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Abstract

Deep networks excel in learning patterns from large
amounts of data. On the other hand, many geometric vision
tasks are specified as optimization problems. To seamlessly
combine deep learning and geometric vision, it is vital to
perform learning and geometric optimization end-to-end.
Towards this aim, we present BPnP, a novel network mod-
ule that backpropagates gradients through a Perspective-n-
Points (PnP) solver to guide parameter updates of a neural
network. Based on implicit differentiation, we show that the
gradients of a “self-contained” PnP solver can be derived
accurately and efficiently, as if the optimizer block were a
differentiable function. We validate BPnP by incorporating
it in a deep model that can learn camera intrinsics, camera
extrinsics (poses) and 3D structure from training datasets.
Further, we develop an end-to-end trainable pipeline for
object pose estimation, which achieves greater accuracy by
combining feature-based heatmap losses with 2D-3D repro-
jection errors. Since our approach can be extended to other
optimization problems, our work helps to pave the way to
perform learnable geometric vision in a principled man-
ner. Our PyTorch implementation of BPnP is available on
http://github.com/BoChenYS/BPnP.

1. Introduction
The success of deep learning is due in large part to its

ability to learn patterns from vast amounts of training data.
Applications that have benefited from this ability include
object detection and image segmentation [26, 19]. Funda-
mentally, such problems can often be formulated as classi-
fication/regression problems, which facilitates suitable ob-
jective functions for backpropagation learning [29].

On the other hand, there are many important computer
vision tasks that are traditionally formulated as geometric
optimization problems, e.g., camera localization/pose esti-
mation, 3D reconstruction, point set registration. A com-
mon property in these optimization problems is the min-
imization of a residual function (e.g., sum of squared re-
projection errors) defined over geometric quantities (e.g.,

6DOF camera poses), which are not immediately amenable
to backpropagation learning. This limits the potential of ge-
ometric vision tasks to leverage large datasets.

A straightforward solution towards “learnable” geomet-
ric vision is to replace the “front end” modules (e.g., image
feature detection and matching) using a deep learning alter-
native [48, 55, 45]. However, this does not allow the “back
end” steps (e.g., searching for optimal geometric quantities)
to influence the training of the neural network parameters.

On the other extreme, end-to-end methods have been de-
vised [23, 21, 22, 8, 32, 50, 52, 9] that bypass geometric op-
timization, by using fully connected layers to compute the
geometric quantity (e.g., 6DOF camera pose) from a feature
map derived from previous layers. However, it has been
observed that these methods are equivalent to performing
image retrieval [39], which raises questions on their ability
to generalize. Also, such end-to-end methods do not explic-
itly exploit established methods from geometric vision [18],
such as solvers for various well-defined tasks.

To benefit from the strengths of deep learning and ge-
ometry, it is vital to combine them in a mutually reinforcing
manner. One approach is to incorporate a geometric opti-
mization solver in a deep learning architecture, and allow
the geometric solver to participate in guiding the updates
of the neural network parameters, thereby realising end-to-
end learnable geometric vision. The key question is how to
compute gradients from a “self-contained” optimizer.

A recent work towards the above goal is differentiable
RANSAC [3, 5, 6], which was targeting at the camera local-
ization task. A perspective-n-point (PnP) module was incor-
porated in a deep architecture, and the derivatives of the PnP
solver are calculated using central differences [38] to enable
parameter updates in the rest of the pipeline. However, such
an approach to compute gradients is inexact and time con-
suming because, in order to obtain each partial derivative, it
requires solving PnP at values that lie to the left and right of
the input.

