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Abstract

Image-text matching has received growing interest since

it bridges vision and language. The key challenge lies

in how to learn correspondence between image and text.

Existing works learn coarse correspondence based on

object co-occurrence statistics, while failing to learn fine-

grained phrase correspondence. In this paper, we present

a novel Graph Structured Matching Network (GSMN) to

learn fine-grained correspondence. The GSMN explicitly

models object, relation and attribute as a structured phrase,

which not only allows to learn correspondence of object,

relation and attribute separately, but also benefits to learn

fine-grained correspondence of structured phrase. This is

achieved by node-level matching and structure-level match-

ing. The node-level matching associates each node with

its relevant nodes from another modality, where the node

can be object, relation or attribute. The associated nodes

then jointly infer fine-grained correspondence by fusing

neighborhood associations at structure-level matching.

Comprehensive experiments show that GSMN outperforms

state-of-the-art methods on benchmarks, with relative Re-

call@1 improvements of nearly 7% and 2% on Flickr30K

and MSCOCO, respectively. Code will be released at:

https://github.com/CrossmodalGroup/GSMN .

1. Introduction

Image-text matching is an emerging task that matches

instance from one modality with instance from another

modality. This enables to bridge vision and language, which

has potential to improve the performance of other multi-

modal applications. The key challenge in image-text match-

ing lies in learning correspondence of image and text, such

that can reflect similarity of image-text pairs accurately.

∗Zhendong Mao is the corresponding author.

Figure 1: Illustration of coarse and fine-grained correspon-

dence. In the left figure, the two dogs are coarsely corre-

lated with the word “dog”, while neglecting their relation

and attribute (bite or being bitten? gray or brown?). In the

right figure, the gray and brown dogs are fine-grained corre-

lated with finer textual details, which is achieved by learn-

ing phrase correspondence using a graph-based method.

Existing approaches either focus on learning global cor-

respondence or local region-word correspondence. The

general framework of global correspondence learning meth-

ods is to jointly project the whole image and text into a com-

mon latent space, where corresponding image and text can

be unified into similar representations. Techniques to com-

mon space projection range from designing specific net-

works [23] to adding constraints, such as triplet loss [29],

adversarial loss [27] and classification loss [15]. Another

branch of image-text matching learns local region-word cor-

respondence, which is used to infer the global similarity of

http://arxiv.org/abs/2004.00277v1
https://github.com/CrossmodalGroup/GSMN


image-text pairs. Some researchers focus on learning local

correspondence between salient regions and keywords. For

example, Ji et al. [10] present to correlate words with par-

tial salient regions detected by a lightweight saliency model,

which demands external saliency dataset as a supervision.

Recent works discover all possible region-word correspon-

dences. For instance, Lee et al. [14] propose to correlate

each word with all the regions with different weights, and

vice versa. Following this work, wang et al. [30] integrate

positional embedding to guide the correspondence learning

and Liu et al. [18] present to eliminate partial irrelevant

words and regions in correspondence learning.

However, existing works only learn coarse correspon-

dence based on object co-occurrence statistics, while fail-

ing to learn fine-grained correspondence of structured ob-

ject, relation and attribute. As a result, they suffer from two

limitations: (1) it is hard to learn correspondences of the re-

lation and attribute as they are overwhelmed by object cor-

respondence. (2) objects are prone to correspond to wrong

categories without the guidance of descriptive relation and

attribute. As shown in Figure 1, the coarse correspondence

will incorrectly correlate the word “dog” with all the dogs

in the image, while neglecting dogs are with finer details,

i.e. brown or gray. By contrast, the fine-grained correspon-

dence explicitly models the object “dog”, relation “bite”

and attribute “brown” as a phrase. Therefore, the relation

“bite” and attribute “brown” can also correlate to a spe-

cific region, and they will further promote identifying fine-

grained phrase “brown dog bite”.

