
Can We Learn Heuristics For Graphical Model Inference Using Reinforcement
Learning?

Safa Messaoud, Maghav Kumar, Alexander G. Schwing
University of Illinois at Urbana-Champaign

{messaou2, mkumar10, aschwing}@illinois.edu

Abstract

Combinatorial optimization is frequently used in com-
puter vision. For instance, in applications like semantic
segmentation, human pose estimation and action recogni-
tion, programs are formulated for solving inference in Condi-
tional Random Fields (CRFs) to produce a structured output
that is consistent with visual features of the image. However,
solving inference in CRFs is in general intractable, and ap-
proximation methods are computationally demanding and
limited to unary, pairwise and hand-crafted forms of higher
order potentials. In this paper, we show that we can learn
program heuristics, i.e., policies, for solving inference in
higher order CRFs for the task of semantic segmentation,
using reinforcement learning. Our method solves inference
tasks efficiently without imposing any constraints on the form
of the potentials. We show compelling results on the Pascal
VOC and MOTS datasets.

1. Introduction
Graphical model inference is an important combinatorial

optimization task for robotics and autonomous systems. De-
spite significant progress in recent years due to increasingly
accurate deep net models, challenges such as inconsistent
bounding box detection, segmentation or image classifica-
tion remain. Those inconsistencies can be addressed with
Conditional Random Fields (CRFs), albeit requiring to solve
an inference task which is of combinatorial complexity.

Classical algorithms to address combinatorial problems
come in three paradigms: exact, approximate and heuristic.
Exact algorithms are often based on solving an Integer Linear
Program (ILP) using a combination of a Linear Program-
ming (LP) relaxation and a branch-and-bound framework.
Particularly for large problems, repeated solving of linear
programs is computationally expensive and therefore pro-
hibitive. Approximation algorithms address this concern,
however, often at the expense of weak optimality guarantees.
Moreover, approximation algorithms often involve manual
construction for each problem. Seemingly easier to develop
are heuristics which are generally computationally fast but

guarantees are hardly provided. In addition, tuning of hyper-
parameters for a particular problem instance may be required.
A fourth paradigm has been considered since the early 2000s
and gained popularity again recently [93, 6, 85, 5, 27, 18]:
learned algorithms. This fourth paradigm is based on the
intuition that data governs the properties of the combinato-
rial algorithm. For instance, semantic image segmentation
always deals with similarly sized problem structures or se-
mantic patterns. It is therefore conceivable that learning
to solve the problem on a given dataset uncovers strategies
which are close to optimal but hard to find manually, since
it is much more effective for a learning algorithm to sift
through large amounts of sample problems. To achieve this,
in a series of work, reinforcement learning techniques were
developed [93, 6, 85, 5, 27, 18] and shown to perform well
on a variety of combinatorial tasks from the traveling sales-
man problem and the knapsack formulation to maximum cut
and minimum vertex cover.

While the aforementioned learning based techniques have
been shown to perform extremely well on classical bench-
marks, we are not aware of results for inference algorithms in
CRFs for semantic segmentation. We hence wonder whether
we can learn heuristics to address graphical model inference
in semantic segmentation problems? To study this we de-
velop a new framework for higher order CRF inference for
the task of semantic segmentation using a Markov Decision
Process (MDP). To solve the MDP, we assess two reinforce-
ment learning algorithms: a Deep Q-Net (DQN) [58] and a
deep net guided Monte Carlo Tree Search (MCTS) [82].

The proposed approach has two main advantages: (1)
Unlike traditional approaches, it does not impose any con-
straints on the form of the CRF terms to facilitate effective
inference. We demonstrate our claim by designing detection
based higher order potentials that result in computationally
intractable classical inference approaches. (2) Our method
is more efficient than traditional approaches as inference
complexity is linear in arbitrary potential orders while clas-
sical methods have exponential dependence on the largest
clique size in general. This is due to the fact that semantic
segmentation is reduced to sequentially inferring the labels

1

ar
X

iv
:2

00
5.

01
50

8v
2

 [
cs

.C
V

]
 5

 M
ay

 2
02

0

Reward
Sec	3.4

Node	Embedding

Superpixel	Pooling

Output

Unaries	 		(PSPNet)
Sec	3.6

GNN	Policy	Network
Sec	3.3

CRF	Energy		
Sec	3.2

Groud	Truth

Input

	Higher	Order	Potentials	 	
(Bounding	Boxes	YoloV2)	

Sec	3.6

Binaries	 		(Hypercolumns	VGG16)
Sec	3.6

Figure 1: Pipeline of the proposed approach. Inference in a higher order CRF is solved using reinforcement learning for the task of
semantic segmentation. For Pascal VOC, unaries are obtained from PSPNet [94], pairwise potentials are computed using hypercolumns
from VGG16 [30] and higher order potentials are based on detection bounding boxes from YoloV2 [69]. The policy network is modeled as a
graph embedding network [17] following the CRF graph structure. It sequentially produces the labeling of every node (superpixel).

of every variable based on a learned policy, without use of
any iterative or search procedure.

We evaluate the proposed approach on two benchmarks:
(1) the Pascal VOC semantic segmentation dataset [19],
and (2) the MOTS multi-object tracking and segmentation
dataset [86]. We demonstrate that our method outperforms
traditional inference algorithms while being more efficient.

2. Related Work

We first review work on semantic segmentation before
discussing learning of combinatorial optimizers.
Semantic Segmentation: In early 2000, classifiers were
locally applied to images to generate segmentations [42]
which resulted in a noisy output. To address this concern, as
early as 2004, He et al. [33] applied Conditional Random
Fields (CRFs) [43] and multi-layer perceptron features. For
inference, Gibbs sampling was used, since MAP inference
is NP-hard due to the combinatorial nature of the program.
Progress in combinatorial optimization for flow-based prob-
lems in the 1990s and early 2000s [21, 23, 26, 9, 7, 8, 10, 40]
showed that min-cut solvers can find the MAP solution of
sub-modular energy functions of graphical models for bi-
nary segmentation. Approximation algorithms like swap-
moves and α-expansion [10] were developed to extend
applicability of min-cut solvers to more than two labels.
Semantic segmentation was further popularized by com-
bining random forests with CRFs [81]. Recently, the
performance on standard semantic segmentation bench-
marks like Pascal VOC 2012 [19] has been dramatically
boosted by convolutional networks. Both deeper [48] and
wider [61, 71, 92] network architectures have been proposed.
Advances like spatial pyramid pooling [94] and atrous spa-
tial pyramid pooling [15] emerged to remedy limited recep-

tive fields. Other approaches jointly train deep nets with
CRFs [16, 78, 28, 79, 52, 14, 96] to better capture the rich
structure present in natural scenes.
CRF Inference: Algorithmically, to find the MAP configu-
ration, LP relaxations have been extensively studied in the
2000s [74, 13, 41, 39, 22, 88, 34, 83, 35, 68, 89, 54, 53, 36,
75, 76, 77, 55, 56]. Also, CRF inference was studied as a
differentiable module within a deep net [95, 51, 57, 24, 25].
However, both directions remain computationally demand-
ing, particularly if high order potentials are involved. We
therefore wonder whether recent progress in learning based
combinatorial optimization yields effective algorithms for
high order CRF inference in semantic segmentation.
Learning-based Combinatorial Optimization: Decades
of research on combinatorial optimization, often also re-
ferred to as discrete optimization, uncovered a large amount
of valuable exact, approximation and heuristic algorithms.
Already in the early 2000s, but more prominently re-
cently [93, 6, 85, 5, 27, 18], learning based algorithms have
been suggested for combinatorial optimization. They are
based on the intuition that instances of similar problems
are often solved repeatedly. While humans have uncov-
ered impressive heuristics, data driven techniques are likely
to uncover even more compelling mechanisms. It is be-
yond the scope of this paper to review the vast literature
on combinatorial optimization. Instead, we subsequently
focus on learning based methods. Among the first is work
by Boyan and Moore [6], discussing how to learn to pre-
dict the outcome of a local search algorithm in order to
bias future search trajectories. Around the same time, rein-
forcement learning techniques were used to solve resource-
constrained scheduling tasks [93]. Reinforcement learning
is also the technique of choice for recent approaches address-
ing NP-hard tasks [5, 27, 18, 45] like the traveling salesman,

�

1

�(|) ∈�

1

�

1

ℝ

�×||

����� ����	

 ��
�������

∑

�� ������� �� !"

