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Abstract

Fine-grained visual categorization (FGVC) is an impor-
tant but challenging task due to high intra-class variances
and low inter-class variances caused by deformation, oc-
clusion, illumination, etc. An attention convolutional bi-
nary neural tree architecture is presented to address those
problems for weakly supervised FGVC. Specifically, we in-
corporate convolutional operations along edges of the tree
structure, and use the routing functions in each node to de-
termine the root-to-leaf computational paths within the tree.
The final decision is computed as the summation of the pre-
dictions from leaf nodes. The deep convolutional opera-
tions learn to capture the representations of objects, and
the tree structure characterizes the coarse-to-fine hierarchi-
cal feature learning process. In addition, we use the atten-
tion transformer module to enforce the network to capture
discriminative features. Several experiments on the CUB-
200-2011, Stanford Cars and Aircraft datasets demonstrate
that our method performs favorably against the state-of-
the-arts. Code can be found at https://isrc.iscas.
ac.cn/gitlab/research/acnet.
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Figure 1: Exemplars of fine-gained visual categorization. FGVC is
challenging due to two reasons: (a) high intra-class variances: the
birds belonging to the same category usually present significant
different appearance, such as illumination variations (the 1st col-
umn), view-point changes (the 2nd column), clutter background
(the 3rd column) and occlusion (the 4th column); (b) low inter-
class variances: the birds in different columns belong to different
categories, but share similar appearance in the same rows.

1. Introduction

Fine-Grained Visual Categorization (FGVC) aims to dis-
tinguish subordinate objects categories, such as different
species of birds [42, 52], and flowers [1]. The high intra-
class and low inter-class visual variances caused by defor-
mation, occlusion, and illumination, make FGVC to be a
highly challenging task.

Recently, the FGVC task is dominated by the convolu-
tional neural network (CNN) due to its amazing classifica-
tion performance. Some methods [29, 26] focus on extract-
ing discriminative subtle parts for accurate results. How-
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ever, it is difficult for a single CNN model to describe the
differences between subordinate classes (see Figure 1). In
[34], the object-part attention model is proposed for FGVC,
which uses both object and part attentions to exploit the
subtle and local differences to distinguish subcategories. It
demonstrates the effectiveness of using multiple deep mod-
els concentrating on different object regions in FGVC.

Inspired by [41], we design an attention convolutional
binary neural tree architecture (ACNet) for weakly super-
vised FGVC. It incorporates convolutional operations along
the edges of the tree structure, and use the routing func-
tions in each node to determine the root-to-leaf computa-
tional paths within the tree as deep neural networks. This
designed architecture makes our method inherits the repre-
sentation learning ability of the deep convolutional model,
and the coarse-to-fine hierarchical feature learning process.
In this way, different branches in the tree structure focus on
different local object regions for classification. The final de-
cision is computed as the summation of the predictions from
all leaf nodes. Meanwhile, we use the attention transformer
to enforce the tree network to capture discriminative fea-
tures for accurate results. The negative log-likelihood loss
is adopted to train the entire network in an end-to-end fash-
ion by stochastic gradient descent with back-propagation.

Notably, in contrast to the work in [41] adaptively grow-
ing the tree structure in learning process, our method uses a
complete binary tree structure with the pre-specified depth
and the soft decision scheme to learn discriminative fea-
tures in each root-to-leaf path, which avoids the pruning er-
ror and reduces the training time. In addition, the attention
transformer module is used to further help our network to
achieve better performance. Several experiments are con-
ducted on the CUB-200-2011 [42], Stanford Cars [25], and
Aircraft [32] datasets, demonstrating the favorable perfor-
mance of the proposed method compared to the state-of-
the-art methods. We also carried out the ablation study
to comprehensively understand the influences of different
components in the proposed method.

