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Abstract

Deep-learning based salient object detection methods
achieve great progress. However, the variable scale and
unknown category of salient objects are great challenges all
the time. These are closely related to the utilization of multi-
level and multi-scale features. In this paper, we propose the
aggregate interaction modules to integrate the features from
adjacent levels, in which less noise is introduced because of
only using small up-/down-sampling rates. To obtain more
efficient multi-scale features from the integrated features,
the self-interaction modules are embedded in each decoder
unit. Besides, the class imbalance issue caused by the scale
variation weakens the effect of the binary cross entropy
loss and results in the spatial inconsistency of the predic-
tions. Therefore, we exploit the consistency-enhanced loss
to highlight the fore-/back-ground difference and preserve
the intra-class consistency. Experimental results on five
benchmark datasets demonstrate that the proposed method
without any post-processing performs favorably against 23
state-of-the-art approaches. The source code will be pub-
licly available at https://github.com/lartpang/MINet.

1. Introduction
Salient object detection (SOD) aims at distinguishing the

most visually obvious regions. It is growing rapidly with
the help of data-driven deep learning methods and has been
applied in many computer vision fields, such as visual track-
ing [24], image retrieval [10], non-photorealistic render-
ing [28], 4D saliency detection [33], no-reference synthetic
image quality assessmen [38] and so on. Although great
progress has been made at present, two issues still need to
be paid attention to how to extract more effective informa-
tion from the data of scale variation and how to improve
the spatial coherence of predictions in this situation. Due
to various scales of salient regions, the CNN-based meth-
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Figure 1. Several visual examples with size-varying objects and
their predictions generated by the proposed MINet, AFNet [9],
CPD [41] and PAGR [53] methods.

ods, which are limited by the absence of necessary detailed
information owing to the repeated sub-sampling, have diffi-
culty in consistently and accurately segmenting salient ob-
jects of different scales (Fig. 1). In addition, on account of
the inherent localization of convolution operation and the
pixel-level characteristics of the cross entropy function, it is
difficult to achieve uniform highlighting of objects.

For the first problem, the main solution of the existing
methods is to layer-by-layer integrate shallower features.
Some methods [23, 53, 4, 9, 40, 41, 27, 37] connect the
features at the corresponding level in the encoder to the de-
coder via the transport layer (Fig. 2(a, c, e)). The single-
level features can only characterize the scale-specific infor-
mation. In the top-down pathway, the representation capa-
bility of details in shallow features is weakened due to the
continuous accumulation of the deeper features. To utilize
the multi-level features, some approaches [51, 13, 34] com-
bine the features from multiple layers in a fully-connected
manner or a heuristic style (Fig. 2(b, f, g)). However, in-
tegrating excessive features and lacking a balance between
different resolutions easily lead to high computational cost,
plenty of noise and fusion difficulties, thereby disturbing
the subsequent information recovery in the top-down path-
way. Moreover, the atrous spatial pyramid pooling module
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Figure 2. Illustration of different architectures. Green blocks, or-
ange blocks and gray blocks respectively denote the different con-
volutional blocks in the encoder, the transport layer and the de-
coder. Left column: the connection patterns between the encoder
and the transport layer; Right column: the connection patterns be-
tween the transport layer and the decoder. (a, e) FCN [22]; (b)
Amulet [51]; (c) BMPM [48]; (d) AIMs (Sec. 3.2); (f) DSS [13];
(g) DGRL [34]; (h) SIMs (Sec. 3.3).

(ASPP) [3] and the pyramid pooling module (PPM) [55] are
used to extract multi-scale context-aware features and en-
hance the single-layer representation [6, 32]. Nonetheless,
the existing methods usually equip these modules behind
the encoder, which results in that their networks miss many
necessary details due to the limitation of the low resolution
of the top-layer features. For the second problem, some ex-
isting models [41, 27] mainly employ a specific branch or
an additional network to refine the results. Nevertheless,
these methods are faced with the problem of computational
redundancy and training difficulties, which is not conducive
to further applications.

Inspired by the idea of the mutual learning proposed by
Zhang et al. [54], we propose an aggregate interaction strat-
egy (AIM) to make better use of multi-level features and
avoid the interference in feature fusion caused by large res-
olution differences (Fig. 2(d)). We collaboratively learn
knowledge guidance to effectively integrate the contextual
information from adjacent resolutions. To further obtain
abundant scale-specific information from the extracted fea-
tures, we design a self-interaction module (SIM) (Fig. 2(h)).
Two interactive branches of different resolutions are trained
to learn multi-scale features from a single convolutional
block. AIMs and SIMs effectively improve the ability to
deal with scale variations in the SOD task. Unlike the set-
tings in [54], in the two modules, the mutual learning mech-
anism is incorporated into feature learning. Each branch can
more flexibly integrate information from other resolutions
through interactive learning. In AIMs and SIMs, the main
branch (B1 in Fig. 4 and B0 in Fig. 5) is supplemented by
the auxiliary branches and its discriminating power is fur-
ther enhanced. In addition, the multi-scale issue also causes
a serious imbalance between foreground and background
regions in the datasets, hence we embed a consistency-

enhanced loss (CEL) into the training stage, which is not
sensitive to the scale of objects. At the same time, the CEL
can better handle the spatial coherence issue and uniformly
highlight salient regions without additional parameters, be-
cause its gradient has the characteristics of keeping intra-
class consistency and enlarging inter-class differences.