= ∅�

1

#$ %&'() *+,-./012 34 56789: ;<=>?@ABC

�

1

DEFGHIJK LMNOPQ

= (,)�

∗

1

�

∗

1

�

�

∗

1

RS TUVWX YZ[\]^

= ({ }, ())�

2

�

∗

1

�

{ }�

∗

1

�

1

Figure 2: Illustration of one iteration of reinforcement learning
for the inference task. The policy network samples an action
a1 = (i∗1, yi∗1) from the learned distribution π(a1|s1) ∈ RN×|L|

at iteration t = 1.

knapsack, maximum cut, and minimum vertex cover prob-
lems. Similarly, promising results exist for structured predic-
tion problems like dialog generation [46, 90, 31], program
synthesis [12, 50, 65], semantic parsing [49], architecture
search [97], chunking and parsing [80], machine transla-
tion [67, 62, 4], summarization [63], image captioning [70],
knowledge graph reasoning [91], query rewriting [60, 11]
and information extraction [59, 66]. Instead of directly learn-
ing to solve a given program, machine learning techniques
have also been applied to parts of combinatorial solvers, e.g.,
to speed up branch-and-bound rules [44, 73, 32, 38]. We
also want to highlight recent work on learning to optimize
for continuous problems [47, 2].

Given those impressive results on challenging real-world
problems, we wonder: can we learn programs for solving
higher order CRFs for semantic image segmentation? Since
CRF inference is typically formulated as a combinatorial op-
timization problem, we want to know how recent advances in
learning based combinatorial optimization can be leveraged.

3. Approach
We first present an overview of our approach before we

discuss the individual components in greater detail.

3.1. Overview

Graphical models factorize a global energy function as
a sum of local functions of two types: (1) local evidence;
and (2) co-occurrence information. Both cues are typically
obtained from deep net classifiers which are combined in
a joint energy formulation. Finding the optimal semantic
segmentation configuration, i.e., finding the minimizing ar-
gument of the energy, generally involves solving an NP-hard
combinatorial optimization problem. Notable exceptions
include energies with sub-modular co-occurrence terms.

Instead of using classical directions, i.e., heuristics, ex-
haustive search, or relaxations, here, we assess suitability of
learning based combinatorial optimization. Intuitively, we

argue that CRF inference for the task of semantic segmenta-
tion exhibits an inherent similarity which can be exploited by
learning based algorithms. In spirit, this mimics the design
of heuristic rules. However, different from hand-crafting
those rules, we use a learning based approach. To the best
of our knowledge, this is the first work to successfully apply
learning based combinatorial optimization to CRF inference
for semantic segmentation. We therefore first provide an
overview of the developed approach, outlined in Fig. 1.

Just like classical approaches, we also use local evidence
and co-occurrence information, obtained from deep nets.
This information is consequently used to form an energy
function defined over a Conditional Random Field (CRF).
An example of a CRF with variables corresponding to super-
pixels (circles), pairwise potentials (edges) and higher order
potentials obtained from object detections (fully connected
cliques) is illustrated in Fig. 1. However, different from clas-
sical methods, we find the minimizing configuration of the
energy by repeatedly applying a learned policy network. In
every iteration, the policy network selects a random variable,
i.e., the pixel and its label by computing a probability dis-
tribution over all currently unlabeled pixels and their labels.
Specifically, the pixel and label are determined by choos-
ing the highest scoring entry in a matrix where the number
of rows and columns correspond to the currently unlabeled
pixels and the available labels respectively, as illustrated in
Fig. 9.

3.2. Problem Formulation

Formally, given an image x, we are interested in pre-
dicting the semantic segmentation y = (y1, . . . , yN) ∈
Y . Hereby, N denotes the total number of pixels or su-
perpixels, and the semantic segmentation of a superpixel
i ∈ {1, . . . , N} is referred to via yi ∈ L = {1, . . . , |L|},
which can be assigned one out of |L| possible discrete la-
bels from the set of possible labels L. The output space is
denoted Y = LN .

Classical techniques obtain local evidence fi(yi) for ev-
ery pixel or superpixel, and co-occurrence information in
the form of pairwise potentials fij(yi, yj) and higher order
potentials fc(yc). The latter assigns an energy to a clique
c ⊆ {1, . . . , N} of variables yc = (yi)i∈c. For readability,
we drop the dependence of the energies fi, fij and fc on the
image x and the parameters of the employed deep nets. The
goal of energy based semantic segmentation is to find the
configuration y∗ which has the lowest energy E(y), i.e.,

y∗=argmin
y∈Y

E(y),
N∑
i=1

fi(yi) +
∑

(i,j)∈E

fij(yi, yj) +
∑
c∈C

fc(yc).

(1)
Hereby, the sets E and C subsume respectively the captured
set of pairwise and higher order co-occurrence patterns. De-
tails about the potentials are presented in Sec. 3.6.

Algorithm 1: Inference Procedure
1: s1 = ∅;
2: for t = 1 to N do
3: a∗t = argmaxat∈At π(at|st)
4: (i∗t , yi∗t)← a∗t
5: st+1 = st ⊕ (i∗t , yi∗t)
6: end for
7: Return: ŷ ← sN+1

Solving the combinatorial program given in Eq. (1), i.e.,
inferring the optimal configuration y∗ is generally NP-hard.
Different from existing methods, we develop a learning
based combinatorial optimization heuristic for semantic seg-
mentation with the intention to better capture the intricacies
of energy minimization than can be done by hand-crafting
rules. The developed heuristic sequentially labels one vari-
able yi, i ∈ {1, . . . , N}, at a time.

Formally, selection of one superpixel at a time can be
formulated in a reinforcement learning context, as shown
in Fig. 9. Specifically, an agent operates in t ∈ {1, . . . , N}
time-steps according to a policy π(at|st) which encodes
a probability distribution over actions at ∈ At given
the current state st. The current state subsumes in se-
lection order the indices of all currently labeled variables
It ⊆ {1, . . . , N} as well as their labels yIt = (yi)i∈It , i.e.,
st ∈ {(It, yIt) : It ⊆ {1, . . . , N}, yIt ∈ L|It|}. We start
with s1 = ∅. The set of possible actions At is the concatena-
tion of the label spaces L for all currently unlabeled pixels
j ∈ {1, . . . , N} \ It, i.e., At =

⊕
j∈{1,...,N}\It L. We em-

phasize the difference between the concatenation operator
and the product operator used to obtain the semantic segmen-
tation output space Y = LN , i.e., the proposed approach
does not operate in the product space.

As mentioned before, the policy π(at|st) results in a
probability distribution over actions at ∈ At from which we
greedily select the most probable action

a∗t = arg max
at∈At

π(at|st).

The most probable action a∗t can be decomposed into the
index for the selected variable, i.e., i∗t and its state yi∗t ∈
L. We obtain the subsequent state st+1 by combining the
extracted variable index i∗t and its labeling with the previous
state st. Specifically, we obtain st+1 = st ⊕ (i∗t , yi∗t) by
slightly abusing the ⊕-operator to mean concatenation to a
set and a list maintained within a state.

Formally, we summarize the developed reinforcement
learning based semantic segmentation algorithm used for
inferring a labeling ŷ in Alg. 1. In the following, we describe
the policy function πθ(at|st), which we found to work well
for semantic segmentation, and different variants to learn its
parameters θ.

3.3. Policy Function

We model the policy function πθ(at|st) using a graph
embedding network [17]. The input to the network is a
weighted graph G(V, E , w), where nodes V = {1, . . . , N},
correspond to variables, i.e., in our case superpixels, E is a set
of edges connecting neighboring superpixels, as illustrated
in Fig. 1 and w : E → R+ is the edge weight function. The
weights {w(i, j)}{j:(i,j)∈E} on the edges between a given
node i and its neighbors {j : (i, j) ∈ E} form a distribu-
tion, obtained by normalizing the dot product between the
hypercolumns [30] gi and gj via a softmax across neighbors.
At every iteration, the state st is encoded in the graph G by
tagging node i ∈ V with a scalar hi = 1 if the node is part
of the already labeled set It, i.e., if i ∈ It and 0 otherwise.
Moreover, a one-hot encoding ỹi ∈ {0, 1}|L| encodes the
selected label of nodes i ∈ It. We set ỹi to equal the all
zeros vector if node i has not been selected yet.