The main contributions of this paper are summarized as
follows. (1) We propose a new attention convolutional bi-
nary neural tree architecture for FGVC. (2) We introduce
the attention transformer to facilitate coarse-to-fine hierar-
chical feature learning in the tree network. (3) Extensive
experiments on three challenging datasets (i.e., CUB-200-
2011, Stanford Cars, and Aircraft) show the effectiveness
of our method.

2. Related Works
Deep supervised methods. Some algorithms [51, 31, 18,
50] use object annotations or even dense part/keypoint an-
notations to guide the training of deep CNN model for
FGVC. Zhang et al.[51] propose to learn two detectors, i.e.,
the whole object detector and the part detector, to predict the

fine-grained categories based on the pose-normalized rep-
resentation. Liu et al.[31] propose a fully convolutional at-
tention networks that glimpses local discriminative regions
to adapte to different fine-grained domains. The method
in [18] construct the part-stacked CNN architecture, which
explicitly explains the fine-grained recognition process by
modeling subtle differences from object parts. In [50], the
proposed network consists of detection and classification
sub-networks. The detection sub-network is used to gener-
ate small semantic part candidates for detection; while the
classification sub-network can extract features from parts
detected by the detection sub-network. However, these
methods rely on labor-intensive part annotations, which
limits their applications in real scenarios.

Deep weakly supervised method. To that end, more recent
methods [52, 12, 38, 46] only require image-level annota-
tions. Zheng et al. [52] introduce a multi-attention CNN
model, where part generation and feature learning process
reinforce each other for accurate results. Fu et al. [12] de-
velop a recurrent attention module to recursively learn dis-
criminative region attention and region-based feature repre-
sentation at multiple scales in a mutually reinforced way.
Recently, Sun et al. [38] regulate multiple object parts
among different input images by using multiple attention
region features of each input image. In [46], a bank of con-
volutional filters is learned to capture class-specific discrim-
inative patches, through a novel asymmetric multi-stream
architecture with convolutional filter supervision. However,
the aforementioned methods merely integrate the attention
mechanism in a single network, affecting their performance.

Decision tree. Decision tree is an effective algorithm for
classification task. It selects the appropriate directions
based on the characteristic of feature. The inherent ability
of interpretability makes it as promising direction to pose
insight into internal mechanism in deep learning. Xiao [48]
propose the principle of fully functioned neural graph and
design neural decision tree model for categorization task.
Frosst and Hinton [11] develop a deep neural decision tree
model to understand decision mechanism for particular test
case in a learned network. Tanno et al. [41] propose the
adaptive neural trees that incorporates representation learn-
ing into edges, routing functions and leaf nodes of a deci-
sion tree. In our work, we integrate the decision tree with
neural network to implement sub-branch selection and rep-
resentation learning simultaneously.

Attention mechanism. Attention mechanism has played
an important role in deep learning to mimic human visual
mechanism. In [49], the attention is used to make sure
the student model focuses on the discriminative regions as
teacher model does. In [21], the cascade attention mecha-
nism is proposed to guide the different layers of CNN and



concatenate them to gain discriminative representation as
the input of final linear classifier. Hu et al. [16] apply the
attention mechanism from aspect of channels and allocate
the different weights according to the contribution of each
channel. The CBAM module in [47] combines space re-
gion attentions with feature map attentions. In contrast to
the aforementioned methods, we apply the attention mech-
anism on each branch of the tree architecture to sake the
discriminative regions for classification.

3. Attention Convolutional Binary Neural Tree
Our ACNet model aims to classify each object sample in

X to sub-categories, i.e., assign each sample in X with the
category label Y , which consists of four modules, i.e., the
backbone network, the branch routing, the attention trans-
former, and the label prediction modules, shown in Figure
2. We define the ACNet as a pair (T,O), where T defines
the topology of the tree, and O denotes the set of operations
along the edges of T. Notably, we use the full binary tree
T = {V, E}, where V = {v1, · · · , vn} is the set of nodes,
n is the total number of nodes, and E = {e1, · · · , ek} is the
set of edges between nodes, k is the total number of edges.
Since we use the full binary tree T, we have n = 2h − 1
and k = 2h − 2, where h is the height of T. Each node in
T is formed by a routing module determining the sending
path of samples, and the attention transformers are used as
the operations along the edges.

