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Abstract

Medical image segmentation is an important task for
computer aided diagnosis. Pixelwise manual annotations
of large datasets require high expertise and is time consum-
ing. Conventional data augmentations have limited benefit
by not fully representing the underlying distribution of the
training set, thus affecting model robustness when tested
on images captured from different sources. Prior work
leverages synthetic images for data augmentation ignor-
ing the interleaved geometric relationship between different
anatomical labels. We propose improvements over previ-
ous GAN-based medical image synthesis methods by jointly
encoding the intrinsic relationship of geometry and shape.
Latent space variable sampling results in diverse generated
images from a base image and improves robustness. Given
those augmented images generated by our method, we train
the segmentation network to enhance the segmentation per-
formance of retinal optical coherence tomography (OCT)
images. The proposed method outperforms state-of-the-
art segmentation methods on the public RETOUCH dataset
having images captured from different acquisition proce-
dures. Ablation studies and visual analysis also demon-
strate benefits of integrating geometry and diversity.

1. Introduction

Medical image segmentation is an important task for
healthcare applications like disease diagnosis, surgical plan-
ning, and disease progression monitoring. While deep
learning (DL) methods demonstrate state-of-the-art results
for medical image analysis tasks [131, 76, 18, 8, 9, 54],
their robustness depends upon the availability of a diverse
training dataset to learn different disease attributes such as
appearance and shape characteristics. Large scale dataset
annotations for segmentation require image pixel labels,
which is time consuming and involves high degree of clin-
ical expertise. The problem is particularly acute for patho-
logical images since it is difficult to obtain diverse images

(a) (b) (c)

(d) (e)
Figure 1. (a) Base image (red contour denotes segmentation mask);
Example of generated images using: (b) Our proposed GeoGAN
method; (c) Zhao et al. [138]; (d) DAGAN method by [1]; (e)
cGAN method by [56].

for less prevalent disease conditions, necessitating data aug-
mentation. We propose a generative adversarial network
(GAN) based approach for pathological images augmen-
tation and demonstrate its efficacy in pathological region
segmentation. Figure 1 summarizes the image generation
results of our approach and [138, 48, 141, 109, 65, 46, 35],
and highlights our superior performance by incorporating
geometric information.

Traditional augmentations such as image rotations or de-
formations have limited benefit as they do not fully rep-
resent the underlying data distribution of the training set
and are sensitive to parameter choices. Recent works
[23, 138, 22, 112, 45, 79, 60, 61, 80, 83] proposed to solve
this issue by using synthetic data for augmentation and in-
crease diversity in the training samples. However, certain
challenges have not been satisfactorily addressed by these
methods.

Zhao et. al. [138, 42, 41, 44, 40, 103, 101, 99] proposed
a learning-based registration method to register images to
an atlas, use corresponding deformation field to deform a
segmentation mask and obtain new data. This approach
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(a)

(b)

Figure 2. Example of normal and fluid filled OCT images: (a)
example control subject image without any abnormalities (taken
from [15]); (b) images with accumulated fluid up due to diabetic
macular edema and AMD from our dataset. The fluid areas are
marked with red arrows.

presents the following challenges: 1) since registration er-
rors propagate to subsequent stages, inaccurate registration
can adversely affect the data generation process; 2) with at-
las of a normal subject it is challenging to register images
from diseased subjects due to appearance or shape changes.
This is particularly relevant for layer segmentation in retinal
optical coherence tomography (OCT) images, where there
is a drastic difference in layer shape between normal and
diseased cases. Figure 2 (a) shows the retinal layers of a
normal subject, and Figure 2 (b) shows two cases of retinal
fluid build up due to diabetic macular edema (DME) and
age related macular degeneration (AMD). The retinal layers
are severely distorted compared to Figure 2 (a) and registra-
tion approaches have limited impact in generating accurate
images.