Every node i ∈ V is represented by a p-dimensional
embedding, where p is a hyperparameter. The embedding is
composed of ỹi, hi as well as superpixel features bi ∈ RF

which encode appearance and bounding box characteristics
that we discuss in detail in Sec. 4.

The output of the network is a |L|-dimensional vector
πi for each node i ∈ V , representing the scores of the |L|
different labels for variable i.

The network iteratively generates a new representation
µ
(k+1)
i for every node i ∈ V by aggregating the current

embeddings µ(k)
i according to the graph structure E starting

from µ
(0)
i = 0, ∀i ∈ V . After K steps, the embedding

captures long range interactions between the graph features
as well as the graph properties necessary to minimize the
energy function E. Formally, the update rule for node i is

µ
(k+1)
i ←Relu

θ(k)1 hi+θ
(k)
2 ỹi+θ

(k)
3 bi+θ

(k)
4

∑
j:(i,j)∈E

w(i, j)µ
(k)
j

 ,

(2)
where θ(k)1 ∈ Rp, θ(k)2 ∈ Rp×|L| , θ(k)3 ∈ Rp×F and θ(k)4 ∈
Rp×p are trainable parameters. After K steps, πi for every
unlabeled node i ∈ {1, . . . , N} \ It is obtained via

πi = θ5µ
(K)
i ∀i ∈ {1, . . . , N} \ It, (3)

where θ5 ∈ R|L|×p is another trainable model parameter. We
illustrate the policy function πθ(at|st) and one iteration of
inference in Fig. 9.

3.4. Reward Function:

To train the policy, ideally, the reward function rt(st, at)
is designed such that the cumulative reward coincides ex-
actly with the objective function that we aim at maximizing,
i.e.,

∑N
t=1 rt(st, at) = −E(ŷ), where ŷ is extracted from

Table 1: Illustration of the energy reward computation following the two proposed reward schemes on a fully connected graph with 3 nodes.

t it Et rt = −(Et − Et−1) rt = ±1 Graph

0 − 0 − − 1 2 3

1 1 f1(y1) −f1(y1) −1+2· 1{(Et(y1)<Et(ŷ1))∀ŷ1}
1 2 3

2 2 f1(y1)+f2(y2)+f12(y1, y2) −f2(y2)−f12(y1, y2) −1+2· 1{(Et(y1,y2)<Et(y1,ŷ2))∀ŷ2}
1 2 3

3 3 f1(y1)+f2(y2) + f3(y3) +f12(y1, y2) −f3(y3)−f23(y2, y3) −1+2· 1{(Et(y1,y2,y3)<Et(y1,y2,ŷ3))∀ŷ3}
1 2 3

+f23(y2, y3) +f13(y1, y3)+f{1,2,3}(y1, y2, y3) −f13(y1, y3)−f{1,2,3}(y1, y2, y3)

sN+1. Hence, at step t, we define the reward as the dif-
ference between the value of the negative new energy Et
and the negative energy from the previous step Et−1, i.e.,
rt(st, at) = Et−1(yIt−1)− Et(yIt), where E0 = 0. Poten-
tials depending on variables that are not labeled at time t are
not incorporated in the evaluation of Et(yIt).

We also study a second scheme, where the reward is
truncated to +1 or −1, i.e., rt(st, at) ∈ {−1, 1}. For every
selected node it, with label yit , we compare the energy
function Et(yIt) with the one obtained when using all other
labels ŷit ∈ L \ yit . If the chosen label yit results in the
lowest energy, the obtained reward is +1, otherwise it is −1.

Note that the unary potentials result in a reward for ev-
ery time step. Pairwise and high order potentials result in
a sparse reward as their value is only available once all the
superpixels forming the pair or clique are labeled. We il-
lustrate the energy and reward computation on a graph with
three fully connected nodes in Tab. 1.

3.5. Learning Policy Parameters

To learn the parameters θ of the policy function πθ(at|st),
a plethora of reinforcement learning algorithms are appli-
cable. To provide a careful assessment of the developed
approach, we study two different techniques, Q-learning and
Monte-Carlo Tree Search, both of which we describe next.
Q-learning: In the context of Q-learning, we interpret the
|L|-dimensional policy network output vector corresponding
to a currently unlabeled node i ∈ {1, . . . , N} \ It as the
Q-values Q(st, at; θ) associated to the action at of selecting
node i and assigning label yi ∈ L. Since we only consider
actions to label currently unlabeled nodes we obtain a total
of |At| different Q-values.

We perform standard Q-learning and minimize the
squared loss (z − Q(st, at; θ))

2, where we use target z =
γmaxa′ Q(st+1, a

′; θ) + rt(st, at) for a non-terminal state.
The reward is denoted rt and detailed above. The terminal
state is reached when all the nodes are labeled.

Instead of updating the Q-function based on the current
sample (st, at, rt(st, at), st+1), we use a replay memory
populated with samples (graphs) from previous episodes. In
every iteration, we select a batch of samples and perform
stochastic gradient descent on the squared loss.

During the exploration phase, beyond random actions,
we encourage the following three different sets of actions

to generate more informative rewards for training: (1)M1:
Choosing nodes that are adjacent to the already selected ones
in the graph. Otherwise, the reward will only be based on
the unary terms as the pairwise term is only evaluated if the
neighbors are labeled (t = 2 in Tab. 1); (2)M2: Selecting
nodes with the lowest unary distribution entropy. The low
entropy indicates a high confidence of the unary deep net.
Hence, the labels of the corresponding nodes are more likely
to be correct and provide useful information to neighbors
with higher entropy in the upcoming iterations. (3) M3:
Assigning the same label to nodes forming the same higher
order potential. Further details are in Appendix B.
Monte-Carlo Tree Search: While DQN tries to learn a
policy from looking at samples representing one action at
a time, MCTS has the inherent ability to update its policy
after looking multiple steps ahead via a tree search proce-
dure. At training time, through extensive simulations, MCTS
builds a statistics tree, reflecting an empirical distribution
πMCTS(at|st). Specifically, for a given image, a node in the
search tree corresponds to the state st in our formulation and
an edge corresponds to a possible action at. The root node
is initialized to s1 = ∅. The statistics stored at every node
correspond to (1) N(st): the number of times state st has
been reached, (2) N(at|st): the number of times action at
was chosen in state st in all previous simulations, as well
as (3) r̃t(st, at): the averaged reward across all simulations
starting at st and taking action at. The MCTS policy is
defined as πMCTS(at|st) = N(at|st)

N(st)
. The simulations follow

an exploration-exploitation procedure modeled by a vari-
ant of the Probabilistic Upper Confidence Bound (PUCB)

[82]: U(at, st) =
r̃t(st,at)
N(at|st) + πθ(at|st)

√
N(st)

1+N(at|st) . During
exploration, we additionally encourage the same action sets
M1,M2 andM3 used for DQN. Also, similarly to DQN,
the generated experiences (st, πMCTS) are stored in a replay
buffer. The policy network is then trained through a cross
entropy loss

L(θ) = −
∑
s

∑
a

πMCTS(a|s) log πθ(a|s). (4)

to mach the empirically constructed distribution. Here, the
second sum is over all valid actions from a state s sampled
from the replay buffer and πMCTS(a|s) is the corresponding
empirically estimated distribution.

Table 2: Performance results for the minimizing the energy function Et under reward scheme 1 (R1
t = −(Et −Et−1)) and reward scheme 2 (R2

t = ±1).