Meanwhile, we use the asymmetrical architecture in the
fully binary tree T, i.e., two attention transformers are used
in the left edge, and one attention transformer is used in the
right edge. In this way, the network is able to capture the
different scales of features for accurate results. The detail
architecture of our ACNet model is described as follows.

3.1. Architecture

Backbone network module. Since the discriminative re-
gions in fine-grained categories are highly localized [46],
we need to use a relatively small receptive field of the ex-
tracted features by constraining the size and stride of the
convolutional filters and pooling kernels. The truncated
network is used as the backbone network module to ex-
tract features, which is pre-trained on the ILSVRC CLS-
LOC dataset [35]. Similar to [38], we use the input im-
age size 448 × 448 instead of the default 224 × 224. No-
tably, ACNet can also work on other pre-trained networks,
such as ResNet [15] and Inception V2 [19]. In practice,
we use VGG-16 [37] (retaining the layers from conv1 1
to conv4 3) and ResNet-50 [15] (retaining the layers from
res 1 to res 4) networks as the backbone in this work.
Branch routing module. As described above, we use the
branch routing module to determine which child (i.e., left
or right child) the samples would be sent to. Specifically, as
shown in Figure 2(b), the i-th routing module Rk

i (·) at the

k-th layer uses one convolutional layer with the kernel size
1 × 1, followed by a global context block [4]. The global
context block is an improvement of the simplified non-local
(NL) block [44] and Squeeze-Excitation (SE) block [16],
which shares the same implementation with the simplified
NL block on the context modeling and fusion steps, and
shares the transform step with the SE block. In this way,
the context information is integrated to better describe the
objects. After that, we use the global average pooling [27],
element-wise square-root and L2 normalization [28], and a
fully connected layer with the sigmoid activation function
to produce a scalar value in [0, 1] indicating the probabil-
ity of samples being sent to the left or right sub-branches.
Let φki (xj) denote the output probability of the j-th sam-
ple xj ∈ X being sent to the right sub-branch produced by
the branch routing module Rk

i (xj), where φki (xj) ∈ [0, 1],
i = 1, · · · , 2k−1. Thus, we have the probability of the
sample xj ∈ X being sent to the left sub-branch to be
1 − φki (xj). If the probability φki (xj) is larger than 0.5,
we prefer the left path instead of the right one; otherwise,
the left branch dominates the final decision.
Attention transformer. The attention transformer module
is used to enforce the network to capture discriminative fea-
tures, see Figure 3. According to the fact that the empirical
receptive field is much smaller than theoretical receptive
field in deep networks [30], the discriminative representa-
tion should be formed by larger receptive field in new-added
layers of our proposed tree structure. To this end, we inter-
gate the Atrous Spatial Pyramid Pooling (ASPP) module
[5] into the attention transformer. Specifically, ASPP mod-
ule provides different feature maps with each characterized
by a different scale/receptive field and an attention module.
Then, multi-scale feature maps are generated by four par-
allel dilated convolutions with different dilated rates, i.e.,
1, 6, 12, 18. Following the parallel dilated convolution lay-
ers, the concatenated feature maps are fused by one convo-
lutional layer with kernel 1× 1 and stride 1. Following the
ASPP module, we insert an attention module, which gener-
ates a channel attention map with the size RC×1×1 using a
batch normalization (BN) layer [19], a global average pool-
ing (GAP) layer, a fully connected (FC) layer and ReLU
activation function, and a FC layer and sigmoid function.
In this way, the network is guided to focus on meaningful
features for accurate results.
Label prediction. For each leaf node in our ACNet
model, we use the label prediction module Pi (i.e., i =
1, · · · , 2h−1) to predict the subordinate category of the ob-
ject xj , see Figure 2. Let rki (xj) to be the accumulated
probability of the object xj passing from the root node to
the i-th node at the k-th layer. For example, if the root
to the node Rk

i (·) path on the tree is R1
1,R2

1, · · · ,Rk
1 ,

i.e., the object xj is always sent to the left child, we have
rki (xj) =

∏k
i=1 φ

i
1(xj). As shown in Figure 2, the la-



Figure 2: The overview of our ACNet model, formed by (a) the backbone network module, (b) the branch routing module, (c) the attention
transformer module, and (d) the label prediction module. We show an example image in Fish Crow. Best visualization in color.