Recent methods for data augmentation [22, 112, 10, 12,
28, 13, 135, 75, 58, 78, 124] using a generative adversar-
ial network (GAN) [21, 125, 51, 126, 57, 118, 117, 132]
have shown moderate success for medical image classi-
fication. However, they have limited relevance for seg-
mentation since they do not model geometric relation be-
tween different organs and most augmentation approaches
do not differentiate between normal and diseased samples.
Experiments in Section 4.5 show segmentation methods
trained on normal subject images (Figure 2 (a) ) are not
equally effective for diseased cases due to significant shape
changes between the two types. Hence there is a need
for augmentation methods that consider the geometric re-
lation between different anatomical regions and generate

distinct images for diseased and normal cases. Another
limitation of current augmentation approaches is that they
do not incorporate diversity in a principled manner. In
[56, 128, 87, 127, 86, 140, 64, 63] shape mask was incorpo-
rated manually for image generation, which is not practical
and may lead to unrealistic deformations.

2. Related Work

2.1. Deep Models for Retinal OCT Segmentation

One of the first works to use multi-scale convolutional
neural nets (CNNs) on OCT images [123] employed patch-
based voxel classification for detecting intraretinal fluid
(IRF) and subretinal fluid (SRF) in fully supervised and
weakly supervised settings. Fully convolutional neural
nets and U-nets were used in [133, 20, 62, 84, 108, 30,
82, 122, 81] to segment IRF, and in [116, 91, 121, 43,
59, 107, 105, 106] to segment both the retinal layers and
the fluid. Explicit fluid segmentation methods such as
[136, 104, 37, 39, 134, 38, 36, 102] also achieve high clas-
sification performance.

2.2. Data Augmentation (DA)

While conventional augmentation approaches are easy to
implement and generate a large database, their capabilities
are limited in inducing data diversity. They are also sensi-
tive to parameter values [17, 96, 97, 98, 100, 93, 94, 90],
variation in image resolution, appearance and quality [33,
88, 95, 110, 85].

Recent DL based methods trained with synthetic images
outperform those trained with standard DA over classifica-
tion and segmentation tasks. Antoniou et al. [1, 120, 11,
49, 74, 53, 29] proposed DAGAN for image generation in
few shot learning systems. Bozorgtabar et al. [14] used
GAN objective for domain transformation by aligning fea-
ture distribution of target data and source domain. Maha-
patra et al. [56, 19, 92, 52, 47, 50, 4] used conditional
GAN (cGAN) for generating informative synthetic chest
Xray images conditioned on a perturbed input mask. GANs
have also been used for generating synthetic retinal images
[139, 66, 67, 71, 3, 70, 2] and brain magnetic resonance im-
ages (MRI) [22, 129], facial expression analysis [8], for su-
per resolution [32, 55, 113], image registration [76, 75, 78]
and generating higher strength MRI from their low strength
acquisition counterparts [137]. Generated images have im-
plicit variations in intensity distribution but there is no ex-
plicit attempt to model attributes such as shape variations
that are important to capture different conditions across a
population. Milletari et al. [111, 72, 73, 69, 68, 89, 77]
augmented medical images with simulated anatomical vari-
ations but demonstrate varying performance based on trans-
formation functions and parameter settings.



2.3. Image Generation Using Uncertainty

Kendall et al. [25] used approximate Bayesian infer-
ence for parameter uncertainty estimation in scene under-
standing, but did not capture complex correlations between
different labels. Lakshminarayanan et al. [31] proposed a
method to generate different samples using an ensemble of
M networks while Rupprecht et al. [119] presented a single
network with M heads for image generation. Sohn et al.
[130] proposed a method based on conditional variational
autoencoders (cVAE) to model segmentation masks, which
improves the quality of generated images. In probabilistic
UNet [27], cVAE is combined with UNet [115] to gener-
ate multiple segmentation masks, although with limited di-
versity since randomness is introduced at highest resolution
only. Baumgartner et al. [5] introduced a framework to
generate images with a greater diversity by injecting ran-
domness at multiple levels.