N
od

es

M
et

ri
cs

Su
pe

rv
is

ed
Unary Unary + Pairwise Unary + Pairwise + HOP1 Unary + Pairwise + HOP1 + HOP2

BP R1
t R2

t BP TBP DD L-Flip α-Exp R1
t R2

t BP TBP DD L-Flip α-Exp R1
t R2

t R1
t R2

t

DQN MCTS DQN MCTS DQN MCTS DQN MCTS DQN MCTS DQN MCTS DQN MCTS DQN MCTS

50

IoU (sp) 85.21 88.59 88.04 88.19 88.59 88.59 88.73 88.73 88.73 88.73 88.72 43.31 66.51 87.91 88.73 89.26 89.27 89.27 89.27 88.58 57.43 73.37 89.55 89.66 58.34 73.85 90.05 90.09

Pa
sc

al
V

O
C

IoU (p) 69.05 72.56 70.77 71.99 72.56 72.56 72.43 72.43 72.43 72.43 72.43 38.54 38.75 72.16 72.43 72.59 72.59 72.59 72.60 72.35 51.88 53.71 72.83 72.85 50.53 51.71 72.94 72.95

25
0 IoU (sp) 83.54 88.01 87.29 88.01 88.01 88.01 88.10 88.10 88.10 88.10 88.10 88.06 88.22 88.56 88.52 88.54 88.53 88.55 88.54 88.07 60.60 64.82 88.94 88.91 82.19 81.89 89.30 89.57

IoU (p) 75.88 80.64 80.47 80.64 80.64 80.64 80.68 80.68 80.68 80.68 80.68 80.54 80.86 80.84 80.75 80.91 80.91 80.93 80.91 80.65 57.36 59.73 81.07 81.05 74.94 74.77 81.23 81.33

50
0 IoU (sp) 84.91 87.39 87.34 87.39 87.39 87.39 87.55 87.55 87.56 87.55 87.55 82.23 83.67 87.80 87.84 87.95 87.96 87.96 87.95 87.54 37.80 57.66 88.73 88.69 43.99 45.67 88.43 88.21

IoU (p) 77.93 82.35 82.20 82.35 82.35 82.35 82.48 82.48 82.48 82.47 82.47 77.36 79.14 82.64 82.70 82.72 82.72 82.72 82.71 82.47 36.65 52.73 83.05 82.95 41.74 42.44 82.79 82.67

M
O

T
S

20
00 IoU (sp) 82.49 82.64 80.98 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 80.39 82.64 82.65 82.64 83.17 83.17 83.17 83.17 83.16 83.14 83.30 83.27 83.28 83.13 83.19 83.29 83.29

IoU (p) 79.01 79.23 73.85 79.82 79.85 79.85 79.86 79.86 79.86 79.86 79.86 78.08 78.85 79.88 79.86 81.21 81.21 81.21 81.21 81.17 80.61 81.92 82.68 82.69 80.61 80.63 82.77 82.77

A more detailed description of the MCTS search process,
including pseudo-code is available in Appendix B. At infer-
ence time, we use a low budget of simulations. Final actions
are taken according to the constructed πMCTS(at|st).

The replay-memory for both DQN and MCTS is divided
into two chunks. The first chunk corresponds to the unary
potential, while the second chunk corresponds to the overall
energy function. A node is assigned to the second chunk if
its associated reward is higher than the one obtained from its
unary labeling. This ensures positive rewards from all the
potentials during training. Every chunk is further divided
into |L| categories corresponding to the |L| classes of the
selected node. This guarantees a balanced sampling of the
label classes in every batch during training. Beyond DQN
and MCTS, we experimented with policy gradients but could
not get it to work as it is an on-policy algorithm. Reusing
experiences for the structured replay buffer was crucial for
success of the learning algorithm.

3.6. Energy Function

Finally we provide details on the energy function E given
in Eq. (1). The unary potentials fi(yi) ∈ R|L| are obtained
from a semantic segmentation deep net. The pairwise poten-
tial encodes smoothness and is computed as follows:

fi,j(yi, yj) = ψ(yi, yj) · αp · 1|gTi gj |<βp , (5)

where ψ(yi, yj) is the label compatibility function describing
the co-occurrence of two classes in adjacent locations and is
given by the Potts model:

ψ(yi, yj) =

{
1 if yi 6= yj

0 otherwise
. (6)

Moreover, |gTi gj | is the above defined unnormalized weight
w(i, j) for the edge connecting the ith and jth nodes, i.e.,
superpixels. Intuitively, if the dot product between the hy-
percolumns gi and gj is smaller than a threshold βp and the
two superpixels are labeled differently, a penalty of value αp
incurs.

While the pairwise term mitigates boundary errors, we
address recognition errors with two detection-based higher
order potentials [3]. For this purpose, we use the YoloV2

bounding box object detector [69] as it ensures a good trade-
off between speed and accuracy. Every bounding box b is
presented by a tuple (lb, cb, Ib), where lb is the class label of
the detected object, cb is the confidence score of the detection
and Ib ⊆ {1, . . . , N} is the set of superpixels that belong to
the foreground detection obtained via Grab-Cut [72].

The first higher order potential (HOP1) encourages su-
perpixels within a bounding box to take the bounding box
label, while enabling recovery from false detections that do
not agree with other energy types. For this purpose, we add
an auxiliary variable zb for every bounding box b. We use
zb = 1, if the bounding box is inferred to be valid, otherwise
zb = 0. Formally,

f(yIb , zb) =

{
wb · cb ·

∑
i∈Ib 1yi=lb if zb = 0

wb · cb ·
∑
i∈Ib 1yi 6=lb if zb = 1

, (7)

where, wb ∈ R is a weight parameter. This potential can
be simplified into a sum of pairwise potentials between zb
and each yi with i ∈ Ib, i.e., f(yIb , zb) =

∑
i∈Ib fi,b(yi, zb),

where:

fi,b(yi, zb) =

{
wb · cb · 1yi=lb if zb = 0

wb · cb · 1yi 6=lb if zb = 1
. (8)

This simplification enables solving the higher order potential
using traditional techniques like mean field inference [3].

To show the merit of the RL framework, we introduce
another higher order potential (HOP2) that can not be seam-
lessly reduced to a pairwise one:

f(yIb) = λb · 1(
∑
i∈Ib

yi=l)<
|Ib|
C

, (9)

with λb and C being scalar parameters. This potential is
evaluated for bounding boxes with special characteristics to
encourage the superpixels in the bounding box to be of label
l. Intuitively, if the number of superpixels i ∈ Ib having
label l is less than a threshold |Ib|C , a penalty λb incurs. For
Pascal VOC, we evaluate the potential on bounding boxes
b included in larger bounding boxes, as we noticed that the
unaries frequently miss small objects overlapping with other
larger objects in the image (l = lb). For MOTS, we evaluate
this potential on bounding boxes of type ‘pedestrians’ over-
lapping with bounding boxes of type ‘bicycle.’ As cyclists

Figure 3: Success cases.

should not be labeled as pedestrians, we set l to be the back-
ground class. Transforming this term into a pairwise one
to enable using traditional inference techniques requires an
exponential number of auxiliary variables.

4. Experiments
In the following, we evaluate our learning based infer-

ence algorithm on Pascal VOC [19] and MOTS [19] datasets.
The original Pascal VOC dataset contains 1464 training and
1449 validation images. In addition to this data, we make
use of the annotations provided by [29], resulting in a total
of 10582 training instances. The number of classes is 21.
MOTS is a multi-object tracking and segmentation dataset
for cars and pedestrians (2 classes). It consists of 12 train-
ing sequences (5027 frames) and 9 validation ones (2981
frames). In this work, we perform semantic segmentation at
the level of superpixels, generated using SLIC [84]. Every
superpixel corresponds to a node i in the graph as illustrated
in Fig. 1. The unary potentials at the pixel level are obtained
from PSPNet [94] for Pascal VOC and TrackR-CNN [86]
for MOTS. The superpixels’ unaries are the average of the
unaries of all the pixels that belong to that superpixel. The
higher order potential is based on the YoloV2 [69] bounding
box detector. Additional training and implementation details
are described in Appendix A.
Evaluation Metrics: As evaluation metrics, we use inter-
section over union (IoU) computed at the level of both super-
pixels (sp) and pixels (p). IoU (p) is obtained after mapping
the superpixel level labels to the corresponding set of pixels.
Baselines: We compare our results to the segmentations ob-
tained by five different solvers from three categories: (1) mes-
sage passing algorithms, i.e., Belief propagation (BP) [64]
and Tree-reweighted Belief Propagation (TBP) [87], (2) a
Lagrangian relaxation method, i.e., Dual Decomposition
Subgradient (DD) [37], and (3) move making algorithms,
i.e., Lazy Flipper (LFlip) [1] and α-expansion as imple-
mented in [20]. Note that these solvers can not optimize our
HOP2 potential. Besides, we train a supervised model that
predicts the node label from the provided node features.
Performance Evaluation: We show the results of solving