Figure 3: The architecture of the attention transformer module.

bel prediction module is formed by a batch normalization
layer, a convolutional layer with kernel size 1 × 1, a max-
pooling layer, a sqrt and L2 normalization layer, and a
fully connected layer. Then, the final prediction C(xj) of
the j-th object xj is computed as the summation of all
leaf predictions multiplied with the accumulated probabil-
ity generated by the passing branch routing modules, i.e.,
C(xj) =

∑2h−1

i=1 Pi(xj)r
h
i (xj). We would like to empha-

size that ‖C(xj)‖1 = 1, i.e., the summation of confidences
of xj belonging to all subordinate classes equal to 1,

‖C(xj)‖1 = ‖
∑2h−1

i=1 Pi(xj)r
h
i (xj)‖1 = 1, (1)

where rhi (xj) is the accumulated probability of the i-th node
at the leaf layer. We present a short description to prove that
‖C(xj)‖1 = 1 as follows.

Proof. Let rki (·) be the accumulated probability of the i-th
branch routing module Rk

i (·) at the k-th layer. Thus, the

accumulated probabilities of the left and right children cor-
responding to Rk

i (·) are rk+1
2i−1(·) and rk+1

2i (·), respectively.
At first, we demonstrate that the summation of the accu-
mulated probabilities rk+1

2i−1(·) and rk+1
2i (·) is equal to the

accumulated probability of their parent rki (xj). That is,

rk+1
2i−1(xj) + rk+1

2i (xj)

= φk+1
2i−1(xj) · r

k
i (xj) + φk+1

2i (xj) · rki (xj)
= φk+1

2i−1(xj) · r
k
i (xj) +

(
1− φk+1

2i−1(xj)
)
· rki (xj)

= rki (xj).

(2)

Meanwhile, due to the fully binary tree T in ACNet,
we have

∑2h−1

i=1 rhi (xj) =
∑2h−2

i=1

(
rh2i−1(xj) + rh2i(xj)

)
.

We can further get
∑2h−1

i=1 rhi (xj) =
∑2h−2

i=1 rh−1
i (xj).

This process is carried out iteratively, and we have∑2h−1

i=1 rhi (xj) = · · · = r11(xj) = 1. In addition, since
the category prediction Pi(xi) is generated by the softmax
layer (see Figure 2), we have ‖Pi(xj)‖1 = 1. Thus,

‖C(xj)‖1 = ‖
∑2h−1

i=1 Pi(xj)r
h
i (xj)‖1

=
∑2h−1

i=1 ‖Pi(xj)‖1rhi (xj) = 1.
(3)

As shown in Figure 2, when occlusion happens, AC-
Net can still localize some discriminative object parts and
context information of the bird. Although high intra-class



visual variances always happen in FGVC, ACNet uses a
coarse-to-fine hierarchical feature learning process to ex-
ploit the discriminative feature for classification. In this
way, different branches in the tree structure focus on dif-
ferent fine-grained object regions for accurate results.

3.2. Training

Data augmentation. In the training phase, we use the crop-
ping and flipping operations to augment data to construct a
robust model to adapt to variations of objects. That is, we
first rescale the original images such that their shorter side
is 512 pixels. After that, we randomly crop the patches with
the size 448 × 448, and randomly flip them to generate the
training samples.