Other approaches to derive gradients from an indepen-
dent optimization block for backpropagation learning [16,
1] conduct implicit differentiation [2, Chap. 8]. Briefly, in
the context of end-to-end learning, the gradient of the opti-
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mization routine with respect to the input variables can be
computed via partial derivatives of the stationary constraints
of the optimization problem (more details in Sec. 3). The
gradient can then be backpropagated to the previous layers
for parameter updates. A number of motivating examples
and applications were explored in [16, 1]. However, larger-
scale experiments in the context of specific geometric vi-
sion problems, and benchmarking against other end-to-end
learning alternatives, were unavailable in [16, 1]. It is worth
noting that implicit differentiation of optimization subrou-
tines has been explored previously in several computer vi-
sion applications [46, 13, 40] (also earlier in [14, Chap. 5]).

Contributions Our main contribution is a novel network
module called BPnP that incorporates a PnP solver. BPnP
backpropagates the gradients through the PnP “layer” to
guide the updates of the neural network weights, thereby
achieving end-to-end learning using an established objec-
tive function (sum of squared 2D-3D reprojection errors)
and solver from a geometric vision problem. Despite in-
corporating only a PnP solver, we show how BPnP can
be used to learn effective deep feature representations for
multiple geometric vision tasks (pose estimation, structure-
from-motion, camera calibration). We also compare our
method against state-of-the-art methods for geometric vi-
sion tasks. Fundamentally, our method is based on implicit
differentiation; thus our work can be seen as an application
of [16, 1] to geometric vision learning.

2. Related works
Backpropagating optimization problems As alluded to
above, there are several works that incorporate optimizer
blocks in deep neural network architectures, and perform
differentiation of the optimization routines for backpropa-
gation learning. A subset of these works address the chel-
lange of incorporating RANSAC in an end-to-end trainable
pipeline, such as DSAC [3], ESAC [5], and NG-DSAC [6].
In fact, since these works aim to solve camera localization,
they also incorporate a PnP solver in their pipeline. To back-
propagate through the PnP solver, they use central differ-
ences to compute the partial derivatives. In effect, if the
input dimension is n, it requires solving PnP 2n times in
order to obtain the full Jacobian. Another group of methods
applies implicit differentiation [16, 1], which provides an
exact and efficient solution for backpropagating through an
optimization process. We will describe implicit differentia-
tion in detail later.

Pose estimation from images A target application of our
BPnP is pose estimation. Existing works on end-to-end
pose estimation [23, 21, 22, 8, 32, 50, 52] usually em-
ploy fully connected layers to compute the target output

(pose) using feature maps from previous layers. The output
loss function is typically defined using pose metrics (e.g.,
chordal distance), which are backpropagated using standard
differentiation. A recent analysis [39] suggests that what is
being performed by these end-to-end networks is akin to
learning a set of base poses from the training images, com-
puting a set of weights for the testing image, then predicting
the pose as a weighted combination of the base poses. It was
further shown that such methods were more related to image
retrieval than intrinsically learning to predict pose, hence
they may not outperform an image retrieval baseline [39].

Other pose estimation approaches that combine deep
learning with geometric optimization (PnP solver) [35, 37,
47, 36, 10] adopt a two-stage strategy: first learn to predict
the 2D landmarks or fiducial points from the input image,
then perform pose estimation by solving PnP on the 2D-3D
correspondences. While the first stage can benefit from the
regularities existing in a training dataset, the second stage
(PnP solving) which encodes the fundamental geometric
properties of the problem do not influence the learning in
the first stage. Contrast this to our BPnP which seamlessly
connects both stages, and allows the PnP optimizer to guide
the weight updates in the first stage (in addition to standard
keypoint or landmark regression losses).

Depth estimation and 3D reconstruction There exist
many works that employ deep networks to learn to predict
depth or 3D structure from input images in an end-to-end
fashion. Some of these works [17, 11, 24] can only impose
constraints on pairs of images, while others [57, 49] learn
the structure and the motion in different network branches
and do not impose explicit geometric constraints. Also,
many of such works [12, 27, 31, 30, 28, 54, 51] require
training datasets with ground truth depth labels, which can
be expensive to obtain. The proposed BPnP may help to
alleviate this shortcoming; as we will show in Sec. 4.2,
a simple structure-from-motion (SfM) framework that uti-
lizes BPnP can jointly optimize using multiple views (not
just two), explicitly impose geometric constraints, and learn
structure and motion in an unsupervised fashion without
depth labels or ground truth 3D structures.