the program given in Eq. (1) in Tab. 2, for unary (Col. 5),
unary plus pairwise (Col. 6), unary plus pairwise plus HOP1
(Col. 7) and unary plus pairwise plus HOP1 and HOP2
(Col. 8) potentials. For every potential type, we report re-
sults on graphs with superpixel numbers 50, 250 and 500 for
Pascal VOC and 2000 for MOTS, obtained from DQN and
MCTS, trained each with the two reward schemes discussed
in Sec. 3.5. Since MOTS has small objects, we opt for a
higher number of superpixels. It is remarkable to observe
that DQN and MCTS are able to learn heuristics which out-
perform the baselines. Interestingly, the policy has learned
to produce better semantic segmentations than the ones ob-
tained via MRF energy minimization. Guided by a reward de-
rived just from the energy function, the graph neural network
(the policy) learns characteristic node embeddings for every
semantic class by leveraging the hypercolumn and bounding
box features as well as the neighborhood characteristics. The
supervised baseline shows low performance, which proves
the merit of the learned policies. Overall MCTS perfor-
mance is comparable to the DQN one. This is mainly due
to the learned policies being somewhat local and focusing
on object boundaries, not necessitating a large multi-step
look-ahead, as we will show in the following.

In Fig. 3, we report success cases of the RL algorithms.
Smoothness modeled by our energy fixed the bottle segmen-
tation in the first image. Furthermore, our model detects
missing parts of the table in the second image in the first row
and a car in the image in the second row, that were missed
by the unaries. Also, we show that we fix a mis-labeling of
a truck as a car in the image in the third row.

Flexibility of Potentials: In Fig. 4, we show examples of
improved segmentations when using the pairwise, HOP1
and HOP2 potentials respectively. The motorcycle driver
segmentation improved incrementally with every potential
(first image) and the cyclist is not detected anymore as a
pedestrian (second image).

Generalization and scalability: The graph embedding net-
work enables training and testing on graphs with different
number of nodes, since the same parameters are used. We
investigate how models trained on graphs with few nodes

Figure 4: Output of our method for different potentials.

Table 3: Generalization of the learned policy.

PSPNet 500 1000 2000 10000

Pa
sc

al
V

O
C

DQN MCTS DQN MCTS DQN MCTS DQN MCTS

IoU (sp) − 88.74 88.73 87.58 87.61 86.36 86.39 84.66 84.67
IoU (p) 82.61 83.06 83.01 83.71 83.73 83.74 83.78 83.80 83.82

TrackR-CNN 5000 10000

DQN MCTS DQN MCTS

M
O

T
S

IoU (sp) − 79.81 79.80 76.73 76.69
IoU (p) 84.98 83.49 83.46 84.69 84.63

Table 4: Run-time during inference in seconds for Pascal VOC dataset.

N
od

es

U+P U+P+HOP1 U+P+HOP1
+HOP2

BP TBP DD L-Flip α-Exp DQN MCTS BP TBP DD L-Flip α-Exp DQN MCTS DQN MCTS

50 0.14 0.52 0.28 0.12 0.01 0.04 0.20 0.15 0.62 0.31 0.187 0.01 0.04 0.23 0.04 0.24
250 1.56 2.13 1.26 0.53 0.04 0.22 2.22 1.70 2.77 1.65 0.59 0.07 0.22 2.89 0.22 3.01
500 3.26 4.76 2.82 1.07 0.12 0.52 7.27 3.37 5.37 3.70 0.97 0.22 0.53 9.17 0.52 9.69
1000 6.63 9.65 6.84 1.80 0.30 0.78 18.5 7.22 10.4 7.47 2.25 0.36 0.78 21.6 0.78 22.8
2000 12.3 19.9 14.8 3.57 0.70 1.70 38.3 12.7 23.9 15.1 4.47 0.72 1.70 43.2 1.72 46.2

10000 72.8 130.9 143.7 22.6 4.81 8.23 202.1 88.7 140.1 106.9 23.5 4.72 8.25 209.7 8.20 210.3

perform on larger graphs. As shown in Tab. 3, compelling
accuracy and IoU values for generalization to graphs with up
to 500, 1000, 2000, and 10000 nodes are observed when us-
ing a policy trained on graphs of 250 nodes for Pascal VOC,
and to graphs with up to 5000 and 10000 nodes when using
a policy trained on 2000 nodes for MOTS. Here, we consider
the energy consisting of the combined potentials (unary, pair-
wise, HOP1 and HOP2). Note that we outperform PSPNet
at the pixel level for Pascal VOC.
Runtime efficiency: In Tab. 4, we show the inference run-
time for respectively the baselines, DQN and MCTS. The
runtime scales linearly with the number of nodes and does
not even depend on the potential type/order in case of DQN,
as inference is reduced to a forward pass of the policy net-
work at every iteration (Fig. 9). DQN is faster than all the
solvers apart from α-exp. However, performance-wise, α-
expansion has worse results (Tab. 2). MCTS is slower as it
performs multiple simulations per node and requires compu-
tation of the reward at every step.
Learned Policies: In Fig. 5, we show the probability map
across consecutive time steps. The selected nodes are col-
ored in white. The darker the superpixel, the smaller the
probability of selecting it next. We found that the heuristic
learns a notion of smoothness, choosing nodes that are in
close proximity and of the same label as the selected ones.
Also, the policy learns to start labeling the nodes with low
unary distribution entropy first, then decides on the ones
with higher entropy.

Figure 5: Visualization of the learned policy.

Figure 6: Failure cases.
Limitations: Our method is based on super-pixels, hence
datasets with small objects require a large number of nodes
and a longer run-time (MOTS vs. Pascal VOC). Also, our
method is sensitive to bounding box class errors, as illus-
trated in Fig. 6 (first example), and to the parameters calibra-
tion of the energy function, as shown in the second example
of the same figure. We plan to address the latter concern
in future work via end-to-end training. Furthermore, lit-
tle is know about deep reinforcement learning convergence.
Nevertheless, it has been successfully applied to solve com-
binatorial programs by leveraging the structure in the data.
We show that in our case as well, it converges to reasonable
policies.

5. Conclusion
We study how to solve higher order CRF inference for

semantic segmentation with reinforcement learning. The
approach is able to deal with potentials that are too expensive
to optimize using conventional techniques and outperforms
traditional approaches while being more efficient. Hence,
the proposed approach offers more flexibility for energy
functions while scaling linearly with the number of nodes
and the potential order. To answer our question: can we learn
heuristics for graphical model inference? We think we can
but we also want to note that a lot of manual work is required
to find suitable features and graph structures. For this reason
we think more research is needed to truly automate learning
of heuristics for graphical model inference. We hope the
research community will join us in this quest.

Acknowledgements: This work is supported in part by NSF
under Grant No. 1718221 and MRI #1725729, UIUC, Sam-
sung, 3M, and Cisco Systems Inc. (Gift Award CG 1377144).
We thank Cisco for access to the Arcetri cluster and Iou-Jen
Liu for initial discussions.