To learn fine-grained correspondence, we propose a

Graph Structured Matching Network (GSMN) that explic-

itly models object, relation and attribute as a phrase, and

jointly infer fine-grained correspondence by performing

matching on these localized phrases. This unions the cor-

respondence learning of object, relation and attribute in a

mutually enforced way. On the one hand, relation corre-

spondence and attribute correspondence can guide the fine-

grained object correspondence learning. On the other hand,

the fine-grained object correspondence forces the network

to learn relation correspondence and attribute correspon-

dence explicitly. Concretely, the proposed network con-

structs graph for image and text, respectively. The graph

node consists of the object, relation and attribute, the graph

edge exists if any two nodes interact with each other (e.g.

the node of an object will connect with the node of its

relations or attributes). Then we perform node-level and

structure-level matching on both visual and textual graphs.

The node-level matching associates each node with nodes

from another modality differentially, which are then prop-

agated to neighborhoods at structure-level matching. The

phrase correspondence can be inferred with the guidance of

node correspondence. Moreover, the correspondence of ob-

ject node can be updated as long as its neighboring relation

and attribute point to a same object. At last, the updated

correspondence is used for predicting the global similarity

of image-text pairs, which jointly considers correspondence

of all the individual phrases.

The main contributions of this paper are summarized as:

(1) We propose a Graph Structured Matching Network that

explicitly constructs the graph structure for image and text,

and performs matching by learning fine-grained phrase cor-

respondence. To the best of our knowledge, this is the first

framework that performs image-text matching on hetero-

geneous visual and textual graphs. (2) To the best of our

knowledge, this is the first work that uses graph convolu-

tional layer to propagate node correspondence, and uses it

to infer fine-grained phrase correspondence. (3) We con-

duct extensive experiments on Flickr30K and MSCOCO,

showing our superiority over state-of-the-arts.

2. Related Work

Existing works learn correspondence of image and text

based on object co-occurence, which is roughly categorized

into two types: global correspondence and local correspon-

dence learning methods, where the former learns the corre-

spondence between the whole image and sentence, and the

latter learns that between local region and word.

The main goal of global correspondence learning meth-

ods [19, 4, 29, 29, 31, 22, 34, 1] is to maximize similar-

ity of matched image-text pairs. A main line of research

on this field is to first represent image and text as feature

vectors, and then project them into a common space opti-

mized by a ranking loss. Some works focus on designing

specific networks. For instance, Liu et al. [19] propose to

densely correlate image and text exploiting residual blocks.

Gu et al. [4] imagine what the matched instance should look

like, and improve the correspondence of target instance to

this imagined instance. Some works focus on optimization,

Wang et al. [29] point out that the correspondence within

the same modality should also be preserved while learning

correspondence in different modalities. Based on this ob-

servation, Wu et al. [31] preserve graph structure among

neighborhood images or texts. Such global correspondence

learning methods cannot learn correspondence of image and

text accurately, because primary objects play the dominant

role in the global representation of image-text pairs while

secondary objects are mostly ignored.

The local correspondence learning methods learn region-

word correspondence. Some works focus on learning cor-

respondence of salient objects. Karparthy et al. [12] make

the first attempt by optimizing correspondence of the most

similar region-word pairs. Huang et al. [9] present to or-

der semantic concepts and composite them to infer cor-

respondence. Similarly, Huang et al. [8] propose to re-

currently select corresponding region-word pairs. Ji et

al. [10] exploit saliency model to localize salient regions,



Figure 2: An overview of our approach, which consists of three modules: (a) Feature Extraction: Faster-RCNN [26] and

Stanford CoreNLP [21] are employed to detect salient regions, and parse the semantic dependency, respectively. (b) Graph

Construction: The node of graph is object, relation or attribute, the edge exists if any two nodes are semantically dependent.

(c1) Node-level Matching: learn correspondence of object, relation and attribute separately. (c2) Structure-level Matching:

Propagating the learned correspondence to neighbors to jointly infer fine-grained phrase correspondence.