Loss function. The loss function for our ACNet is formed
by two parts, i.e., the loss for the predictions of leaf nodes,
and the loss for the final prediction, computed by the sum-
mation over all predictions from the leaf nodes. That is,

L = L
(
C(xj), y∗)+ 2h−1∑

i=1

L
(
Pi(xj), y

∗), (4)

where h is the height of the tree T, L
(
C(xj), y∗) is the nega-

tive logarithmic likelihood loss of the final prediction C(xj)
and the ground truth label y∗, and L

(
Pi(xj), y

∗) is the neg-
ative logarithmic likelihood loss of the i-th leaf prediction
and the ground truth label y∗.

Optimization. The backbone network in our ACNet
method is pre-trained on the ImageNet dataset. Besides, the
“xavier” method [14] is used to randomly initialize the pa-
rameters of the additional convolutional layers. The entire
training process is formed by two stages.

• For the first stage, the parameters in the truncated
VGG-16 network are fixed, and other parameters are
trained with 60 epochs. The batch size is set to 24 in
training with the initial learning rate 1.0. The learning
rate is gradually divided by 4 at the 10-th, 20-th, 30-th,
and 40-th epochs.

• In the second stage, we fine-tune the entire network
for 200 epochs. We use the batch size 16 in training
with the initial learning rate 0.001. The learning rate is
gradually divided by 10 at the 30-th, 40-th, and 50-th
epochs.

We use the SGD algorithm to train the network with 0.9
momentum, and 0.000005 weight decay in the first stage
and 0.0005 weight decay in the second stage.

Table 1: The fine-grained classification results on the CUB-200-
2011 dataset [42].

Method Backbone Annotation Top-1 Acc. (%)

FCAN [31] ResNet-50 X 84.7
B-CNN [29] VGG-16 X 85.1

SPDA-CNN [50] CaffeNet X 85.1
PN-CNN [2] Alex-Net X 85.4

STN [20] Inception × 84.1
B-CNN [29] VGG-16 × 84.0

CBP [13] VGG-16 × 84.0
LRBP [23] VGG-16 × 84.2
FCAN [31] ResNet-50 × 84.3

RA-CNN [12] VGG-19 × 85.3
HIHCA [3] VGG-16 × 85.3

Improved B-CNN [28] VGG-16 × 85.8
BoostCNN [33] VGG-16 × 86.2

KP [8] VGG-16 × 86.2
MA-CNN [52] VGG-19 × 86.5
MAMC [38] ResNet-101 × 86.5
MaxEnt [10] DenseNet-161 × 86.5

HBPASM [40] Resnet-34 × 86.8
DCL [7] VGG-16 × 86.9

KERL w/ HR [6] VGG-16 × 87.0
TASN [53] VGG-19 × 87.1

DFL-CNN [46] ResNet-50 × 87.4
DCL [7] ResNet-50 × 87.8

TASN [53] ResNet-50 × 87.9
Ours VGG-16 × 87.8
Ours ResNet-50 × 88.1

4. Experiments
Several experiments on three FGVC datasets, i.e., CUB-

200-2011 [42], Stanford Cars [25], and Aircraft [32], are
conducted to demonstrate the effectiveness of the proposed
method. Our method is implemented in the Caffe library
[22]. All models are trained on a workstation with a 3.26
GHz Intel processor, 32 GB memory, and one Nvidia V100
GPU.

4.1. Evaluation on the CUB-200-2011 Dataset

The Caltech-UCSD birds dataset (CUB-200-2011) [42]
consists of 11, 788 annotated images in 200 subordinate
categories, including 5, 994 images for training and 5, 794
images for testing. The fine-grained classification results
are shown in Table 1. As shown in Table 1, the best su-
pervised method1, i.e., PN-CNN [2] using both the object
and part level annotations produces 85.4% top-1 accuracy
on the CUB-200-2011 dataset. Without part-level anno-

1Notably, the supervised method requires object or part level annota-
tions, demanding significant human effort. Thus, most of recent meth-
ods focus on the weakly supervised methods, pushing the state-of-the-art
weakly supervised methods surpassing the performance of previous super-
vised methods.