References
[1] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-

precht. The lazy flipper: Efficient depth-limited exhaustive
search in discrete graphical models. In ECCV, 2012. 7

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D.
Pfau, T. Schaul, B. Shillingford, and N. De Freitas. Learning
to learn by gradient descent by gradient descent. In Proc.
NeurIPS, 2016. 3

[3] A. Arnab, S. Jayasumana, S. Zheng, and P. Torr. Higher order
conditional random fields in deep neural networks. In Proc.
ECCV, 2016. 6

[4] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,
A. Courville, and Y. Bengio. An actor-critic algorithm for
sequence prediction. In Proc. ICLR, 2017. 3

[5] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neu-
ral Combinatorial Optimization with Reinforcement Learning.
In https://arxiv.org/abs/1611.09940, 2016. 1, 2

[6] J. Boyan and A. W. Moore. Learning evaluation functions to
improve optimization by local search. JMLR, 2000. 1, 2

[7] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
In Proc. ICCV, 2001. 2

[8] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. In Proc. EMMCVPR, 2001. 2

[9] Y. Boykov, O. Veksler, and R. Zabih. Markov Random Fields
with Efficient Approximations. In Proc. CVPR, 1998. 2

[10] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate
Energy Minimization via Graph Cuts. PAMI, 2001. 2

[11] C. Buck, J. Bulian, M. Ciaramita, W. Gajewski, A. Gesmundo,
N. Houlsby, and W. Wang. Ask the right questions: Active
question reformulation with reinforcement learning. In Proc.
ICLR, 2018. 3

[12] R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli.
Leveraging grammar and reinforcement learning for neural
program synthesis. In Proc. ICLR, 2018. 3

[13] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation
algorithms for the metric labeling problem via a new linear
programming formulation. In Proc. SODA, 2001. 2

[14] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic Image Segmentation with Deep Con-
volutional Nets and Fully Connected CRFs. In Proc. ICLR,
2015. 2

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmentation.
arXiv preprint arXiv:1706.05587, 2017. 2

[16] L. C. Chen, A. G. Schwing, A. Yuille, and R. Urtasun. Learn-
ing Deep Structured Models. In Proc. ICML, 2015. ∗ equal
contribution. 2

[17] H. Dai, B. Dai, and L. Song. Discriminative embeddings of
latent variable models for structured data. In Proc. ICML,
2016. 2, 4

[18] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learn-
ing Combinatorial Optimization Algorithms over Graphs. In
Proc. NeurIPS, 2017. 1, 2

[19] M. Everingham, L. van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
Challenge. IJCV, 2010. 2, 7

[20] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut
algorithm for higher-order markov random fields. In ICCV,
2011. 7

[21] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962. 2

[22] A. Globerson and T. Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for MAP LP-relaxations. In
Proc. NeurIPS, 2007. 2

[23] A. Goldberg and R. Tarjan. A new approach to the maximum
flow problem. JACM, 1988. 2

[24] C. Graber, O. Meshi, and A. G. Schwing. Deep structured
prediction with nonlinear output transformations. In NeurIPS,
2018. 2

[25] C. Graber and A. G. Schwing. Graph structured prediction
energy networks. In NeurIPS, 2019. 2

[26] D. Greig, B. Porteous, and A. Seheult. Exact maximum
a posteriori estimation for binary images. J. of the Royal
Statistical Society, 1989. 2

[27] S. Gu, T. Lillicrap, Z. Ghahramani, R E. Turner, and S. Levine.
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy
Critic. In Proc. ICLR, 2017. 1, 2

[28] A. Guisti, D. Ciresan, J. Masci, L. Gambardella, and J.
Schmidhuber. Fast image scanning with deep max-pooling
convolutional neural networks. In Proc. ICIP, 2013. 2

[29] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.
Semantic Contours from Inverse Detectors. In Proc. ICCV,
2011. 7

[30] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localization.
In Proc. CVPR, 2015. 2, 4

[31] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y.
Ma. Dual learning for machine translation. In Proc. NeurIPS,
2016. 3

[32] H. He, H. Daume, and J. M. Eisner. Learning to search in
branch and bound algorithms. In Proc. NeurIPS, 2014. 3

[33] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multiscale
Conditional Random Fields for Image Labeling. In Proc.
CVPR, 2004. 2

[34] J. K. Johnson. Convex relaxation methods for graphical
models: Lagrangian and maximum entropy approaches. PhD
thesis, MIT, 2008. 2

[35] V. Jojic, S. Gould, and D. Koller. Accelerated dual decompo-
sition for MAP inference. In Proc. ICML, 2010. 2

[36] J. H. Kappes, B. Savchynskyy, and C. Schnörr. A Bundle
Approach To Efficient MAP-Inference by Lagrangian Relax-
ation. In Proc. CVPR, 2012. 2

[37] J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bundle
approach to efficient map-inference by lagrangian relaxation.
In CVPR, 2012. 7

[38] E. B. Khalil, P. Le Bodic, L. Song, G. L. Nemhauser, and B. N.
Dilkina. Learning to branch in mixed integer programming.
In Proc. AAAI, 2016. 3

[39] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. PAMI, 2006. 2

[40] V. Kolmogorov and R. Zabih. What Energy Functions Can
Be Minimized via Graph Cuts? PAMI, 2004. 2

[41] V. N. Kolmogorov and M. J. Wainwright. On the optimality
of tree-rewegihted max-product message-passing. In Proc.
UAI, 2005. 2

[42] S. Konishi and A. L. Yuille. Statistical cues for domain
specific image segmentation with performance analysis. In
Proc. CVPR, 2000. 2

[43] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random
Fields: Probabilistic Models for segmenting and labeling
sequence data. In Proc. ICML, 2001. 2

[44] M. G. Lagoudakis and M. L. Littman. Learning to select
branching rules in the dpll procedure for satisfiability. ENDM,
2001. 3

[45] A. Laterre, Y. Fu, M. K. Jabri, A.-S. Cohen, D. Kas, K.Hajjar,
T. S. Dahl, A. Kerkeni, and K. Beguir. Ranked reward: En-
abling self-play reinforcement learning for combinatorial op-
timization. In Proc. Deep RL Workshop NeurIPS, 2018. 2

[46] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky.
Deep reinforcement learning for dialogue generation. In Proc.
EMNLP, 2016. 3

[47] K. Li and J. Malik. Learning to Optimize. In Proc. ICLR,
2017. 3

[48] X. Li, Z. Liu, P. Luo, C. Change, and X. Tang. Not all pixels
are equal: Difficulty-aware semantic segmentation via deep
layer cascade. In CVPR, 2017. 2

[49] C. Liang, J. Berant, Q. Le, K.D. Forbus, and N. Lao. Neural
symbolic machines: Learning semantic parsers on freebase
with weak supervision. In Proc. ACL, 2016. 3

[50] C. Liang, M. Norouzi, J. Berant, Q. Le, and N. Lao. Memory
augmented policy optimization for program synthesis with
generalization. In Proc. NeurIPS, 2017. 3

[51] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image
segmentation via deep parsing network. In ICCV, 2015. 2

[52] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. In Proc. CVPR, 2015.
2

[53] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A.
Smith, and E. P. Xing. An Augmented Lagrangian Approach
to Constrained MAP Inference. In Proc. ICML, 2011. 2

[54] O. Meshi and A. Globerson. An Alternating Direction Method
for Dual MAP LP Relaxation. In Proc. ECML PKDD, 2011.
2

[55] O. Meshi, M. Mahdavi, and A. Schwing. Smooth and Strong:
MAP Inference with Linear Convergence. In Proc. NIPS,
2015. 2

[56] O. Meshi and A. G. Schwing. Asynchronous Parallel Coordi-
nate Minimization for MAP Inference. In Proc. NIPS, 2017.
2

[57] S. Messaoud, D. Forsyth, and A. Schwing. Structural consis-
tency and controllability for diverse colorization. In ECCV,
2018. 2

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 2015. 1

[59] K. Narasimhan, A. Yala, and R. Barzilay. Improving informa-
tion extraction by acquiring external evidence with reinforce-
ment learning. In Proc. EMNLP, 2016. 3

[60] R. Nogueira and K. Cho. Task-oriented query reformulation
with reinforcement learning. In Proc. EMNLP, 2017. 3

[61] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015. 2

[62] M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D.
Schuurmans, et al. Reward augmented maximum likelihood
for neural structured prediction. In Proc. NeurIPS, 2016. 3

[63] R. Paulus, C. Xiong, and R. Socher. A deep reinforced model
for abstractive summarization. In Proc. ICLR, 2018. 3

[64] J. Pearl. Reverend bayes on inference engines: a distributed
hierarchical approach. In Proc. AAAI, 1982. 7