Our contributions are summarized as three folds:
• We propose the MINet to effectively meet scale chal-

lenges in the SOD task. The aggregate interaction
module can efficiently utilize the features from adja-
cent layers by the way of mutual learning and the self-
interaction module makes the network adaptively ex-
tract multi-scale information from data and better deal
with scale variation.
• We utilize the consistency-enhanced loss as an assis-

tant to push our model to uniformly highlight the en-
tire salient region and better handle the pixel imbal-
ance problem between fore- and back-ground regions
caused by various scales of objects, without any post-
processing or extra parameters.
• We compare the proposed method with 23 state-of-

the-art SOD methods on five datasets. It achieves the
best performance under different evaluation metrics.
Besides, the proposed model has a forward reasoning
speed of 35 FPS on GPU.

2. Related Work
2.1. Salient Object Detection

Early methods are mainly based on hand-crafted pri-
ors [5, 39, 49, 47]. Their generalization and effectiveness
are limited. The early deep salient object detection (SOD)
methods [57, 16] use the multi-layer perception to predict
the saliency score for each processing unit of an image.
These methods have low computational efficiency and dam-
age the potential feature structure. See [2, 35] for more de-
tails about traditional and early deep methods.

Recently, some methods [20, 53] introduce the fully con-
volutional network (FCN) [22] and achieve promising re-
sults. Moreover, Liu et al. [20] hierarchically embed global
and local context modules into the top-down pathway which
constructs informative contextual features for each pixel.
Chen et al. [4] propose reverse attention in the top-down
pathway to guide residual saliency learning, which drives
the network to discover complement object regions and de-
tails. Nonetheless, the above-mentioned methods only em-
ploy individual resolution features in each decoder unit,
which is not an effective enough strategy to cope with com-
plex and various scale problems.

2.2. Scale Variation

Scale variation is one of the major challenges in the SOD
task. Limited by the localized convolution operation and
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Figure 3. The overall framework of the proposed model. Each colorful box represents a feature processing module. Our model takes a
RGB image (320×320×3) as input, and exploits VGG-16 [29] blocks {Ei}4i=0 to extract multi-level features. The features are integrated
by AIMs ({AIMi}4i=0) and then, the outputted features are gradually combined by using SIMs ({SIMi}4i=0) and fusion units ({Fi}4i=0)
to generate the final prediction P supervised by the ground truth G.

sub-sampling operation, it is difficult for CNN to handle this
problem. On one hand, the amount of information about ob-
jects, which are embedded in the features of different res-
olutions, changes with the scale of objects. A straightfor-
ward strategy is to roughly integrate all features. On the
other hand, each convolutional layer only has the capability
of processing a special scale. Therefore, we need to char-
acterize the multi-scale information from a single layer by
building a multi-path feature extraction structure.

Multi-level Information. Zhang et al. [51] simply com-
bine all level features into the transport layer. This kind of
coarse fusion easily produces information redundancy and
noise interference. In [48], a gate function is exploited to
control the message passing rate to optimize the quality of
information exchange between layers. Nevertheless, multi-
ple gating processing leads to severe attenuation of the in-
formation from other layers, which limits the learning abil-
ity of the network. Different from these methods, we only
fuse the features from the adjacent layers by reason of their
closer degree of abstraction and concurrently obtain abun-
dant scale information.

Multi-scale Information. The atrous spatial pyramid pool-
ing (ASPP) [3] and the pyramid pooling module (PPM) [55]
are two common choices for multi-scale information ex-
traction and are often fixed at the deepest level in the net-
work [6, 32]. Since the deeper features contain less infor-
mation about small-scale objects, which is especially true
for the top-layer features, these methods can not effectively
deal with large scale variation. Besides, in [37], the pyra-
mid attention module can obtain multi-scale attention maps
to enhance features through multiple downsampling and
softmax operations on all positions. But such a softmax
severely suppresses non-maximum values and is more sen-
sitive to noise. It does not improve the scale issue well. To

avoid misjudging small objects, we propose a multi-scale
processing module where two branches interactively learn
features. Through data-driven training, the two-path struc-
ture can learn rich multi-scale representation. In addition,
the oversized and undersized objects cause the imbalance
between foreground and background samples, which weak-
ens the effect of pixel-level supervision. We introduce the
consistency-enhanced loss (CEL) as an aid to the cross en-
tropy loss. The CEL is not sensitive to the size of objects.
It can overcome the difficulties of supervision and perform
very well in the face of large scale variation.