Table 2: The fine-grained classification results on the Stanford
Cars dataset [25].

Method Backbone Annotation Top-1 Acc. (%)

FCAN [31] ResNet-50 X 91.3
PA-CNN [24] VGG-19 X 92.6

FCAN [31] ResNet-50 × 89.1
B-CNN [29] VGG-16 × 90.6
LRBP [23] VGG-16 × 90.9
HIHCA [3] VGG-16 × 91.7

Improved B-CNN [28] VGG-16 × 92.0
BoostCNN [33] VGG-16 × 92.1

KP [8] VGG-16 × 92.4
RA-CNN [12] VGG-19 × 92.5
MA-CNN [52] VGG-19 × 92.8
MAMC [38] ResNet-101 × 93.0
MaxEnt [10] DenseNet-161 × 93.0

WS-DAN [17] Inception v3 × 93.0
DFL-CNN [46] ResNet-50 × 93.1
HBPASM [40] Resnet-34 × 93.8

TASN [53] VGG-19 × 93.2
TASN [53] ResNet-50 × 93.8

DCL [7] VGG-16 × 94.1
DCL [7] ResNet-50 × 94.5

Ours VGG-16 × 94.3
Ours ResNet-50 × 94.6

tation, MAMC [38] produces 86.5% top-1 accuracy using
two attention branches to learn discriminative features in
different regions. KERL w/ HR [6] designs a single deep
gated graph neural network to learn discriminative features,
achieving better performance, i.e., 87.0% top-1 accuracy.
Compared to the state-of-the-art weakly supervised meth-
ods [6, 10, 38, 46, 7, 53], our method achieves the best
results with 87.8% and 88.1% top-1 accuracy with differ-
ent backbones. This is attributed to the designed attention
transformer module and the coarse-to-fine hierarchical fea-
ture learning process.

4.2. Evaluation on the Stanford Cars Dataset

The Stanford Cars dataset [25] contains 16, 185 images
from 196 classes, which is formed by 8, 144 images for
training and 8, 041 images for testing. The subordinate cate-
gories are determined by the Make, Model, and Year of cars.
As shown in Table 2, previous methods using part-level an-
notations (i.e., FCAN [31] and PA-CNN [24]) only pro-
duces less than 93.0% top-1 accuracy. The recent weakly
supervised method WS-DAN [17] employs the complex In-
ception V3 backbone [39] and designs the attention-guided
data augmentation strategy to exploit discriminative object
parts, achieving 93.0% top-1 accuracy. Without using any
fancy data augmentation strategy, our method achieves the
best top-1 accuracy, i.e., 94.3% with the VGG-16 backbone
and 94.6% with the ResNet-50 backbone.

Table 3: The fine-grained classification results on the Aircraft
dataset [32].

Method Backbone Annotation Top-1 Acc. (%)