3. Backpropagating a PnP solver (BPnP)
Let g denote a PnP solver in the form of a “function”

y = g(x, z,K), (1)

which returns the 6DOF pose y of a camera with intrinsic
matrix K ∈ R3×3 from n 2D-3D correspondences

x =
[
xT
1 xT

2 . . . xT
n

]T ∈ R2n×1, (2)

z =
[
zT1 zT2 . . . zTn

]T ∈ R3n×1, (3)



where (xi, zi) is the i-th correspondence. Let π(·|y,K)
be a projective transformation of 3D points onto the image
plane with pose y and camera intrinsics K. Intrinsically, the
“evaluation” of g requires solving the optimization problem

y = arg min
y∈SE(3)

n∑
i=1

‖ri‖22 , (4)

where

ri = xi − πi (5)

is the reprojection error of the i-th correspondence and

πi = π(zi|y,K) (6)

is the projection of 3D point zi on the image plane. We
introduce the shorthand

π :=
[
πT
1 , ...,π

T
n

]T
, (7)

thus (4) can be rewritten as

y = arg min
y∈SE(3)

‖x− π‖22 . (8)

The choice of formulation (8) will be justified in Sec. 3.3.
Our ultimate goal is to incorporate g in a learnable

model, where x, z and K can be the (intermediate) out-
puts of a deep network. Moreover, the solver for (8) should
be used to participate in the learning of the network param-
eters. To this end, we need to treat g as if it were a differen-
tiable function, such that its “gradients” can be backpropa-
gated to the rest of the network. In this section, we show
how this can be achieved via implicit differentiation.

3.1. The Implicit Function Theorem (IFT)

Theorem 1 ([25]) Let f : Rn+m → Rm be a continuously
differentiable function with input (a, b) ∈ Rn × Rm. If a
point (a∗, b∗) satisfies

f(a∗, b∗) = 0 (9)

and the Jacobian matrix ∂f
∂b (a∗, b∗) is invertible, then there

exists an open set U ⊂ Rn such that a∗ ∈ U and an unique
continuously differentiable function g(a) : Rn → Rm such
that b∗ = g(a∗) and

f(a′, g(a′)) = 0 ,∀a′ ∈ U . (10)

Moreover, for all a′ ∈ U , the Jacobian matrix ∂g
∂a (a′) is

given by

∂g

∂a
(a′) = −

[
∂f

∂b
(a′, g(a′))

]−1 [
∂f

∂a
(a′, g(a′))

]
. (11)

The IFT allows computing the derivatives of a function
g with respect to its input a without an explicit form of the
function, but with a function f constraining a and g(a).

3.2. Constructing the constraint function f

To invoke the IFT for implicit differentiation, we first
need to define the constraint function f(a, b) such that
Eq. (9) is upheld. For our problem, we use all four vari-
ables x, y, z and K to construct f . But we treat f as a
two variables function f(a, b), in which a takes values in
{x, z,K} - depending on which partial derivative to obtain
- and b = y (i.e., the output pose of g).

To uphold Eq. (9), we exploit the stationary constraint of
the optimization process. Denote the objective function of
the PnP solver g as

o(x,y, z,K) =

n∑
i=1

‖ri‖22. (12)

Since the output pose y of a PnP solver is a local optimum
for the objective function, a stationary constraint can be es-
tablished by taking the first order derivative of the objective
with respect to y, i.e.,

∂o(x,y, z,K)

∂y

∣∣∣∣
y=g(x,z,K)

= 0. (13)