2.3. Spatial Coherence

To improve spatial coherence and quality of saliency
maps, some non-deep methods often integrate an over-
segmentation process that generates regions [44], super-
pixels [45], or object proposals [11]. For deep learning
based methods, Wu et al. [41] propose a cascaded partial de-
coder framework with two branches and directly utilize at-
tention maps generated by the attention branch to refine the
features from the saliency detection branch. Qin et al. [27]
employ a residual refinement module combined with a hy-
per loss to further refine the predictions, which significantly
reduces the inference speed. In this paper, the CEL pays
more attention to the overall effect of the prediction. It helps
obtain a more uniform saliency result and is a better trade-
off between the effect and the speed.

3. Proposed Method
In this paper, we propose an interactive integration net-

work which fuses multi-level and multi-scale feature in-
formation to deal with the prevalent scale variation issue
in saliency object detection (SOD) task. The overall net-
work structure is shown in Fig. 3. Encoder blocks, ag-



gregate interaction modules (AIMs), self-interaction mod-
ules (SIMs) and fusion units (FUs) are denoted as {Ei}4i=0,
{AIMi}4i=0, {SIMi}4i=0 and {Fi}4i=0, respectively.

3.1. Network Overview

Our model is built on the FCN architecture with the pre-
trained VGG-16 [29] or ResNet-50 [12] as the backbone,
both of which only retain the feature extraction network.
Specifically, we remove the last max-pooling layer of the
VGG-16 to maintain the details of the final convolutional
layer. Thus, the input is sub-sampled with a factor of 16
for the VGG-16 and with a factor of 32 for the ResNet-50.
We use the backbone to extract multi-level features and ab-
stractions, and then each AIM (Fig. 4) uses the features of
adjacent layers as the input to efficiently employ the multi-
level information and provide more relevant and effective
supplementary for the current resolution. Next, in the de-
coder, every SIM (Fig. 5) is followed by an FU which is
a combination of a convolutional layer, a batch normaliza-
tion layer and a ReLU layer. The SIM can adaptively ex-
tract multi-scale information from the specific levels. The
information is further integrated by the FU and fed to the
shallower layer. In addition, we introduce the consistency-
enhanced loss as an auxiliary loss to supervise the training
stage. In this section, we will introduce these modules in
detail. To simplify the description, all subsequent model
parameters are based on the VGG-16 backbone.

3.2. Aggregate Interaction Module

In the feature extraction network, different levels of con-
volutional layers correspond to a different degree of fea-
ture abstraction. The multi-level integration can enhance
the representation ability of different resolution features: 1)
In the shallow layers, the detailed information can be further
strengthened and the noise can be suppressed; 2) In the mid-
dle layers, both semantic and detailed information is taken
into account at the same time, and the proportion of dif-
ferent abstraction information in the features can be adap-
tively adjusted according to the needs of the network itself,
thereby achieving more flexible feature utilization; 3) In the
top layer, richer semantic information can be mined when
considering adjacent resolutions. In particular, we propose
the aggregate interaction module (AIM) (Fig. 4) to aggre-
gate features by a strategy of interactive learning.

The ith AIM is denoted as AIMi, the input of which
consists of features f i−1e , f ie and f i+1

e from the encoder,
as shown in Fig. 4 (b). After the initial transformation
by a combination of a single convolutional layer, a batch
normalization layer and a ReLU layer, the channel num-
ber of these features is reduced. In the interaction stage,
the B0 branch and the B2 branch are adjusted by the pool-
ing, neighbor interpolation and convolution operations, and
then both of them are merged into the B1 branch by the
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Figure 4. Illustration of aggregate interaction modules (AIMs). Bi:
All operations in the ith branch Bi.

element-wise addition. At the same time, the B1 branch
is also adjusted its resolution and is respectively combined
into the B0 and B2 branches. Finally, the three branches are
fused together through the subsequent convolutional layer
and the channel number is also reduced. In order to ef-
ficiently train the AIMs and increase the weight of f ie to
ensure that other branches only act as supplements, a resid-
ual learning strategy is introduced. The outputted feature is
denoted as f iAIM ∈ RNi×Hi×Wi×Ci , where C0 = 32 and
Ci 6=0 = 64. For AIM0 and AIM4 , their inputs only con-
tain f0e , f1e and f3e , f4e , correspondingly (Fig. 4 (a, c)). The
entire process is formulated as follows:

f iAIM = IiAIM (f ie) + Mi
AIM (f iAB),

f iAB =


∑2
j=1 Bi,jAIM (f j−1e ) if i = 0,∑2
j=0 Bi,jAIM (f i+j−1e ) if i = 1, 2, 3,∑1
j=0 Bi,jAIM (f i+j−1e ) if i = 4,

(1)

where I(·) and M(·) represent the identity mapping and the
branch merging, respectively. Bi,jAIM (·) is the overall oper-
ation of the jth branch (i.e. Bj) in the AIMi. Due to space
constraints, please refer to Fig. 4 for the computational de-
tails inside each branch.