2.4. Our Contribution

Based on the premise that improved data augmentation
yields better segmentation performance in a DL system, we
hypothesize that improved generation of synthetic images is
possible by considering the intrinsic relationships between
shape and geometry of anatomical structures [7]. In this pa-
per we present a Geometry-Aware Shape Generative Adver-
sarial Network (GeoGAN) that learns to generate plausible
images of the desired anatomy (e.g., retinal OCT images)
while preserving learned relationships between geometry
and shape. We make the following contributions:

1. Incorporating geometry information contributes to
generation of realistic and qualitatively different med-
ical images and shapes compared to standard DA.
Other works such as [56, 139] do not incorporate this
geometric relationship between anatomical parts.

2. Use of uncertainty sampling and conditional shape
generation on class labels to introduce diversity in the
mask generation process. Compared to previous meth-
ods we introduce diversity at different stages (different
from [56, 139, 27]) and introduce an auxiliary classi-
fier (different from [5, 130] ) for improving the quality
and accuracy of generated images.

3. Method
Our augmentation method: 1) models geometric rela-

tionship between multiple segmentation labels; 2) preserves
disease class label of original image to learn disease specific
appearance and shape characteristics; and 3) introduces di-
versity in the image generation process through uncertainty
sampling. Figure 3 shows the training workflow using a
modified UNet based generator network. The set of im-
ages and segmentation masks are used to train the generator

while the discriminator provides feedback to improve the
generator output. Figure 4 depicts generation of synthetic
images from the validation image set and their subsequent
use in training a UNet for image segmentation at test time.

3.1. Geometry Aware Shape Generation

Let us denote an input image as x, the corresponding
manual segmentation masks as sx and the disease class la-
bel of x as lx. Our method learns to generate a new image
and segmentation label map from a base image and its cor-
responding manual mask. The first stage is a spatial trans-
former network (STN) [24] that transforms the base mask
to a new shape with different attributes of location, scale
and orientation. The transformations used to obtain new
segmentation mask s

′

x are applied to x to get correspond-
ing transformed image x

′
. Since the primary aim of our

approach is to learn contours and other shape specific infor-
mation of anatomical regions, a modified UNet architecture
as the generator network effectively captures hierarchical
information of shapes. It also makes it easier to introduce
diversity at different levels of image abstraction.

The generator Gg takes input sx and a desired label vec-
tor of output mask cg to output an affine transformation
matrix A via a STN, i.e., Gg(sx, cg) = A. A is used to
generate s

′

x and x
′
. The discriminator Dclass determines

whether output image preserves the desired label cg or not.
The discriminator Dg is tasked with ensuring that the gener-
ated masks and images are realistic. Let the minimax crite-
ria between Gg and Dg be minGg

maxDg
Lg(Gg,Dg). The

loss function Lg has three components

Lg = Ladv + λ1Lclass + λ2Lshape (1)

where 1) Ladv is an adversarial loss to ensure Gg outputs
realistic deformations; 2) Lclass ensures generated image
has characteristics of the target output class label (disease
or normal); and 3) Lshape ensures new masks have realistic
shapes. λ1, λ2 balance each term’s contribution.

Adversarial loss - Ladv(Gg,Dg): The STN outputs Ã, a
prediction for A conditioned on sx and a new semantic map
sx ⊕ Ã(sx) is generated. Ladv is defined as:

Ladv(Gg, Dg) = Ex

[
logDg(sx ⊕ Ã(sx))

]
+Esx

[
log(1−Dg(sx ⊕ Ã(sx)))

]
,

(2)

Classification Loss - Lclass: The affine transformation A
is applied to the base image x to obtain the generated image
x
′
. We add an auxiliary classifier when optimizing both Gg

and Dg and define the classification loss as,

Lclass = Ex′ ,cg [− logDclass(cg|x′)], (3)



Figure 3. Overview of the steps in the training stage of our method. The images (X) and corresponding segmentation masks (SX ) are input
to a STN whose output is fed to the generator network. Generator network is based on UNet architecture, and diversity through uncertainty
sampling is injected at different levels. The generated mask S

′
X is fed to the discriminator which evaluates its accuracy based on Lclass,

Lshape and Ladv . The provided feedback is used for weight updates to obtain the final model.

Figure 4. Depiction of mask generation. The trained generator
network is used on validation set base images to generate new im-
ages that are used to train a segmentation network (UNet or Dense
UNet). The model then segments retinal layers from test images.

where the term Dclass(cg|x′) represents a probability dis-
tribution over classification labels computed by D.