Given an output pose from a PnP solver y =
[y1, ..., ym]T , we construct f based on Eq. (13), which can
be written as

f(x,y, z,K) = [f1, ..., fm]T , (14)

where for all j ∈ {1, ...,m},

fj =
∂o(x,y, z,K)

∂yj
(15)

= 2

n∑
i=1

〈ri,
∂ri
∂yj
〉 (16)

=

n∑
i=1

〈ri, cij〉 (17)

with

cij = −2
∂πi

∂yj
. (18)

3.3. Forward and backward pass

Our PnP formulation (8) for g essentially performs least
squares (LS) estimation, which is not robust towards out-
liers (egregious errors in x, z and K). Alternatively, we
could apply a more robust objective, such as incorporat-
ing an M-estimator [56] or maximizing the number of in-
liers [15]. However, our results suggest that LS is actually
more appropriate, since its sensitivity to errors in the input
measurements encourages the learning to quickly converge
to parameters that do not yield outliers in x, z and K. In



contrast, a robust objective would block the error signals of
the outliers, causing the learning process to be unstable.

Given (8), the choice of the solver remains. To con-
duct implicit differentiation, we need not solve (8) exactly,
since (13) is simply the stationary condition of (8), which
is satisfied by any local minimum. To this end, we apply
the Levenberg-Marquardt (LM) algorithm (as implemented
in the SOLVEPNP ITERATIVE method in OpenCV [7]),
which guarantees local convergence. As an iterative algo-
rithm, LM requires initialization y(0) in solving (8). We
make explicit this dependence by rewriting (1) as

y = g(x, z,K,y(0)). (19)

We obtain the initial pose y(0) with RANSAC if it is not
provided.

In the backward pass, we first construct f as described
in Sec. 3.2 to then obtain the Jacobians of g with respect to
each of its inputs as

∂g

∂x
= −

[
∂f

∂y

]−1 [
∂f

∂x

]
, (20)

∂g

∂z
= −

[
∂f

∂y

]−1 [
∂f

∂z

]
, (21)

∂g

∂K
= −

[
∂f

∂y

]−1 [
∂f

∂K

]
. (22)

Given the output gradient Oy, BPnP returns the input gra-
dients

Ox =

[
∂g

∂x

]T
Oy, (23)

Oz =

[
∂g

∂z

]T
Oy, (24)

OK =

[
∂g

∂K

]T
Oy. (25)

3.4. Implementation notes

The number of dimensions of y, i.e., m, is dependant on
the parameterization of SO(3) within the pose. For exam-
ple, m = 6 for the axis-angle representation, m = 7 for the
quaternion representation, and m = 12 for the rotation ma-
trix representation. Experimentally we found the axis-angle
representation leads to the best result, possibly since then
m = 6 is equal to the degrees of freedom.

We compute the partial derivatives in Eqs. (18), (20),
(21), and (22) using the Pytorch autograd package [34].

4. End-to-end learning with BPnP
BPnP enables important geometric vision tasks to be

solved using deep networks and PnP optimization in an end-
to-end manner. Here, we explore BPnP for pose estimation,

Algorithm 1 Pose estimation.
1: y ← Identity pose.
2: Randomly initialize θ
3: while loss ` has not converged do
4: x← h(I;θ).
5: y ← g(x, z,K,y).
6: `← l(x,y).
7: θ ← θ − α ∂`

∂θ . (Backpropagate through PnP)
8: end while

SfM and camera calibration, and report encouraging initial
results. These results empirically validate the correctness of
the Jacobians ∂g

∂x , ∂g
∂z and ∂g

∂K of the PnP solver g obtained
using implicit differentiation in Sec. 3.2.

This section is intended mainly to be illustrative; in
Sec. 5, we will develop a state-of-the-art object pose esti-
mation method based on BPnP and also report more com-
prehensive experiments and benchmarks.