3.3. Self-Interaction Module

The AIMs aim at achieving efficient utilization of the
inter-layer convolutional features, while the self-interaction
modules (SIMs) are proposed to produce multi-scale rep-
resentation from the intra-layer features. The details of
the SIMs can be seen in Fig. 5. Similarly, we also ap-
ply the transformation-interaction-fusion strategy in the
SIMs. Concretely speaking, the resolution and dimension
of the input feature are reduced by a convolutional layer,
at first. In each branch, the SIM performs an initial trans-
formation to adapt to the following interaction operation:
We up-sample low-resolution features and sub-sample high-
resolution features to the same resolution as the features
from the other branch. The interaction between high- and
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Figure 5. Illustration of self-interaction modules (SIMs). Bi: All
operations in the ith branch Bi.

low-resolution features with different channel numbers can
obtain plenty of knowledge about various scales and main-
tain high-resolution information with a low parameter quan-
tity. For ease of optimization, a residual connection is also
adopted as shown in Fig. 5. After up-sampling, normaliza-
tion, and nonlinear processing, an FU is used to fuse the fea-
tures of double paths from the SIM and the residual branch.
Integrating the SIMs into the decoder allows the network
to adaptively deal with scale variation of different samples
during the training stage. The entire process is written as:

f iSIM = f iadd + Mi
SIM

(
Bi,0SIM (f iadd) + Bi,1SIM (f iadd)

)
,

(2)
where f iSIM is the output of the SIMi. M(·) represents the
branch merging and Bi,jSIM denotes the operation in the jth

branch (i.e. Bj) in the SIMi, and the input feature f iadd is
calculated as follows:

f iadd =

{
f iAIM + Ui+1(Fi+1(f i+1

SIM )) if i = 0, 1, 2, 3,
f iAIM if i = 4,

(3)

where Ui+1(·) and Fi+1(·) denote the (i+1)th up-sampling
operation and fusion unit in the top-down pathway. For
more details about the SIMs, please see Fig. 5.

3.4. Consistency-Enhanced Loss

In the SOD task, the widely used binary cross entropy
function accumulates the per-pixel loss in the whole batch
and does not consider the inter-pixel relationships, which
can not explicitly prompt the model to highlight the fore-
ground region as smoothly as possible and deal well with
the sample imbalance issue. To this end, we propose a
consistency-enhanced loss (CEL). First of all, the final pre-
diction is calculated as follows:

P = Sigmoid(Conv(F0(f0add))), (4)

where P ∈ RN×H×W×1 denotes N saliency maps in a
batch, and N is the batchsize. 0 < p ∈ P < 1 is the prob-
ability of belonging to salient regions. Sigmoid(Conv(·))
actually represents the last convolutional layer with a non-
linear activation function in the decoder. The binary cross
entropy loss (BCEL) function is written as follows:

LBCEL =
∑

p∈P,g∈ G
− [g log p+ (1− g) log(1− p)] , (5)

where log(·) is also an element-wise operation. G ∈
{0, 1}N×H×W×1 represents the ground truth. To address
the fore-/back-ground imbalance issue caused by various
scales, the loss function needs to meet two requirements,
at least: 1) It focuses more on the foreground than the back-
ground, and the difference at the scale of objects does not
induce the wide fluctuation in the computed loss; 2) When
the predicted foreground region is completely disjoint from
the ground-truth one, there should be the largest penalty.
Based on the two points, we consider the topological rela-
tionships among regions to define the CEL as follows:

LCEL =
|FP + FN |

|FP + 2TP + FN |

=

∑
(p− pg) +

∑
(g − pg)∑

p+
∑
g

,

(6)

where TP , FP and FN represent true-positive, false-
positive and false-negative, respectively. | · | computes the
area. FP + FN denotes the difference set between the
union and intersection of the predicted foreground region
and the ground-truth one, while FP + 2TP + FN repre-
sents the sum of this union set and this intersection. When
{p|p > 0, p ∈ P}∩{g|g = 1, g ∈ G} = ∅, the loss reaches
its maximum, i.e. LCEL = 1. Since p is continuous, LCEL
is differentiable with reference to p. Thus, the network can
be trained in an end-to-end manner.

To compare LCEL with LBCEL, we analyze their gra-
dients which directly act on the network predictions. Their
derivatives are expressed as follows:

∂LBCEL
∂p

= −g
p
+

1− g
1− p

, (7)

∂LCEL
∂p

=
1− 2g∑
(p+ g)

−
∑

(p+ g − 2pg)

[
∑

(p+ g)]2
. (8)