and hence the region-word can be correlated more accu-

rately. A lightweight saliency model is employed using

an external saliency dataset as a supervision. The local

correspondence policy has also been widely used in other

fields [32, 17], like [17] that learns distinction and con-

nection among multi-tasks. Another branch of researches

[18, 14, 7, 20, 30] present to discover all possible region-

word correspondence. Ma et al. [20] present to jointly map

global image and text, local regions and words into a com-

mon space, which can implicitly learn region-word corre-

spondence. A recent approach SCAN [14] greatly improves

the matching performance, which is most relevant to our

work. They learn region-word correspondence using atten-

tion mechanism, where each region corresponds to multiple

words and vice versa. These works learn correspondence

based on object co-occurrence, and have achieved much

progress in image-text matching. Nonetheless, these only

learn coarse correspondence since they mostly rely on cor-

respondence of salient objects, while neglecting the corre-

spondence of relation and attribute is as important as ob-

ject correspondence. Moreover, the correspondence of re-

lation and attribute can benefit object to correspond to a

specific type with a finer detail. By contrast, we explicitly

model the image and text as graph structures, and learn fine-

grained phrase correspondence. Instead of transforming the

image and text as scene graphs using rule-based [33, 11] or

classifier-based [28, 6] methods, we only need to identify

whether nodes are interact with each other, which avoids

the loss of information caused by scene graph generation.

3. Method

The overview of our proposed network is illustrated in

Figure 2. We first extract features of image and text, and

then construct visual and textual graph. Next, the node-

level matching learns node correspondence, and propagate

to neighbors in structure-level matching, in which the cor-

respondences of object, relation and attribute are fused to

infer the fine-grained phrase correspondence.

3.1. Graph Construction

Textual Graph. Formally, we seek to construct an undi-

rected sparse graph G1 = (V1, E1) for each text, we use

matrix A to represent the adjacent matrix of each node, and

add self-loops. The edge weight is denoted as a matrix We,

which shows the semantic dependency of nodes.

To construct the textual graph, we first identify the se-

mantic dependency within the text using off-the-shelf Stan-

ford CoreNLP [21]. This can not only parse the object

(nouns), relation (verbs) and attribute (adjectives or quanti-

fiers) in a sentence, but also parse their semantic dependen-

cies. For example, given a text “A brown dog bite a gray

dog ear”, “A”, “brown” are attributes for the first object

“dog”, and the “bite” is its relation. They are semantically

dependent since all of them describe the same object. Based

on this observation, we set each word as the graph node, and

there exists graph edge between nodes if they are semanti-

cally dependent. Then we compute the similarity matrix S

of word representations u as

sij =
exp(λuT

i uj)
∑m

j=0 exp(λu
T
i uj)

. (1)

where the sij indicates the similarity between i-th and j-th

node. λ is a scaling factor. The weight matrix We can be

obtained by a Hadamard product between similarity matrix

and adjacent matrix, followed by L2 normalization, i.e.

We = ‖S ◦A‖2 . (2)



Additionally, we also implement the textual graph as a

fully-connected graph. In contrast to sparse graph that em-

ploys semantic dependency of words, it can exploit implicit

dependencies. We find the sparse and dense graphs are com-

plementary to each other, and can greatly improve the per-

formance, see section 4.2.1.

Visual Graph. To construct the visual graph G2 =
(V2, E2), we represent each image as an undirected fully-

connected graph, where the node is set as salient regions

detected by Faster-RCNN [26], and each node is associated

with all the other nodes. Inspired by [24] in visual ques-

tion answering, we use the polar coordinate to model the

spatial relation of each image, which disentangles the ori-

entation and distance of pair-wise regions. This can cap-

ture both semantic and spatial relationships among differ-

ent regions, since the relation and attribute are expected to

close to object, and the direction information allows to esti-

mate the type of relations. For example, the relations “on”

and “under” show opposite relative position to the object

“desk”. To get edge weight for this fully-connected graph,

we compute polar coordinate (ρ, θ) based on the centres of

the bounding boxes of pair-wise regions, and set the edge

weight matrix We as pair-wise polar coordinates.

3.2. Multimodal Graph Matching

Given a textual graph G1 = (V1, E1) of a text, and a vi-

sual graph G2 = (V2, E2) of an image, our goal is to match

two graphs to learn fine-grained correspondence, producing

similarity g(G1, G2) as global similarity of an image-text

pair. We define the node representation of textual graph as

Uα ∈ R
m×d, and the node representation of visual graph

as Vβ ∈ R
n×d. Here, m and n denotes the node number of

textual and visual graph, d is the representation dimension.