4.1. Pose estimation

Given a known sparse 3D object structure z and known
camera intrinsics K, a function h (a deep network, e.g.,
CNN, with trainable parameters θ) maps input image I to
a set of 2D image coordinates x corresponding to z, before
g(x, z,K) is invoked to calculate the object pose y. Our
goal is to train h to accomplish this task. Since the main
purpose of this section is to validate BPnP, it is sufficient
to consider a “fixed input” scenario where there is only one
training image I with ground truth pose y∗.

Algorithm 1 describes the algorithm for this task. The
loss function l(·) has the form

l(x,y) = ‖π(z|y,K)− π(z|y∗,K)‖22 + λR(x,y), (26)

which is the sum of squared errors between the projection
of z using the ground truth pose y∗ and current pose y from
PnP (which in turn depends onx), plus a regularization term

R(x,y) = ‖x− π(z|y,K)‖22 . (27)

The regularization ensures convergence of the estimated im-
age coordinates x to the desired positions (note that the first
error component does not impose constraints on x).

A main distinguishing feature of Algorithm 1 is that one
of the gradient flow of ` is calculated w.r.t. y = g(x, z,K)
before the gradient of y is computed w.r.t. to x which is
then backpropagated to update θ:

∂`

∂θ
=

∂l

∂y

∂g

∂x

∂h

∂θ
+
∂l

∂x

∂h

∂θ
. (28)

The implicit differentiation of ∂g
∂x follows Eq. (20).

Figs. 1 and 2 illustrate Algorithm 1 on a synthetic exam-
ple with n = 8 landmarks, respectively for the cases



0 500 1000

Iteration

0

5000

10000

15000

L
o
s
s

        (a) Loss evolution

0 200 400

0

100

200

300

(b) Pose evolution

0 200 400

-100

0

100

200

300

400
(c) Keypoint evolution

0 200 400 600

Iteration

0

2000

4000

6000

L
o
s
s

        (d) Loss evolution

100 200 300
0

50

100

150

200

250
(e) Pose evolution

0 200 400
-100

0

100

200

300
(f) Keypoint evolution

Initial location Final location Target location Trajectory

Figure 1. Sample run of Algorithm 1 on synthetic data with n = 8
landmarks and h(I;θ) = θ, where θ ∈ R8×2. The first and
second row has λ = 1 and λ = 0 respectively. Left column: loss
curve. Middle column: evolution of y presented as π(z|y,K).
Right column: the evolution of predicted keypoints x. Red square
markers represent the target locations π(z|y∗,K).

• h(I;θ) = θ, i.e., the parameters θ are directly output as
the predicted 2D keypoint coordinates x; and

• h(I;θ) is a modified VGG-11 [43] network that outputs
the 2D keypoints x for I .

The experiments show that the loss ` is successfully min-
imized and the output pose y converges to the target pose
y∗—this is a clear indication of the validity of (20).

The experiments also demonstrate the usefulness of the
regularization term. While the output pose y will converge
to y∗ with or withoutR(x,y), the output of h (the predicted
keypoints x) can converge away from the desired positions
π(z|y∗,K) without regularization.

4.2. SfM with calibrated cameras

Let {x(j)}Nj=1 indicate a set of 2D image features cor-
responding to n 3D points z associated/tracked across N
frames {Ij}Nj=1. Following (2), each x(j) is a vector of 2D
coordinates; however, z may not be fully observed in Ij ,
thus x(j) could contain fewer than n 2D coordinates. Let

z(j) = S(z|x(j)) (29)

indicate the selection of the 3D points z that are seen in Ij .
Given {x(j)}Nj=1 and the camera intrinsics for each frame
(assumed to be constant K without loss of generality), we
aim to estimate the 3D structure z ∈ R3n×1 and camera
poses {y(j)}Nj=1 corresponding to the N frames.

Our end-to-end method estimates the 3D structure

z = h(1⊗;θ) (30)
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Figure 2. Same experiment as in Fig. 1 except that h is a modified
VGG-11 [43] network which outputs the 2D keypoints x.

