gain more efficiency benefit when
using key scheduling policy with relatively large interval for
dynamic segmentation of face video.

4.4. Visualising Key Selections

To better understand why our RL-based key selection
method outperforms the baselines, we visualise the distribu-
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Figure 3: The upper row plots the average return curves during RL training on 300VW with η value set to 0.04, 0.06 and 0.14.
The bottom row illustrates the variations of the weights of KAR and LDK channels contributing to the key posteriors πθ(a1|s)
on the same dataset. The plots in the same column are from the same training session.

Figure 4: Comparison between baselines and our approach
on 300VW. Up: AKI versus mIoU, bottom: FPS versus
mIoU. FPS is evaluated on a Nvidia 2080Ti GPU.

tion of intervals between consecutive keys (CKI) based on
the key selections made by all evaluated methods. Without
loss of generality, Fig. 6 shows the density curves plotted
from the experiment on 300VW dataset at AKI=121. As
DFF uses a fixed key interval, its CKI distribution takes
the shape of a single spike in the figure. In contrast, the
CKI distribution given by our method has the flattest shape,
meaning that the key frames selected by our method are
more unevenly situated in the test videos. Noticeably, there

Figure 5: Comparison between baselines and our approach
on Cityscapes. Up: AKI versus mIoU, bottom: FPS versus
mIoU. FPS is evaluated on a Nvidia 1080Ti GPU.

are more cases of large gaps (>200) between neighbouring
keys selected by our method than by others. This indicates
our method could better capture the dynamics of the video
and only select keys that have larger global impact to the
segmentation accuracy.

In addition, we also visualise the key frames selected by
our method, DFF and DVSNet on a 30-second test video
in Fig. 7 to provide insight on how the key selections can
affect the mIoU. We can observe from this figure that the
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Figure 6: The histogram plot for Consecutive Key Intervals
of different methods on 300VW (AKI=121).

Figure 7: A comparison of key selections on a 30-second
face video between DVSNet, DFF and ours (AKI=121).

key frames selected by our method can better compensate
for the loss of accuracy and retain higher mIoU over longer
span of frames (such as frame 37 and 459), while those
selected by DFF (fixed scheduler) are less flexible and the
compensation to mIoU loss is generally worse than ours.
Comparing DVSNet with ours, we can see that 1) our method
can give key decisions with more stable non-key mIoUs
(frames 37, 459 and 713), and 2) on hard frames such as
frames 600 to 750, our reinforcement key scheduler has also
made better compensations to performance loss with less key
frames. These observations demonstrate the benefits brought
by reinforcement learning, which is to learn key-decision
policies from the global video context.

Last but not least, in Fig. 8, we plot the segmentation
masks generated by different methods on several non-key
frames during the experiment on 300VW dataset (AKI=121).
It can be seen that DFF with fixed key schedulers usually
leads to low-quality masks with missing facial components,
while the DVSNet and the Flow Magnitude methods have

Figure 8: The segmentation masks generated by different
methods for the non-key frames on 300VW (AKI=121).

shown better but still not satisfying results. In contrast, our
method has produced non-key masks with the best visual
qualities, which further validate the effectiveness of the pro-
posed key schedulers.

5. Conclusions
In this paper, we proposed to learn an efficient and effec-

tive key scheduler via reinforcement learning for dynamic
face video segmentation. By utilising expert information and
appropriately designed training strategies, our key scheduler
achieves more effective key decisions than baseline methods
at smaller computational cost. We also show the method is
not limited to face video but could also generalise to other
scenarios. By visualising the key selections made by our
method, we try to explain why our key scheduler can make
better selections than others. This is the first work to apply
dynamic segmentation techniques with RL on real-time face
videos, and it can be inspiring to future works on real-time
face segmentation and on dynamic video segmentation.
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