MG-CNN [43] ResNet-50 X 86.6
MDTP [45] VGG-16 X 88.4

RA-CNN [12] VGG-19 × 88.2
MA-CNN [52] VGG-19 × 89.9
B-CNN [29] VGG-16 × 86.9

KP [8] VGG-16 × 86.9
LRBP [23] VGG-16 × 87.3
HIHCA [3] VGG-16 × 88.3

Improved B-CNN [28] VGG-16 × 88.5
BoostCNN [33] VGG-16 × 88.5

PC-DenseNet-161 [9] DenseNet-161 × 89.2
MaxEnt [10] DenseNet-161 × 89.7

HBPASM [40] Resnet-34 × 91.3
DFL-CNN [46] ResNet-50 × 91.7

DCL [7] VGG-16 × 91.2
DCL [7] ResNet-50 × 93.0

Ours VGG-16 × 91.5
Ours ResNet-50 × 92.4

4.3. Evaluation on the Aircraft Dataset

The Aircraft dataset [32] is a fine-grained dataset of 100
different aircraft variants formed by 10, 000 annotated im-
ages, which is divided into two subsets, i.e., the training
set with 6, 667 images and the testing set with 3, 333 im-
ages. Specifically, the category labels are determined by
the Model, Variant, Family and Manufacturer of airplanes.
The evaluation results are presented in Table 3. Our AC-
Net method outperforms the most compared methods, espe-
cially with the same VGG-16 backbone. Besides, our model
performs on par with the state-of-the-art method DCL [7],
i.e., 91.2% vs. 91.5% top-1 accuracy for the VGG-16 back-
bone and 93.0% vs. 92.4% top-1 accuracy for the ResNet-
50 backbone. The operations along different root-to-leaf
paths in our tree architecture T focus on exploiting discrim-
inative features on different object regions, which help each
other to achieve the best performance in FGVC.

4.4. Ablation Study

We study the influence of some important parameters
and different components of ACNet on the CUB-200-2011
dataset [42]. Notably, we employ the VGG-16 backbone
in the experiment. The Grad-CAM method [36] is used to
generate the heatmaps to visualize the responses of branch
routing and leaf nodes.

Effectiveness of the tree architecture T. To validate the
effectiveness of the tree architecture design, we construct
two variants, i.e., VGG and w/ Tree, of our ACNet method.
Specifically, we construct the VGG method by only us-
ing the VGG-16 backbone network for classification, and



Figure 4: Visualization of the responses in different leaf nodes in
our ACNet method. Each column presents a response heatmap of
each leaf node.

further integrate the tree architecture to form the w/ Tree
method. The evaluation results are reported in Figure 6. We
find that using the tree architecture significantly improves
the accuracy, i.e., 3.025% improvements in top-1 accuracy,
which demonstrates the effectiveness of the designed tree
architecture T in our ACNet method.

Height of the tree T. To explore the effect of the height of
the tree T, we construct four variants with different heights
of tree in Table 4. Notably, the tree T is degenerated to a
single node when the height of the tree is set to 1, i.e., only
the backbone VGG-16 network is used in classification. As
shown in Table 4, we find that our ACNet achieves the best
performance (i.e., 87.8% top-1 accuracy) with the height of
tree equals to 3. If we set h ≤ 2, there are limited number
of parameters in our ACNet model, which are not enough to
represent the significant variations of the subordinate cate-
gories. However, if we set h = 4, too many parameters with
limited number of training data cause overfitting of our AC-
Net model, resulting in 2.3% drop in the top-1 accuracy. To
verify our hypothesis, we visualize the responses of all leaf
nodes in ACNet with the height of 4 in Figure 5. We find
that some leaf nodes focus on almost the same regions (see
the 3rd and 4th columns).

Effectiveness of leaf nodes. To analyze the effectiveness
of the individual leaf node, we calculate the accuracy of in-
dividual leaf predictions with height of 3, respectively. The
accuracies of four individual leaf nodes are 85.8%, 86.2%,
86.7%, and 87.0% on CUB-200-2011 respectively. It shows
that all leaf nodes are informative and fusion of them can

Figure 5: Responses of all leaf nodes in the tree with height of 4.

Figure 6: Effect of the various components in the proposed ACNet
method on the CUB-200-2011 dataset [42].

produce more accurate result (i.e., 87.8%). As shown in
Figure 4, we observe that different leaf nodes concentrate
on different regions of images. For example, the leaf node
corresponding to the first column focuses more on the back-
ground region, the leaf node corresponding to the second
column focuses more on the head region, and the other two
leaf nodes are more interested in the patches of wings and
tail. The different leaf nodes help each other to construct
more effective model for accurate results.

Asymmetrical architecture of the tree T. To explore the
architecture design in T, we construct two variants, i.e., one
uses the symmetry architecture, and another one uses the
asymmetrical architecture, and set the height of the tree T
to be 3. The evaluation results are reported in Table 5. It can
be seen that the proposed method produces 86.2% top-1 ac-
curacy using the symmetrical architecture. If we use the
asymmetrical architecture, the top-1 accuracy is improved
1.6% to 87.8%. We speculate that the asymmetrical archi-
tecture is able to fuse various features with different recep-
tive fields for better performance.