Shape Loss -Lshape: We intend to preserve the relative
geometric arrangement between the different labels. The
generated mask has regions with different assigned segmen-
tation labels because the base mask (from which the image
was generated) already has labeled layers. Let us denote
by si the image region (or pixels) in sx assigned label i.
Consider another set of pixels, sj , assigned label j. We cal-
culate Pshape(li|sj , si), which is, given regions si, sj , the
pairwise probability of si being label i. If n denotes the to-
tal number of labels, for every label i we calculate the n−1

such probability values and repeat it for all n labels. Thus

Lshape =
1

n× (n− 1)

i 6=j∑
i,j

Pshape; (i, j) ∈ {1, · · · , n}

(4)
The probability value is determined from a pre-trained mod-
ified VGG16 architecture to compute Lshape where the in-
put has two separate maps corresponding to the label pair.
Each map’s foreground has only the region of the cor-
responding label and other labels considered background.
The conditional probability between the pair of label maps
enables the classifier to implicitly capture geometrical rela-
tionships and volume information without the need to define
explicit features. The geometric relation between different
layers will vary for disease and normal cases, which is ef-
fectively captured by our approach.

3.2. Sample Diversity From Uncertainty Sampling

The generated mask s′x is obtained by fusing L levels
of the generator Gg (as shown in Figure 3), each of which
is associated with a latent variable zl. We use probabilis-
tic uncertainty sampling to model conditional distribution
of segmentation masks and use separate latent variables at
multi-resolutions to factor inherent uncertainties. The hi-
erarchical approach introduces diversity at different stages
and influences different features (e.g., low level features at
the early layers and abstract features in the later layers). De-
noting the generated mask as s for simplicity, we obtain



conditional distribution p(s|x) for L latent levels as:

p(s|x) =
∫
p(s|z1, · · · , zL)p(z1|z2, x) · · ·

p(zL−1|zL, x)p(zL|x)dz1, · · · , dzL
(5)

Latent variable zl models diversity at resolution 2−l+1

of the original image (e.g. z1 and z3 denote the orig-
inal and 1/4 image resolution). A variational approx-
imation q(z|s, x) approximates the posterior distribution
p(z|s, x) where z = {z1, ..., zL}. log p(s|x) = L(s|x) +
KL(q(z|s, x)||p(z|s, x)), where L is the evidence lower
bound, and KL(., .) is the Kullback-Leibler divergence.
The prior and posterior distributions are parameterized as
normal distributions N (z|µ, σ).

Figure 3 shows example implementation for L = 3. We
use 6 resolution levels and L = 4 latent levels. Figure 3
shows the latent variables zl forming skip connections in a
UNet architecture such that information between the image
and segmentation output goes through a sampling step. The
latent variables are not mapped to a 1-D vector to preserve
the structural relationship between them, and this substan-
tially improves segmentation accuracy. zl’s dimensionality
is rx2−l+1× ry2−l+1, where rx , ry are image dimensions.

4. Experimental Results
4.1. Dataset Description

We apply our method to OCT images since retinal dis-
ease leads to significant change of retinal layers, while
changes due to disease in other modalities, such as Xray or
MRI, are not so obvious for mildly severe cases. Moreover,
in retinal OCT there is greater interaction between differ-
ent layers (segmentation labels) which is a good use case to
demonstrate the effectiveness of our attempt to model the
geometric relation between different anatomical regions.
The publicly available RETOUCH challenge dataset [6] is
used for our experiments. It has images of the following
pathologies: 1) Intraretinal Fluid (IRF): contiguous fluid-
filled spaces containing columns of tissue; 2) Subretinal
Fluid (SRF): accumulation of a clear or lipid-rich exudate
in the subretinal space; 3) Pigment Epithelial Detachment
(PED): detachment of the retinal pigment epithelium (RPE)
along with the overlying retina from the remaining Bruchs
membrane (BM) due to the accumulation of fluid or mate-
rial in sub-RPE space. It is common for age related macular
degeneration (AMD).