[65] T. Pierrot, G. Ligner, S. E. Reed, O. Sigaud, N. Perrin, A.
Laterre, D. Kas, K. Beguir, and N. Freitas. Learning com-
positional neural programs with recursive tree search and
planning. NeurIPS, 2019. 3

[66] P. Qin, W. Xu, and W. Y. Wang. Robust distant supervision
relation extraction via deep reinforcement learning. In Proc.
ACL, 2018. 3

[67] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence
level training with recurrent neural networks. In Proc. ICLR,
2016. 3

[68] P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-
passing for graph-structured linear programs: Proximal meth-
ods and rounding schemes. JMLR, 2010. 2

[69] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Proc.
CVPR, 2016. 2, 6, 7

[70] S.J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.
Self-critical sequence training for image captioning. In Proc.
CVPR, 2017. 3

[71] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 2015. 2

[72] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive
foreground extraction using iterated graph cuts. In Proc. TOG,
2004. 6

[73] H. Samulowitz and R. Memisevic. Learning to solve QBF. In
Proc. AAAI, 2007. 3

[74] M. I. Schlesinger. Sintaksicheskiy analiz dvumernykh zritel-
nikh signalov v usloviyakh pomekh (Syntactic analysis of
two-dimensional visual signals in noisy conditions). Kiber-
netika, 1976. 2

[75] A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Dis-
tributed Message Passing for Large Scale Graphical Models.
In Proc. CVPR, 2011. 2

[76] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun.
Globally Convergent Dual MAP LP Relaxation Solvers using
Fenchel-Young Margins. In Proc. NeurIPS, 2012. 2

[77] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Glob-
ally Convergent Parallel MAP LP Relaxation Solver using
the Frank-Wolfe Algorithm. In Proc. ICML, 2014. 2

[78] A. G. Schwing and R. Urtasun. Fully Connected Deep Struc-
tured Networks. In https://arxiv.org/abs/1503.02351, 2015.
2

[79] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun. OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks. In Proc. ICLR,
2014. 2

[80] A. Sharaf and H. Daumé III. Structured prediction via learn-
ing to search under bandit feedback. In Proc. Workshop on
Structured Prediction for NLP ACL, 2017. 3

[81] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost:
Joint Appearance, Shape and Context Modeling for Multi-
Class Object Recognition and Segmentation. In Proc. ECCV,
2006. 2

[82] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 2016. 1, 5

[83] D. Sontag, T. Meltzer, A. Globerson, and T. Jaakkola. Tight-
ening LP Relaxations for MAP using Message Passing. In
Proc. NeurIPS, 2008. 2

[84] SLIC Superpixels Compared to State-of-the Art Super-
pixel Methods. Slic superpixels. TPAMI, 2012. 7

[85] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In
Proc. NeurIPS, 2015. 1, 2

[86] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar,
A. Geiger, and B. Leibe. Mots: Multi-object tracking and
segmentation. In CVPR, 2019. 2, 7

[87] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-
reweighted belief propagation algorithms and approximate ml
estimation by pseudo-moment matching. In AISTATS, 2003.
7

[88] T. Werner. A Linear Programming Approach to Max-sum
Problem: A Review. PAMI, 2007. 2

[89] T. Werner. Revisiting the linear programming relaxation ap-
proach to Gibbs energy minimization and weighted constraint
satisfaction. PAMI, 2010. 2

[90] J.D. Williams, K. Asadi, and G. Zweig. Hybrid code net-
works: practical and efficient end-to-end dialog control with
supervised and reinforcement learning. In Proc. ACL, 2017.
3

[91] W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A rein-
forcement learning method for knowledge graph reasoning.
In Proc. EMNLP, 2017. 3

[92] F. Yu and V. Koltun. Multi-scale context aggregation by
dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
2

[93] W. Zhang and T. G. Dietterich. Solving combinatorial opti-
mization tasks by reinforcement learning: A general method-
ology applied to resource-constrained scheduling. JAIR, 2000.
1, 2

[94] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 2, 7

[95] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z.
Su, D. Du, C. Huang, and P. Torr. Conditional random fields
as recurrent neural networks. In ICCV, 2015. 2

[96] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z.
Su, D. Du, C. Huang, and P. H. S. Torr. Conditional Random
Fields as Recurrent Neural Networks. In Proc. ICCV, 2015. 2

[97] B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. In Proc. ICLR, 2017. 3

Supplementary Material
Recall, given an image x, we are interested in predicting the semantic segmentation y = (y1, . . . , yN) ∈ Y by solving

the inference task defined by a Conditional Random Field (CRF) with nodes corresponding to superpixels. Hereby, N
denotes the total number of superpixels. The semantic segmentation of a superpixel i ∈ {1, . . . , N} is referred to via
yi ∈ L = {1, . . . , |L|}, which can be assigned one out of |L| possible discrete labels from the set of possible labels L. We
formulate the inference task as a Markov Decision Process that we study using two reinforcement learning algorithms: DQN
and MCTS. Specifically, an agent operates in t ∈ {1, . . . , N} time-steps according to a policy π(at|st) which encodes a
probability distribution over actions at ∈ At given the current state st. The current state subsumes the indices of all currently
labeled variables It ⊆ {1, . . . , N} as well as their labels yIt = (yi)i∈It , i.e., st ∈ {(It, yIt) : It ⊆ {1, . . . , N}, yIt ∈ L|It|}.
The policy selects one superpixel and its corresponding label at every time-step.

In this supplementary material we present:

1. Appendix A: Further training and implementation details

2. Appendix B: Further details on the policy network

• B 1: DQN

• B 2: MCTS

3. Appendix C: Additional Results

• C 1: Comparison of the reward schemes

• C 2: Visualization of the learned embeddings

• C 3: Learned policies

• C 4: Qualitative results

A: Further Training and Implementation Details
PSPNet, TrackR-CNN and and the hypercolumns from VGGNet are not fine-tuned. Only the graph policy net is trained.

For MOTS, we apply our model to every frames of the video. For MCTS, we set the number of simulations during exploration
to 50 and the simulation depth to 4. At test time, we run 20 simulations with a depth of 4. The models are trained for 10
epochs, equivalent to around 375, 000 training iterations for Pascal VOC and 188, 000 for MOTS. The parameters of the
energy function, αp, βp, wb, cb, λb and C, are obtained via a grid search on a subset of 500 nodes from the training data. The
number of iterations K of the graph neural network is set to 3. The dimension F of the node features bi equals 85 for Pascal
VOC and 30 for MOTS, consisting of the unary distribution, the unary distribution entropy, and features of the bounding
box. The bounding box features are the confidence and label of the bounding box, its unary composition at the pixel level,
percentage of overlap with other bounding boxes and their associated labels and confidence. The embedding dimension p is 32
for Pascal VOC and 16 for MOTS. As an optimizer, we use Adam with a learning rate of 0.001.

B: Further details on the policy network (DQN, MCTS)
B1: DQN

Both for DQN and MCTS, three different sets of actions are encouraged at training iteration t:

• M(t)
1 : Selecting nodes adjacent to the already chosen ones in the graph, at iteration t. Otherwise, the reward will only be

based on the unary terms as the pairwise term is only evaluated if the neighbors are labeled (t = 2 in Tab. 1 in the main
paper).

We assign a score M1(st, at) to every available action at = (it, yit) ∈ At to encourage the exploration of the setM(t)
1 :

M1(st, at) =
|{j : (j /∈ It) and (it, j) ∈ E}|

|{j : (it, j) ∈ E}|
. (10)

• M(t)
2 : Selecting nodes with the lowest unary distribution entropy, at iteration t. A low entropy indicates a high confidence

of the unary deep net. Hence, the labels of the corresponding nodes are more likely to be correct and would provide
useful information to neighbors with higher entropy in the upcoming iterations. We assign a score M2(st, at) to every
available action at = (it, yit) ∈ At to encourage the exploration of the setM(t)

2 :

M2(st, at) =
exp (−Sit)∑

j∈{1,...,N}\It exp (−Sj)
. (11)

Here, Sit denotes the entropy of the unary distribution evaluated at node it.