Effectiveness of the attention transformer module. We
construct a variant “w/ Tree-Attn”, of the proposed ACNet
model, to validate the effectiveness of the attention trans-
former module in Figure 6. Specifically, we add the at-
tention block in the transformer module in the “w/ Tree”



Table 4: Effect of the height of the tree T.

Height of T Top-1 Acc. (%)

1 82.2
2 86.0
3 87.8
4 85.5

Table 5: Effect of tree architecture.

Mode Level Top-1 Acc. (%)

symmetry 3 86.2

asymmetry 3 87.8

Table 6: Comparison between GMP and GAP.

Pooling Top-1 Acc. (%)

GMP 87.2

GAP 87.8

Figure 7: Visualization of the responses in different branch routing
modules.

method to construct the “w/ Tree-Attn” method. As shown
in Figure 6, the “w/ Tree-Attn” method performs consis-
tently better than the “w/ Tree” method, producing higher
top-1 accuracy with different number of channels, i.e., im-
proving 0.4% top-1 accuracy in average, which demon-
strates that the attention mechanism is effective for FGVC.

To further investigate the effect of ASPP module in
our proposed model, we also conduct the “w/ Tree-ASPP”
method, a variant of proposed ACNet model, where the only
difference lies on between one convolution layer or ASPP
module in the attention transformer module. As illustrated
in Figure 6, the attention transformer with ASPP module
achieves better accuracy than the one with only one convo-
lution layer. It indicates that the ASPP module improves
the global performance by parallel dilated convolution lay-
ers with different dilated rates. Specifically, the “w/ Tree-
ASPP” method improves 0.5% top-1 accuracy in average.
We can conclusion that multi-scale embedding and different
dilated convolutions in ASPP module can facilitate helping
the proposed tree network to obtain robust performance.

Components in the branch routing module. We ana-
lyze the effectiveness of the global context block [4] in the
branch routing module in Figure 6. Our ACNet method pro-
duces the best results with different number of channels in
the branch routing module; while the top-1 accuracy drops
0.275% in average after removing the global context block.
Meanwhile, we also study the effectiveness of the pooling
strategy in the branch routing module in Table 6. We ob-
serve that using the global max-pooling (GMP) instead of
the global average pooling (GAP) leads to 0.6% top-1 accu-
racy drop on the CUB-200-2011 dataset. We speculate that
the GAP operation encourages the filter to focus on high
average response regions instead of the only maximal ones,
which is able to integrate more context information for bet-
ter performance.

Coarse-to-fine hierarchical feature learning process.
The branch routing modules focus on different semantic
regions (e.g., different object parts) or context information
(e.g., background) at different levels, e.g., R1

1, R2
1, and R2

2

in Figure 2. As the example Bobolink shown in Figure 7,
the R1

1 module focuses on the whole bird region at level-1;
the R2

1 and R2
2 modules focus on the wing and head regions

of the bird at level-2. As shown in the first row in Figure
5, the four leaf nodes focus on several fine-grained object
parts at level-3, e.g., different parts of the head region. In
this way, our ACNet uses the coarse-to-fine hierarchical fea-
ture learning process to exploit discriminative features for
more accurate results. This phenomenon demonstrates that
our hierarchical feature extraction process in the tree T ar-
chitecture gradually enforces our model to focus on more
discriminative detail regions of object.

5. Conclusion

In this paper, we present an attention convolutional bi-
nary neural tree (ACNet) for weakly supervised FGVC.
Specifically, different root-to-leaf paths in the tree network
focus on different discriminative regions using the attention
transformer inserted into the convolutional operations along
edges. The final decision is produced by max-voting the
predictions from leaf nodes. The experiments on several
challenging datasets show the effectiveness of ACNet. We
present how we design the tree structure using coarse-to-
fine hierarchical feature learning process in detail.
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