OCT volumes were acquired with spectral-domain SD-
OCT devices from three different vendors: Cirrus HD-OCT
(Zeiss Meditec), Spectralis (Heidelberg Engineering), and
T-1000/T-2000 (Topcon). There were 38 pathological OCT
volumes from each vendor. Each Cirrus OCT consists of
128 B-scans of 512×1024 pixels. Each Spectralis OCT had
49 B-scans with 512×496 pixels and each Topcon OCT has

128 B-scans of 512 × 885 (T-2000) or 512 × 650 (T-1000)
pixels. All OCT volumes cover a macular area of 6 × 6
mm2 with axial resolutions of: 2µm (Cirrus), 3.9µm (Spec-
tralis), and 2.6/3.5µm (Topcon T-2000/T-1000). We use
an additional dataset of 35 normal subjects derived equally
(12, 12, 11) from the three device types who had no inci-
dence of retinal disease. The training set consists of 90 OCT
volumes, with 24, 24, and 22 diseased volumes acquired
with Cirrus, Spectralis, and Topcon, respectively, with an
extra 20 normal subjects (7, 7, 6 from each device). The
test set has 57 volumes, 14 diseased volumes from each de-
vice vendor and 15 normal subjects (5 from each device
type). The distribution of different fluid pathologies (IRF,
SRF, PED) and diseases (AMD, RVO) is almost equal in
the training and test set.

The total number of images are as follows: 9071 train-
ing images (2D scans of the volume) - 7064 diseased and
2007 normal; 5795 test images- 4270 diseased and 1525
normal. Segmentation layers and fluid regions (in patho-
logical images) were manually annotated in each of the
(9071+ 5795 = 14866) B-scans. Manual annotations were
performed by 4 graders and the final annotation was based
on consensus.

4.2. Experimental Setup, Baselines and Metrics

Our method has the following steps: 1) Split the dataset
into training (60%), validation (20%), and test (20%) folds
such that images of any patient are in one fold only. 2)
Use training images to train the image generator. 3) Gener-
ate shapes from the validation set and train UNet segmenta-
tion network [115] on the generated images. 4) Use trained
UNet to segment test images. 5) Repeat the above steps for
different data augmentation methods. We trained all mod-
els using Adam optimiser [26] with a learning rate of 10−3

and batch-size of 12. Batch-normalisation was used. The
values of parameters λ1 and λ2 in Eqn. 1 were set by a de-
tailed grid search on a separate dataset of 18 volumes (6
from each device) that was not used for training or testing.
They were varied between [0, 1] in steps of 0.05 by fixing
λ1 and varying λ2 for the whole range. This was repeated
for all values of λ1. The best segmentation accuracy was
obtained for λ1 = 0.9 and λ2 = 0.95, which were our final
parameter values.

We denote our method as GeoGAN (Geometry Aware
GANs), and compare it’s performance against other meth-
ods such as: 1) rotation, translation and scaling (denoted
as DA-Data Augmentation); 2) DAGAN - data augmenta-
tion GANs of [1]; 3) cGAN - the conditional GAN based
method of [56]; and 4) Zhao- the atlas registration method
of [138]. Segmentation performance is evaluated in terms of
Dice Metric (DM) [16] and Hausdorff Distance (HD) [114].
DSC of 1 indicates perfect overlap and 0 indicates no over-
lap, while lower values of HD (in mm) indicate better seg-



mentation performance.

Algorithm Baselines. The following variants of our
method were used for ablation studies:

1. GeoGANnoLclass
- GeoGAN without classification

loss (Eqn.3).

2. GeoGANnoLshape
- GeoGAN without shape relation-

ship modeling term (Eqn.4).

3. GeoGANNoSamp - GeoGAN without uncertainty sam-
pling for injecting diversity to determine sampling’s
relevance to the final network performance.

4. GeoGANLclass
- GeoGAN using classification loss

(Eqn.3) and adversarial loss (Eqn.2) to determine
Lclass’s relevance to GeoGAN’s performance.

5. GeoGANLshape
- GeoGAN using shape loss (Eqn.4)

and adversarial loss (Eqn.2) to determine Lshape’s
contribution to GeoGAN’s performance.