It can be observed that ∂LBCEL/∂p only relies on the
prediction of the individual position. While ∂LCEL/∂p is
related to all pixels in both the prediction P and the ground
truth G. Therefore, the CEL is considered to enforce a
global constraint on the prediction results, which can pro-
duce more effective gradient propagation. In Equ. (8), ex-
cept that the numerator term 1 − 2g is position-specific,
the other terms are image-specific. And this numerator is
closely related to the binary ground truth, which results in
that the inter-class derivatives have large differences while
the intra-class ones are relatively consistent. This has sev-
eral merits: 1) It ensures that there is enough large gradient
to drive the network in the later stage of training; 2) It helps
solve the intra-class inconsistency and inter-class indistinc-
tion issues, to some extent, thereby promoting the predicted
boundaries of salient objects to become sharper. Finally, the
total loss function can be written as:

L = LBCEL(P,G) + λLCEL(P,G), (9)



Table 1. Quantitative evaluation. The maximum, mean and weighted F-measure (larger is better), E-measure (larger is better), S-measure
(larger is better) and MAE (smaller is better) of different saliency detection methods on five benchmark datasets. The best three results are
highlighted in red, green and blue. ∗: with post-processing; X101: ResNeXt-101 [43] as backbone; R101: ResNet-101 [12] as backbone.

DUTS-TE DUT-OMRON HKU-IS ECSSD Pascal-S
Model

Fmax Favg Fωβ Em Sm MAE Fmax Favg Fωβ Em Sm MAE Fmax Favg Fωβ Em Sm MAE Fmax Favg Fωβ Em Sm MAE Fmax Favg Fωβ Em Sm MAE

VGG-16

Ours 0.877 0.823 0.813 0.912 0.875 0.039 0.794 0.741 0.719 0.864 0.822 0.057 0.932 0.906 0.892 0.955 0.914 0.030 0.943 0.922 0.905 0.947 0.919 0.036 0.882 0.843 0.820 0.898 0.855 0.065
EGNet19 0.877 0.800 0.797 0.895 0.878 0.044 0.809 0.744 0.728 0.864 0.836 0.057 0.927 0.893 0.875 0.950 0.910 0.035 0.943 0.913 0.892 0.941 0.919 0.041 0.871 0.821 0.798 0.873 0.848 0.078

AFNet19 0.863 0.793 0.785 0.895 0.867 0.046 0.797 0.739 0.717 0.860 0.826 0.057 0.925 0.889 0.872 0.949 0.906 0.036 0.935 0.908 0.886 0.942 0.914 0.042 0.871 0.828 0.804 0.887 0.850 0.071
MLMSNet19 0.852 0.745 0.761 0.863 0.862 0.049 0.774 0.692 0.681 0.839 0.809 0.064 0.920 0.871 0.860 0.938 0.907 0.039 0.928 0.868 0.871 0.916 0.911 0.045 0.864 0.771 0.785 0.847 0.845 0.075

PAGE19 0.838 0.777 0.769 0.886 0.854 0.052 0.792 0.736 0.722 0.860 0.825 0.062 0.920 0.884 0.868 0.948 0.904 0.036 0.931 0.906 0.886 0.943 0.912 0.042 0.859 0.817 0.792 0.879 0.840 0.078

HRS19 0.843 0.793 0.746 0.889 0.829 0.051 0.762 0.708 0.645 0.842 0.772 0.066 0.913 0.892 0.854 0.938 0.883 0.042 0.920 0.902 0.859 0.923 0.883 0.054 0.852 0.809 0.748 0.850 0.801 0.090

CPD19 0.864 0.813 0.801 0.908 0.867 0.043 0.794 0.745 0.715 0.868 0.818 0.057 0.924 0.896 0.881 0.952 0.904 0.033 0.936 0.914 0.894 0.943 0.910 0.040 0.873 0.832 0.806 0.884 0.843 0.074
C2SNet18 0.811 0.717 0.717 0.847 0.831 0.062 0.759 0.682 0.663 0.828 0.799 0.072 0.898 0.851 0.834 0.928 0.886 0.047 0.911 0.865 0.854 0.915 0.896 0.053 0.857 0.775 0.777 0.850 0.840 0.080

RAS18 0.831 0.751 0.740 0.864 0.839 0.059 0.787 0.713 0.695 0.849 0.814 0.062 0.913 0.871 0.843 0.931 0.887 0.045 0.921 0.889 0.857 0.922 0.893 0.056 0.838 0.787 0.738 0.837 0.795 0.104

PAGR18 0.854 0.784 0.724 0.883 0.838 0.055 0.771 0.711 0.622 0.843 0.775 0.071 0.919 0.887 0.823 0.941 0.889 0.047 0.927 0.894 0.834 0.917 0.889 0.061 0.858 0.808 0.738 0.854 0.817 0.093

PiCANet18 0.851 0.749 0.747 0.865 0.861 0.054 0.794 0.710 0.691 0.842 0.826 0.068 0.922 0.870 0.848 0.938 0.905 0.042 0.931 0.885 0.865 0.926 0.914 0.046 0.871 0.804 0.781 0.862 0.851 0.077

DSS∗17 0.825 0.789 0.755 0.885 0.824 0.056 0.781 0.740 0.697 0.844 0.790 0.063 0.916 0.902 0.867 0.935 0.878 0.040 0.899 0.863 0.822 0.907 0.873 0.068 0.843 0.812 0.762 0.848 0.795 0.096