Algorithm 2 SfM with calibrated cameras.

1: y(j) ← Identity pose for j = 1, ..., N .
2: Randomly initialize θ
3: while loss ` has not converged do
4: z ← h(1⊗;θ).
5: z(j) ← S(z|x(j)), for j = 1, . . . , N
6: y(j) ← g(x(j), z(j),K,y(j)), for j = 1, . . . , N .
7: `← l({y(j)}Nj=1, z).
8: θ ← θ − α ∂`

∂θ . (Backpropagate through PnP)
9: end while

using a deep network h (a modified VGG-11 [43]) with the
input fixed to a 1-tensor (more on this below); see Algo-
rithm 2. Note that the algorithm makes use of the PnP sub-
routine to estimate each camera pose given the current z
estimate. The loss function l(·) has the form

l({y(j)}Nj=1, z) =

N∑
j=1

‖x(j) − π(z(j)|y(j),K)‖22, (31)

which is simply the sum of squared reprojection errors
across all frames. Again, a unique feature of our pipeline
is the backpropagation of the loss through the PnP solver to
update network parameters θ.

∂`

∂θ
=

N∑
j=1

(
∂l

∂z(j)
∂z(j)

∂θ
+

∂l

∂y(j)

∂y(j)

∂z(j)
∂z(j)

∂θ

)
(32)

The implicit differentiation of ∂y(j)

∂z(j) follows Eq. (21).
Fig. 3 illustrates the results of Algorithm 2 on a syn-

thetic dataset with n = 1000 points on a 3D object seen
in N = 12 images (about half of the 3D points are seen
in each image). Starting from a random initialization of θ



Figure 3. SfM result with Algorithm 2. The mesh of the object has
n = 1000 points z∗, which were projected to N = 12 different
views to obtain {x(j)}Nj=1 (about half of the 3D points are seen in
each view). The function h is a modified VGG-11 network [43]
which outputs the 3D structure z from a fixed input of 1-tensor.
We depict the output structure z at various steps. A movie of this
reconstruction is provided in the supplementary material.

(which leads to a poor initial z), the method is able to suc-
cessfully reduce the loss and recover the 3D structure and
camera poses. Fig 4 shows the result from another dataset.

Effectively, our tests show that a generic deep model
(VGG-11 with fixed input (30)) is able to “encode” the
3D structure z of the object in the network weights, even
though the network is not designed using principles from
multiple view geometry. Again, our aim in this section
is mainly illustrative, and Algorithm 2 is not intended to
replace established SfM algorithms, e.g., [42, 41]. How-
ever, the results again indicate the correctness of the steps
in Sec. 3.

4.3. Camera calibration

In the previous examples, the intrinsic matrix K is as-
sumed known and only x and/or z are estimated. Here in
our final example, given x and z (2D-3D correspondences),
our aim is to estimate K of the form

K =

fx 0 cx
0 fy cy
0 0 1

 , (33)

where fx and fy define the focal length, and cx and cy locate
the principal point of the image.

We assume [fx, fy, cx, cy]T ∈ [0, 1000]4. Under our
BPnP approach, we train a simple neural network

[fx, fy, cx, cy]T = h(θ) = 1000 sigmoid(θ) (34)

Figure 4. SfM result with a different object which has n = 1000
points z∗. All settings are the same as in Fig. 3. A movie of this
reconstruction is provided in the supplementary material.

Algorithm 3 Camera calibration.
1: y ← Identity pose.
2: Randomly initialize θ
3: while loss ` has not converged do
4: [fx, fy, cx, cy]T ← h(θ).
5: K←

[
[fx, 0, 0]T [0, fy, 0]T [cx, cy, 1]T

]
.