6. GeoGANSamp - GeoGAN using only uncertainty sam-
pling and adversarial loss (Eqn.2). This baseline quan-
tifies the contribution of sampling to the image gener-
ation process.

4.3. Segmentation Results And Analysis

We hypothesize that a good image augmentation method
should capture the different complex relationships between
the anatomies and the generated images leading to the im-
provement in segmentation accuracy. Average DSC for
pathological images from all device types are reported in
Table 1 for the RETOUCH test dataset. Figure 5 shows the
segmentation results using a UNet trained on images from
different methods. Figure 5 (a) shows the test image along
with the manual mask overlayed and shown as the red con-
tour and Figure 5 (b) shows the manual mask. Figures 5
(c)-(g) show, respectively, the segmentation masks obtained
by GeoGAN, Zhao [138], DAGAN , cGAN and DA.

Our method outperforms baseline conventional data aug-
mentation and other competing methods by a significant
margin. Results of other methods are taken from [6]. Ge-
oGAN’s DSC of 0.906 is higher than the DSC value (0.87)
of the best performing method (obtained on the Spectralis
images of the datasaet). While GeoGAN’s average perfor-
mance is equally good across all three device images, the
competing methods rank differently for different devices.
GeoGAN’s superior segmentation accuracy is attributed to
it’s capacity to learn geometrical relationship between dif-
ferent layers (through Lshape) much better than competing
methods. Thus our attempt to model the intrinsic geomet-
rical relationships between different labels could generate
superior quality masks.

Comparison approaches Proposed
DA DAGAN cGAN Zhao GeoGAN

[1] [56] [138]
DM 0.793 0.825 0.851 0.884 0.906

(0.14) (0.10) (0.07) (0.09) (0.04)
HD 14.3 12.9 10.6 8.8 7.9

(4.2) (3.8) (3.0) (3.3) (2.2)
Table 1. Segmentation results for pathological OCT images from
the RETOUCH database. Mean and standard deviation (in brack-
ets) are shown. Best results per metric is shown in bold.

In a separate experiment we train GeoGAN with images
of one device and segment images of the other devices, and
repeat for all device types. The average DSC value was
0.893, and HD was 8.6 mm. The decrease in performance
compared to GeoGAN in Table 1 is expected since the train-
ing and test images are from different devices. However we
still do better than Zhao [138] and competing methods on
the same dataset.

We repeat the set of experiments in Table 1 using a Dense
UNet [34] instead of UNet as the segmentation network. We
obtain the following average DSC values: GeoGAN -0.917,
Zhao − 0.896, cGAN − 0.864, DAGAN − 0.834 and
DA − 0.802. GeoGAN gives the best results, thus indi-
cating it’s better performance irrespective of the backbone
segmentation framework.

Ablation Studies. Table 2 shows the segmentation results
for different ablation studies. Figure 6 shows the segmenta-
tion mask obtained by different baselines for the same im-
age shown in Figure 5 (a). The segmentation outputs are
quite different from the ground truth and the one obtained
by GeoGAN. In some cases the normal regions in the layers
are included as pathological area, while parts of the fluid
region are not segmented as part of the pathological region.
Either case is undesirable for disease diagnosis and quan-
tification. Thus, different components of our cost functions
are integral to the method’s performance and excluding one
or more of classification loss, geometric loss and sampling
loss adversely affects segmentation performance.

4.4. Realism of Synthetic Images

Prior results show GeoGAN could generate more diverse
images, which enables the corresponding UNet to show bet-
ter segmentation accuracy. Figure 1 shows examples of gen-
erated synthetic images using GeoGAN and the other im-
age generation methods except DA since it involves rota-
tion and scaling only while Figure 7 shows examples from
the ablation models. The base image is the same in both
figures. Visual examination shows GeoGAN generated im-
ages respect boundaries of adjacent layers in most cases,
while other methods tend not to do so.



(a) (b) (c) (d) (e) (f) (g)
Figure 5. Segmentation results on the RETOUCH challenge dataset for (a) cropped image with manual segmentation mask (red contour);
Segmentation masks by (b) ground truth (manual); (c) GeoGAN; (d) Zhao [138]; (e) DAGAN ; (f) cGAN and (g) conventional DA.