UCF17 0.773 0.631 0.596 0.770 0.782 0.112 0.730 0.621 0.574 0.768 0.760 0.120 0.888 0.823 0.780 0.904 0.874 0.061 0.903 0.844 0.806 0.896 0.884 0.069 0.825 0.738 0.700 0.809 0.807 0.115

MSRNet17 0.829 0.723 0.720 0.848 0.839 0.061 0.782 0.687 0.670 0.827 0.808 0.073 0.914 0.866 0.853 0.940 0.903 0.040 0.911 0.868 0.850 0.918 0.895 0.054 0.858 0.790 0.769 0.854 0.841 0.081

NLDF17 0.812 0.739 0.710 0.855 0.816 0.065 0.753 0.684 0.634 0.817 0.770 0.080 0.902 0.872 0.839 0.929 0.878 0.048 0.905 0.878 0.839 0.912 0.875 0.063 0.833 0.782 0.742 0.842 0.804 0.099

AMU17 0.778 0.678 0.658 0.803 0.804 0.085 0.743 0.647 0.626 0.784 0.781 0.098 0.899 0.843 0.819 0.915 0.886 0.050 0.915 0.868 0.840 0.912 0.894 0.059 0.841 0.771 0.741 0.831 0.821 0.098

ResNet-50/ResNet-101/ResNeXt-101

Ours-R 0.884 0.828 0.825 0.917 0.884 0.037 0.810 0.756 0.738 0.873 0.833 0.055 0.935 0.908 0.899 0.961 0.920 0.028 0.947 0.924 0.911 0.953 0.925 0.033 0.882 0.842 0.821 0.899 0.857 0.064
SCRN19 0.888 0.809 0.803 0.901 0.885 0.040 0.811 0.746 0.720 0.869 0.837 0.056 0.935 0.897 0.878 0.954 0.917 0.033 0.950 0.918 0.899 0.942 0.927 0.037 0.890 0.839 0.816 0.888 0.867 0.065
EGNet-R19 0.889 0.815 0.816 0.907 0.887 0.039 0.815 0.756 0.738 0.874 0.841 0.053 0.935 0.901 0.887 0.956 0.918 0.031 0.947 0.920 0.903 0.947 0.925 0.037 0.878 0.831 0.807 0.879 0.853 0.075

CPD-R19 0.865 0.805 0.795 0.904 0.869 0.043 0.797 0.747 0.719 0.873 0.825 0.056 0.925 0.891 0.876 0.952 0.906 0.034 0.939 0.917 0.898 0.949 0.918 0.037 0.872 0.831 0.803 0.887 0.847 0.072

ICNet19 0.855 0.767 0.762 0.880 0.865 0.048 0.813 0.739 0.730 0.859 0.837 0.061 0.925 0.880 0.858 0.943 0.908 0.037 0.938 0.880 0.881 0.923 0.918 0.041 0.866 0.786 0.790 0.860 0.850 0.071

BANet19 0.872 0.815 0.811 0.907 0.879 0.040 0.803 0.746 0.736 0.865 0.832 0.059 0.930 0.899 0.887 0.955 0.913 0.032 0.945 0.923 0.908 0.953 0.924 0.035 0.879 0.838 0.817 0.889 0.853 0.070
BASNet19 0.859 0.791 0.803 0.884 0.866 0.048 0.805 0.756 0.751 0.869 0.836 0.056 0.930 0.898 0.890 0.947 0.908 0.033 0.942 0.879 0.904 0.921 0.916 0.037 0.863 0.781 0.800 0.853 0.837 0.077

CapSalR101
19 0.823 0.755 0.691 0.866 0.815 0.062 0.639 0.564 0.484 0.703 0.674 0.096 0.884 0.843 0.782 0.907 0.850 0.058 0.862 0.825 0.771 0.866 0.826 0.074 0.869 0.827 0.791 0.878 0.837 0.074

R3Net∗X101
18 0.833 0.787 0.767 0.879 0.836 0.057 0.795 0.748 0.728 0.859 0.817 0.062 0.915 0.894 0.878 0.945 0.895 0.035 0.934 0.914 0.902 0.940 0.910 0.040 0.846 0.805 0.765 0.846 0.805 0.094

DGRL18 0.828 0.794 0.774 0.899 0.842 0.050 0.779 0.709 0.697 0.850 0.810 0.063 0.914 0.882 0.865 0.947 0.896 0.038 0.925 0.903 0.883 0.943 0.906 0.043 0.860 0.814 0.792 0.881 0.839 0.075

PiCANet-R18 0.860 0.759 0.755 0.873 0.869 0.051 0.803 0.717 0.695 0.848 0.832 0.065 0.919 0.870 0.842 0.941 0.905 0.044 0.935 0.886 0.867 0.927 0.917 0.046 0.870 0.804 0.782 0.862 0.854 0.076

SRM17 0.826 0.753 0.722 0.867 0.836 0.059 0.769 0.707 0.658 0.843 0.798 0.069 0.906 0.873 0.835 0.939 0.887 0.046 0.917 0.892 0.853 0.928 0.895 0.054 0.850 0.804 0.762 0.861 0.833 0.085

where λ is a hyperparameter that balances the contributions
of the two losses. For the sake of simplicity, it is set to 1.