6: y ← g(x, z,K,y).
7: `← l(K,y).
8: θ ← θ − α ∂`

∂θ . (Backpropagate through PnP)
9: end while

to learn the parameters from correspondences x and z,
where θ ∈ R4. Algorithm 3 summarizes a BPnP approach
to learn the parameters θ of h. The loss function is simply
the sum of squared reprojection errors

l(K,y) =‖x− π(z|y,K)‖22, (35)

which is backpropagated through the PnP solver via

∂`

∂θ
=

∂l

∂K

∂K

∂θ
+
∂l

∂y

∂g

∂K

∂K

∂θ
. (36)

The implicit differentiation of ∂g
∂K follows Eq. (22).

Fig. 5 illustrates the result of Algorithm 3 using the
ground truth correspondences x, z in Fig. 1 as input. The
correct intrinsic parameters are f∗x = 800, f∗y = 700, c∗x =
400, c∗y = 300, which the algorithm can clearly achieve as
the loss converges to 0.

5. Object pose estimation with BPnP
We apply BPnP to build a model that regresses the object

pose directly from an input image, not through fully con-
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Figure 6. The pipeline of our object pose estimation network.

nected layers, but through projective geometric optimiza-
tion while remaining end-to-end trainable. Our model is
unique in that it simultaneously learns from feature-based
loss and geometric constraints in a seamless pipeline.

The pipeline of the proposed model is depicted in Fig. 6.
We use HRNet [44] as the backbone to predict the landmark
heatmaps Φ. We then use the Differentiable Spatial to Nu-
merical Transform (DSNT) [33] to convert heatmaps Φ to
2D landmark coordinates x. Finally, BPnP obtains the pose
y from the 2D landmarks x and the 3D structural landmarks
of the object z.

Let Φ∗ denote the ground truth heatmaps constructed
with the ground truth 2D landmarks x∗. We define a
heatmap loss

`h = MSE(Φ,Φ∗), (37)

where MSE(·, ·) is the mean squared error function; a pose
loss

`p = ‖π(z | y,K)− x∗‖2F +R(x,y); (38)

and a mixture loss

`m = `h + β ‖π(z | y,K)− x∗‖2F , (39)

for training the model respectively. The regularization term
R(x,y) is defined in Eq. (27). Note that in the mixture loss
R(x,y) is unnecessary because the heatmap loss `h acts
as a regularization term. We set the balancing weight β to
0.0002 in the experiments.

We apply our pipeline on the LINEMOD [20] dataset.
For each object we

• obtain a 3D model representation consisting of 15 land-
marks by using the Farthest Point Sampling (FPS) [36]
over the original object mesh,

• randomly reserve 400 images as the test set and set the
remaining (about 800, depending on the object) as the
training set, and

• train a model to predict the 6DOF object pose from the
input image.

We train each model with three different losses (`h, `p, and
`m), for 120 epochs each. To assist convergence, when
training the model with `p and `m, we first train with `h
for the first 10 epochs leaving the remaining 110 epochs to
train the target loss.

We evaluate our method with the following two metrics.

Average 3D distance of model points (ADD) [20] This is
the percentage of accurately predicted poses in the test
set. We consider a predicted pose as accurate if the av-
erage distance between the 3D model points expressed
in the predicted coordinate system and that expressed
in the ground truth coordinate system is less than 10%
of the model diameter. For symmetric objects we use
the ADD-S [53] metric instead which is based on the
closest point distance.

2D projection [4]. Mean distance between 2D keypoints
projected with the estimated pose and those projected
with ground truth pose. An estimated pose is consid-
ered correct if this distance is less than a threshold ψ.

Table 1 summarizes the results of our experiments. In
terms of the ADD(-S) metric, the model trained with `h
performs considerably better than the one with `p. As ex-
pected, heatmaps can exploit richer spatial features than co-
ordinates. However, the mixture loss achieves the highest
accuracy, which suggests that heatmap loss benefits from
additional correction signals from the pose loss.