(a) (b) (c)

(d) (e) (f)
Figure 6. Ablation study results for: (a) GeoGANnoLshape ;
(b) GeoGANnoLcls ; (c) GeoGANnoSamp; (d)
GeoGANonlyLshape ; (e) GeoGANonlyLcls ; (f)
GeoGANonlySamp. HD is in mm.

GeoGAN GeoGAN GeoGAN
noLcls noLshape noSamp

DM 0.867(0.07) 0.864(0.09) 0.862(0.09)
HD 9.4(3.0) 9.5(3.3) 9.9(3.2)

GeoGAN GeoGAN GeoGAN
onlyLcls onlyLshape onlySamp

DM 0.824(0.08) 0.825(0.07) 0.818(0.06)
HD 11.2(2.9) 11.1(3.0) 12.5(2.8)

Table 2. Mean and standard deviation (in brackets) of segmenta-
tion results from ablation studies on pathological OCT images
from the RETOUCH database. HD is in mm.

Only GeoGAN and to some extent Zhao generate im-
ages with consistent layer boundaries. Images generated
by other methods suffer from the following limitations: 1)
tend to be noisy; 2) multiple artifacts exposing unrealis-
tic appearance; 3) smoothed images which distort the layer
boundaries; 4) different retinal layers tend to overlap with
the fluid area. Segmentation models trained on such images
will hamper their ability to produce accurate segmentations.

Two trained ophthalmologists having 4 and 5 years ex-
perience in examining retinal OCT images for abnormali-
ties assessed realism of generated images. We present them
with a common set of 500 synthetic images from GeoGAN
and ask them to classify each as realistic or not. The evalua-
tion sessions were conducted separately with each ophthal-
mologist blinded to other’s answers as well as the image

Agreement Both Atleast 1 No
Statistics Experts Expert Expert
GeoGAN 88.0 (440) 94.6 (473) 5.4 (27)

Zhao et. al.[138] 84.8 (424) 88.2 (441) 11.8 (59)
cGAN ([56]) 83.2 (416) 85.4 (427) 14.6 (73)
DAGAN([1]) 82.2 (411) 84.2 (421) 15.8 (79)

DA 80.4 (402) 82.4 (412) 17.6 (88)
GeoGANnoLcls

83.6 (418) 86.4 (432) 13.6 (68)
GeoGANnoLshape

83.0 (415) 85.6 (428) 14.4 (72)
GeoGANnoSamp 82.8 (414) 85.0 (425) 15.0 (75)

GeoGANLcls
82.2 (411) 84.0 (420) 16.0 (80)

GeoGANLshape
81.2 (406) 83.4 (417) 16.6 (83)

GeoGANSamp 80.4 (402) 82.8 (414) 17.2 (86)
Table 3. Agreement statistics for different image generation meth-
ods amongst 2 ophthalmologists. Numbers in bold indicate agree-
ment percentage while numbers within brackets indicate actual
numbers out of 500 patients.

generation model. Results with GeoGAN show one oph-
thalmologist (OPT 1) identified 461/500 (92.2%) images
as realistic while OPT 2 identified 452 (90.4%) generated
images as realistic. Both of them had a high agreement with
440 common images (88.0% -“Both Experts” in Table 3)
identified as realistic. Considering bothOPT 1 andOPT 2
feedback, a total of 473 (94.6%) unique images were iden-
tified as realistic (“Atleast 1 Expert” in Table 3). Subse-
quently, 27/500 (5.4%) of the images were not identified
as realistic by any of the experts (“No Expert” in Table3).
Agreement statistics for other methods are summarized in
Table 3.

The highest agreement between two ophthalmologists
is obtained for images generated by our method. For all
the other methods their difference from GeoGAN is sig-
nificant. Zhao et. al. [138] has the best performance
amongst them, but has agreement difference of more than
6% (for “Atleast 1Expert”) compared toGeoGAN (94.6
vs 88.2). The numbers from Table 3 show a larger differ-
ence for the other methods, thus highlighting the impor-
tance of modeling geometric relationships in pathological
region segmentation.