4. Experiments
4.1. Datasets

We evaluate the proposed model on five benchmark
datasets: DUTS [31], DUT-OMRON [45], ECSSD [44],
HKU-IS [16], and PASCAL-S [18]. The DUTS contains
10,553 training and 5,019 test images, which is currently the
largest salient object detection dataset. Both training and
test sets contain complicated scenes. The DUT-OMRON
contains 5,168 images of complex backgrounds and high
content variety. The ECSSD is composed of 1,000 images
with structurally complex natural contents. The HKU-IS
contains 4,447 complex scenes that contain multiple dis-
connected objects with relatively diverse spatial distribu-
tions, and a similar fore-/back-ground appearance makes it
more difficult to distinguish. We follow the data partition
of [16, 13, 4] to use 1,447 images for testing. The PASCAL-
S consists of 850 challenging images.

4.2. Evaluation Criteria

In this paper, we use six measurements to eveluate ev-
ery models. Precision-Recall (PR) curve. We binarize
the gray-scale prediction by a fixed threshold. The re-
sulted binary map and the ground truth are used to calcu-
late Precision = TP/(TP + FP) and Recall = TP/(TP +
FN), where TP, FP and FN represent true-positive, false-
positive and false-negative, respectively. The PR curve

can be plotted by a group of pairs of precision and recall
generated when the threshold slides from 0 to 255. The
larger the area under the PR curve, the better the perfor-
mance. F-measure [1], Fβ is formulated as the weighted
harmonic mean of Precision and Recall [1], e.t. Fβ =
(1+β2)Precision×Recall
β2Precision+Recall , where β2 is generally set to 0.3 to em-

phasize more on the precision. We calculate the maximal
Fβ values from the PR curve, denoted as Fmax and use
an adaptive threshold that is twice the mean value of the
prediction to calculate Favg . And the Favg can reflect the
spatial consistency of the predictions [41]. MAE [26] di-
rectly evaluates the average pixel-level relative error be-
tween the normalized prediction and the ground truth by
calculating the mean of the absolute value of the difference.
S-measure [7], Sm computes the object-aware and region-
aware structure similarities, denoted as So and Sr, between
the prediction and the ground truth. S-measure is written as
follows: Sm = α ·So+(1−α) ·Sr, where α is set to 0.5 [7].
E-measure [8], Em combines local pixel values with the
image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth. weighted F-
measure [25], Fωβ defines a weighted precision, which is
a measure of exactness, and a weighted recall, which is a
measure of completeness is proposed to improve the exist-
ing metric to improve the existing metric F-measure.

4.3. Implementation Details

Following most existing state-of-the-art methods [30, 27,
41, 34, 37, 46, 48, 20, 53, 32, 42, 56], we use the DUTS-
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Figure 6. Precision-Recall curves (1st row) and F-measure curves (2nd row) on five common saliency datasets.
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Figure 7. Visual comparisons of different methods.

TR [31] as the training dataset. During the training stage,
random horizontal flipping, random rotating, and random
color jittering act as data augmentation techniques to avoid
the over-fitting problem. To ensure model convergence, our
network is trained for 50 epochs with a mini-batch of 4 on
an NVIDIA GTX 1080 Ti GPU. The backbone parameters
(i.e. VGG-16 and ResNet-50) are initialized with the corre-
sponding models pretrained on the ImageNet dataset and
the rest ones are initialized by the default setting of Py-
Torch. We use the momentum SGD optimizer with a weight
decay of 5e-4, an initial learning rate of 1e-3 and a momen-
tum of 0.9. Moreover, we apply a ”poly” strategy [21] with
a factor of 0.9. The input size is 320× 320.

4.4. Comparison with State-of-the-arts

We compare the proposed algorithm with 23 state-of-
the-art saliency detection methods, including the SRM [32],

PiCANet [20], DGRL [34], R3Net [6], CapSal [50], BAS-
Net [27], BANet [30], ICNet [36], CPD [41], Amulet [51],
NLDF [23], MSRNet [15], UCF [52], DSS [13], PAGR[53],
RAS [4], C2SNet [17], HRS [46], PAGE [37], MLM-
SNet [40], AFNet [9], SCRN [42], and EGNet [56]. For
fair comparisons, all saliency maps of these methods are
provided by authors or computed by their released codes.