In terms of the 2D projection metric, all methods per-
form similarly, with an average accuracy of at least 99%.
To better distinguish the performances amongst different
loss functions, we tighten the positive threshold ψ from the
standard 5 pixels to 2 pixels. Consistent with the ADD(-S)
result, the mixture loss outperformed pure heatmap loss on
training an object pose estimation model. Visualization of a
random subset from the test results is shown in Fig. 7.

We provide the result of the current state-of-the-art
PVNet [36] as a reference. Overall, models trained with
`h and `m have higher average test accuracy than PVNet,
in terms of both the ADD(-S) metric and the 2D projection
metric. We remind the reader to be aware of several fac-
tors while comparing the performances: we use a different
backbone from PVNet; our train-test numbers of images are
about 800-400 while about 20200-1000 in PVNet. Because



Model
ADD(-S) 2D projection with ψ = 5 2D projection with ψ = 2

Ours PVNet Ours PVNet Ours
`h `p `m `h `p `m `h `p `m

ape 74.00 56.75 74.75 43.62 99.50 99.50 99.50 99.23 90.00 86.75 93.75
benchwise 98.50 98.00 99.00 99.90 99.25 98.75 99.25 99.81 86.00 82.75 86.00

cam 96.25 83.75 96.25 86.86 98.75 98.50 99.25 99.21 91.50 81.50 90.50
can 97.00 94.75 98.00 95.47 99.50 99.50 99.75 99.90 93.25 89.00 92.75
cat 93.00 85.25 94.25 79.34 99.50 99.50 99.50 99.30 96.75 95.25 96.75

driller 98.50 98.00 99.25 96.43 99.00 98.50 98.50 96.92 83.75 81.50 84.50
duck 76.25 49.25 78.50 52.58 99.00 99.25 99.00 98.02 88.50 84.00 91.50

eggbox 95.75 93.25 96.50 99.15 99.50 99.25 99.50 99.34 92.75 93.25 92.50
glue 87.50 76.25 90.00 95.66 99.50 99.50 99.50 98.45 93.50 90.00 94.00

holepuncher 89.50 80.25 91.50 81.92 99.75 99.50 99.75 100.00 92.25 90.25 91.75
iron 97.75 96.50 97.75 98.88 98.50 98.25 98.50 99.18 86.75 79.75 87.25
lamp 99.75 98.50 99.75 99.33 98.75 98.00 98.50 98.27 85.00 83.25 86.75
phone 95.75 96.00 97.00 92.41 99.25 99.00 99.25 99.42 91.50 88.00 92.25

average 92.27 85.12 93.27 86.27 99.21 99.00 99.21 99.00 90.12 86.56 90.79

Table 1. Test accuracy on the LINEMOD dataset in terms of the ADD(-S) metric (columns 2-5) and the 2D projection metric with ψ = 5
pixels (columns 6-9) and ψ = 2 pixels (columns 10-12). Objects eggbox and glue are considered as symmetric objects and the ADD-S
metric is used.

Figure 7. Random sample of test results of the proposed model trained with the mixture loss `m. The first row are the test images for
predicting the pose of the central object. The second row shows the regressed alignment for each query object.

we require the ground truth pose label for training, we did
not use any data augmentation such as cropping, rotation or
affine transformation.

6. Conclusions
We present BPnP, a novel approach for performing back-

propagation through a PnP solver. BPnP leverages on im-
plicit differentiation to address computing the non-explicit
gradient of this geometric optimization process. We vali-
date our approach in three fundamental geometric optimiza-
tion problems (pose estimation, structure from motion, and
camera calibration). Furthermore, we developed an end-
to-end trainable object pose estimation pipeline with BPnP,

which outperforms the current state-of-the-art. Our experi-
ments show that exploiting 2D-3D geometry constraints im-
proves the performance of a feature-based training scheme.

The proposed BPnP opens a door to vast possibilities for
designing new models. We believe the ability to incorporate
geometric optimization in end-to-end pipelines will further
boost the learning power and promote innovations in vari-
ous computer vision tasks.
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