4.5. Combining Disease And Normal Dataset

Section 4.3 shows results of training the UNet on dis-
eased population shapes to segment diseased shapes. In



(a) (b) (c)

(d) (e) (f)
Figure 7. Generated images for ablation study methods: (a)
GeoGANnoLcls ; (b) GeoGANnoLshape ; (c) GeoGANnoSamp;
(d) GeoGANonlyLcls ; (e) GeoGANonlyLshape ; (f)
GeoGANonlySamp.

this section we show the opposite scenario where the train-
ing was performed on normal images, the network subse-
quently used to generate images from the diseased base im-
ages and segment test images of a diseased population. Ta-
ble 4 shows the corresponding results and also for the sce-
nario when the training images were a mix of diseased and
normal population, while the test images were from the dis-
eased population. All reported results are for the same set
of test images.

Comparing them with the results in Table 1, the supe-
rior performance of training separate networks for diseased
and normal population is obvious. Figure 8 (a) shows the
segmentation output when training and test image are from
the diseased population, while Figure 8 (b) shows the sce-
nario where the training images are from the normal popu-
lation while the test images are the diseased case. Red con-
tours show the outline of the manual segmentation while
the green contours show the output of our method. When
training images are from normal population it is more chal-
lenging to segment an image from the diseased population.
Inaccurate segmentation of the fluid layers can have grave
consequences for subsequent diagnosis and treatment plans.
Figure 8 (c) shows the results when the training database is
a mix of diseased and normal population, which is a more
accurate representation of real world scenarios. A mixture
of normal and diseased population images in the training
set leads to acceptable performance. However, training a
network exclusively on disease cases improves segmenta-
tion accuracy of pathological regions, which is certainly
more critical than segmenting normal anatomical regions.
Since it is challenging to obtain large numbers of annotated
images, especially for diseased cases, our proposed image
augmentation method is a significant improvement over ex-
isting methods.

Train on Normal, Test on Diseased
DA DAGAN cGAN [138] GeoGAN

[1] [56]
DM 0.741 0.781 0.802 0.821 0.856
HD 15.3 14.5 13.7 11.3 9.9

Train on Mix, Test on Diseased
DA DAGAN cGAN [138] GeoGAN

[1] [56]
DM 0.762 0.798 0.820 0.848 0.873
HD 14.8 14.0 13.2 10.8 9.2

Table 4. Segmentation results for mix of diseased and normal OCT
images. Best results per metric is shown in boldface. HD is in mm.

(a) (b) (c)
Figure 8. Segmentation results of test images for different training
data sources: (a) diseased population only; (b) normal population
only; (c) mix of diseased and normal population.

5. Conclusion
We propose a novel approach to generate plausible reti-

nal OCT images by incorporating relationship between seg-
mentation labels to guide the shape generation process.
Diversity is introduced in the image generation process
through uncertainty sampling. Comparative results show
that the augmented dataset from GeoGAN outperforms
standard data augmentation and other competing methods,
when applied to segmentation of pathological regions (fluid
filled areas) in retinal OCT images. We show that synergy
between shape, classification and sampling terms lead to
improved segmentation and greater visual agreement of ex-
perienced ophthalmologists. Each of these terms is equally
important in generating realistic shapes. Our approach can
be used for other medical imaging modalities without major
changes to the workflow.

Despite the good performance of our method we observe
failure cases when the base images are noisy due to inher-
ent characteristics of the image acquisition procedure, and
when the fluid areas greatly overlap with other layers. Al-
though the second scenario is not very common, it can be
critical in the medical context. In future work we aim to
evaluate our method’s robustness on a wide range of medi-
cal imaging modalities such as MRI, Xray, etc. Our method
is also useful to generate realistic images for educating clin-
icians, where targeted synthetic images (e.g. generation of
complex cases, or disease mimickers) can be used to speed-
up training. Similarly, the proposed approach could be used
in quality control of deep learning systems to identify poten-



tial weaknesses through targeted high-throughput synthetic
image generation and testing.
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