• M(t)
3 : Assigning the same label to nodes forming the same higher order potential at iteration t, i.e.,

M3(st, at) =

1 if yit = argmax
k∈L

∑
{j:j∈It and (it,j)∈C}

1{yj=k}

0 otherwise
. (12)

For DQN, at train time, the next action at is selected as follows:

a∗t =



argmax
at∈At

Q(st, at; θ) with probability ε

argmax
at∈At

M1(st, at) with probability (1− ε)/4

argmax
at∈At

M2(st, at) with probability (1− ε)/4

argmax
at∈At

M3(st, at) with probability (1− ε)/4

Random with probability (1− ε)/4.

(13)

Here ε is a fixed probability modeling the exploration-exploitation tradeoff. At test time, a∗t = argmax
at∈At

Q(st, at; θ).

B2: MCTS

As described in Sec 3.5 of the main paper, for a given graph G(V, E , w), MCTS operates by constructing a tree, where
every node corresponds to a state s and every edge corresponds to an action a. The root node is initialized to s1 = ∅. Every
node stores three statistics: 1) N(s), the number of times state s has been reached, 2) N(a|s), the number of times action a
has been chosen in node s in all previous simulations, and 3) r̃(s, a), the averaged reward across all simulations starting at
state s and taking action a. A simulation involves three steps : 1) selection, 2) expansion and 3) value backup. After running
nsim simulations, an empirical distribution πMCTS(a|s) = N(a|s)

N(s) is computed for every node. The next action is then chosen
according to πMCTS. A policy network πθ(a|s) is trained to match a distribution πMCTS constructed through these simulations.
In the following, we provide more details about each of these steps.
Selection corresponds to choosing the next action given the current node st, based on four factors : 1) a variant of the

probabilistic upper confidence bound (PUCB) given by U(st, at; θ) = r̃(st,at)
N(at|st) + πθ(at|st)

√
N(st)

1+N(at|st) , 2) M1(st, at) 3)
M2(st, at) and 4) M3(st, at) similarly to DQN in Appendix B1. Formally,

a∗t = argmax
at∈At


U(st, at; θ) +M1(st, at) with probability 1

3

U(st, at; θ) +M2(st, at) with probability 1
3

U(st, at; θ) +M3(st, at) with probability 1
3

. (14)

Expansion consists of constructing a child node for every possible action from the parent node st. The possible actions
include the nodes which have not been labeled. The child nodes’ cumulative rewards and counts are initialized to 0. Note that
selection and expansion are limited to a depth dsim starting from the root node in a simulation.
Value backup refers to back-propagating the reward from the current node on the path to the root of the sub-tree. The visit
counts of all the nodes in the path are incremented as well.
Final Labeling: Once nsim simulations are completed, we compute πMCTS for every node. The next action at from the
root node is decided according to πMCTS(at|st) : at ∼ πMCTS(at|st) at train time and at = argmaxat∈At π

MCTS(at|st) at

inference. The next node becomes the root of the sub-tree. The experience (st, πMCTS) is stored in the replay buffer. The
whole process is repeated until all N nodes in the graph G are labeled. We summarize the MCTS training algorithm below in
Alg. 2. Note that we run 10 episodes per graph during training, but for simplicity we present the training for a single episode
per graph.

Algorithm 2: Monte Carlo Tree Search Training
input :Head node: s1, nsim: number of simulations, dsim : depth of simulations
output :A labeling y ∈ Y for all the nodes V

// Looping over the graphs from the dataset
1 for all G(V, E , w) do

// Initialization
2 s1 = ∅
3 r̃(si, a) = 0, ∀si, i ∈ {1, . . . , N},∀a

// Looping over graph nodes V
4 for t = 1 to N do

// Running simulations
5 for n = 1 to nsim do

// Create and expand a sub-tree
6 for j = t to t+ dsim do
7 Select aj according to Eq. (14) and advance temporary state in sub-tree
8 end
9 Backup rewards along the visited nodes in the simulations

10 Update node visit counts
11 end
12 Compute tree policy πMCTS with visit counts
13 Select the next action at ∼ πMCTS(at|st)
14 Update the root node st+1← st ⊕ at
15 Store (st, π

MCTS) in Replay Buffer
16 end
17 Sample M examples from Replay Buffer to update neural network parameters using Eq. (4) in the main paper
18 end

C: Additional Results
C1: Comparing Reward Schemes

���� �����	

��
��

�
��
�
�
�
��
��
�

��� �� !"#

$%&' ()*+,-

./01

234567

89:;< =>?@AB

C D E F G H I J K L MN OP QR ST UV WX YZ [\]^ _`

abcdef

ghijk lmnopq

r s t u v w x y z { |} ~� �� �� �� �� �� �� �� ���� ��

���

�����
�

��� ¡¢

£¤¥¦§¨

©

ª«¬­

Figure 7: Explanation of the low performance of the first reward scheme (rt = −Et + Et−1).

In Tab. 2 of the main paper, we observe that the second reward scheme (rt = ±1) generally outperforms the first one
(rt = −Et + Et−1). This is due to the fact that, the rewards for wrong actions, in this scheme, can be higher than the ones for
good actions. Specifically, in Fig. 7 we plot the distribution of the rewards of good actions (in blue) and the one of wrong
actions (in orange) for 50, 000 randomly chosen actions from the replay memory. To better illustrate the cause, we consider
the unary energy case and visualize the class distribution of two nodes i and j. If we label node i to be of class 0 (good
action), and node j to be of class 1 (wrong action), the resulting rewards are fi(0) for node i and fj(1) for node j. Note that
fi(0) < fj(1), since the distribution of the labels in case of node i is almost uniform, whereas the mass for node j is put on
the first two labels.

C2: Visualization of the learned embeddings

In Tab. 2 in the main paper, we observe that our model can produce better segmentations than the ones obtained by
just optimizing energies. Guided by the reward and due to network regularization, the policy net captures contextualized
embeddings of classes beyond energy minimization. Intuitively, a well calibrated energy function yields rewards that are well
correlated with F1-scores for segmentation. When TSNE-projecting the policy nets node embeddings for Pascal VOC data
into a 2D space, we observe that they cluster in 21 groups, as illustrated in Fig. 8.

20 10 0 10 20
30

20

10

0

10

20
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train

Figure 8: Visualization of the learned embeddings.

C3: Learned Policies

In Fig. 9, we visualize the learned greedy policy. Specifically, we show the probability map across consecutive time
steps. The probability maps are obtained by first computing an N dimensional score vector φ((i, ·)|st) =

∑
y∈L π((i, y)|st)

∀i ∈ {1, . . . , N} by summing over all the label scores per node and then normalizing φ((i, ·)|st) to a probability distribution
over the non selected superpixels i ∈ {1, . . . , N} \ It. The selected nodes are colored in white. The darker the superpixel, the
smaller the probability of selecting it next. We found that the heuristic learns a notion of smoothness, selecting nodes that are
in close proximity and of the same label as the selected ones. Also, the policy learns to start labeling the nodes with low unary
distribution entropy, then decides on the ones with higher entropy.

Figure 9: Visualization of our learned policy.

C4: Additional qualitative results

In the following, we present additional qualitative results. In Fig. 10 and Fig. 11, we present the segmentation results of
our policy on examples from the Pascal VOC and the MOTS datasets respectively. The pairwise potential, together with
the superpixel segmentation helped reduce inconsistencies in the unaries obtained from PSPNet/TrackR-CNN across all the
examples. HOP1 resulted in better learning the boundaries of the objects. The energy which includes the HOP2 potential
provides the best results across all energies as it helped better segment overlapping objects.

We include additional results comparing PSPNet/TrackR-CNN, DQN and MCTS outputs for the energy function with
unary, pairwise, HOP1 and HOP2 potentials in Fig. 12 and Fig. 13. The policies trained with DQN/MCTS improve over the
PSPNet/TrackR-CNN results across almost all our experiments. Additional failure cases are presented in Fig. 14 and Fig. 15.

Figure 10: Output of our method for different potentials for Pascal VOC.

Figure 11: Output of our method for different potentials for MOTS.

Figure 12: Additional success cases on Pascal VOC.

Figure 13: Additional success cases on MOTS.

Figure 14: Additional failure cases on Pascal VOC.

Figure 15: Additional failure cases on MOTS.