Quantitative Comparison. To fully compare the proposed
method with these existing models, the detailed experimen-
tal results in terms of six metrics are listed in Tab. 1. As
can be seen from the results, our approach has shown very
good performance and significantly outperforms other com-
petitors, although some methods [13, 6] use CRF [14] or
other post-processing methods. The proposed method con-
sistently performs better than all the competitors across all
six metrics on most datasets. In particular, in terms of the
MAE, the performance is averagely improved by 8.11%



Table 2. Ablation analysis on the DUTS-TE dataset.
Model Fmax Favg Fωβ Em Sm MAE

Baseline 0.829 0.738 0.725 0.859 0.842 0.057
+AIMs 0.855 0.775 0.768 0.884 0.860 0.047

+Amulet-like 0.845 0.758 0.747 0.872 0.851 0.052
+SIMs 0.865 0.786 0.773 0.888 0.865 0.047
+PPM 0.847 0.762 0.753 0.875 0.856 0.050
+ASPP 0.859 0.777 0.767 0.880 0.861 0.048

+AIMs+SIMs 0.874 0.792 0.789 0.893 0.874 0.044
+AIMs+SIMs+CEL 0.877 0.823 0.813 0.912 0.875 0.039

and 7.30% over the second-best method CPD [41] with the
VGG-16 as the backbone and EGNet [56] with the ResNet-
50 as the backbone, respectively. In addition, we demon-
strate the standard PR curves and the F-measure curves in
Fig. 6. Our approach (red solid line) achieves the best re-
sults on the DUTS-TE, ECSSD, PASCAL-S and HKU-IS
datasets and is also very competitive on the DUT-OMRON.
Qualitative Evaluation. Some representative examples are
shown in Fig. 7. These examples reflect various scenar-
ios, including small objects (1st and 2nd rows), low con-
trast between salient object and image background (3rd and
4th rows), objects with threadlike parts (5th and 6th rows)
and complex scene (6th and 7th rows). Moreover, these
images contain small-/middle- and large-scale objects. It
can be seen that the proposed method can consistently pro-
duce more accurate and complete saliency maps with sharp
boundaries and coherent details.

4.5. Ablation Study

To illustrate the effectiveness of each proposed module,
we conduct a detailed analysis next.
Effectiveness of the AIMs and SIMs. Our baseline model
is an FPN-like network [19], which uses the lateral connec-
tions to reduce the channel number to 32 in the shallowest
layer and to 64 in the other layers. We separately install the
AIMs and SIMs on the baseline network and evaluate their
performance. The results are shown in Tab. 2. It can be
seen that both modules achieve significant performance im-
provement over the baseline. And, the proposed SIMs also
performs much better than the PPM [55] and the ASPP [3]
and it has increased by 6.21% and 1.45% in MAE, espe-
cially. In addition, the combination of the AIMs and SIMs
can further improve the performance. The visual effects of
different modules are illustrated in Fig. 8. We can see that
the AIMs and SIMs help effectively suppress the interfer-
ence of backgrounds and completely segment salient ob-
jects because the richer multi-scale contextual information
can be captured by the interactive feature learning.
Comparisons with the Amulet-like [51] strategy. We
compare the AIMs with the Amulet-like strategy in FLOPs,
Parameters and GPU memory. “+AIMs”: 137G, 47M
and 1061MiB. “+Amulet-like”: 176G, 20M and 1587MiB.
AIMs combine fewer levels and have less computational

Image +AS +ASC+S+ABaselineGT

Figure 8. Visual comparisons for showing the benefits of the pro-
posed modules. GT: Ground truth; A: AIMs; S: SIMs; C: CEL.

cost. The fusion strategy achieves higher accuracy. And in
Tab. 2, it gets additional 2.14%, 2.77% and 8.26% improve-
ment in Favg, Fωβ and MAE over the model “+Amulet-like”.
Effectiveness of the CEL. We also quantitatively evaluate
the effect of the consistency-enhanced loss (CEL) in Tab. 2.
Compared to “+AIMs+SIMs”, the model with the CEL
achieves consistent performance enhancements in terms of
all six metrics. In particular, the Favg , Fωβ and MAE scores
are respectively improved by 4.75%, 3.75%, and 13.16%.
Since the Favg is closely related to the spatial consistency
of the predicted results [41], the salient regions are more
uniformly highlighted as shown in Fig. 8.

5. Conclusion

In this paper, we investigate the multi-scale issue to
propose an effective and efficient network MINet with the
transformation-interaction-fusion strategy, for salient object
detection. We first use the aggregate interaction modules
(AIMs) to integrate the similar resolution features of adja-
cent levels in the encoder. Then, the self-interaction mod-
ules (SIMs) are utilized to extract the multi-scale informa-
tion from a single level feature for the decoder. Both AIMs
and SIMs interactively learn contextual knowledge from
the branches of different resolutions to boost the represen-
tation capability of size-varying objects. Finally, we em-
ploy the consistency-enhanced loss (CEL) to alleviate the
fore- and back-ground imbalance issue, which can also help
uniformly highlight salient object regions. Each proposed
module achieves significant performance improvement. Ex-
tensive experiments on five datasets validate that the pro-
posed model outperforms 23 state-of-the-art methods under
different evaluation metrics.
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