To compute the similarity of these heterogeneous graphs,

we first perform node-level matching to associate each node

with nodes from another modality graph, i.e. learning node

correspondence, and then perform structure-level matching

i.e. learning phrase correspondence, by propagating asso-

ciated nodes to neighbors, which jointly infer fine-grained

correspondence of structured object, relation and attribute.

3.2.1 Node-level Matching

Each node in the textual and visual graphs will match with

nodes from another modality graph to learn node correspon-

dence. We first depict the node-level matching on textual

graph in details, and then roughly describe that on visual

graph since this operation is symmetric on two kinds of

graphs. Concretely, we first compute similarities between

visual and textual nodes, denoted as UαV
T
β , followed by a

softmax function along the visual axis. The similarity value

measures how the visual node corresponds to each textual

node. Then, we aggregate all the visual nodes as a weighted

combination of their feature vectors, where the weight is the

computed similarities. This process can be formulated as:

Ct→i = softmaxβ(λUαV
T
β )Vβ . (3)

where λ is a scaling factor to focus on matched nodes.

Unlike previous approaches [3, 7, 14] that uses the

learned correspondence to compute the global similarity,

we present a multi-block module that computes block-wise

similarity of the textual node and the aggregated visual node

Ct→i. This is computational efficiency and converts the

similarity from a scalar into a vector for subsequent oper-

ations. Also, this allows different blocks to play different

roles in matching. Concretely, we split the i-th feature of

the textual node and the its corresponding aggregated vi-

sual nodes into t blocks, represented as [ui1, ui2, · · · , uit]
and [ci1, ci2, · · · , cit], respectively. The multi-block simi-

larity is computed within pair-wise blocks. For instance, the

similarity in j-th blocks is calculated as xij = cos(uij , cij).
Here, xij is a scalar value, cos(·) denotes cosine similarity.

The matching vector of i-th textual node can be obtained by

concatenating the similarity of all the blocks, that is

xi = xi1 ||xi2 || · · · ||xit. (4)

where “||” indicates concatenation. In this way, each textual

node is associated with its matched visual nodes, which will

be propagated to its neighbors at structure-level matching to

guide neighbors learn fine-grained phrase correspondence.

Symmetrically, when given a visual graph, the node-

level matching is proceeded on each visual node. The cor-

responding textual nodes will be associated differentially

Ci→t = softmaxα(λVβU
T
α )Uα (5)

Then each visual node, together with its associated tex-

tual nodes, will be processed by the multi-block module,

producing the matching vector x.

3.2.2 Structure-level Matching

The structure-level matching takes the node-level matching

vectors as input, and propagates these vectors to neighbors

along with the graph edge. Such a design benefits to learn

fine-grained phrase correspondence as neighboring nodes

guide that. For example, a sentence “A brown dog bite a

gray dog ear”, the first “dog” will correspond to the visual

brown dog in a finer level, because its neighbors “bite” and

“brown” point to the brown dog, and hence the “dog” pre-

fer to correlate with the correct dog in the image. To be

specific, the matching vector of each node is updated by in-

tegrating neighborhood matching vectors using GCN. The

GCN layer will apply K kernels that learn how to integrate

neighborhood matching vectors, formulated as

x̂i = ||
K

k=1 σ




∑

j∈Ni

WeWkxj + b



 . (6)



where Ni denotes the neighborhood of i-th node, We in-

dicates the edge weight depicted in section 3.1, Wk and b

are the parameters to be learned of k-th kernel. Note that k

kernels are applied, the output of the spatial convolution is

defined as a concatenation over the output of k kernels, pro-

ducing convolved vector that reflects the correspondence of

connected nodes. These nodes form the localized phrase.

The phrase correspondence can be inferred by propagat-

ing neighboring node correspondence, which can be used to

reason the overall matching score of image-text pair. Here,

we feed the convolved vectors into a multi-layer percep-

tron (MLP) to jointly consider the learned correspondence

of all the phrases, and infer the global matching score. This

represents how much one structured graph matches another

structured graph. This process is formulated as

st→i =
1

n

∑

i

Wu
s (σ(W

u
h x̂i + buh)) + bus , (7)

si→t =
1

m

∑

j

W v
s (σ(W

v
h x̂j + bvh)) + bvs . (8)

where Ws, bs denote parameters of MLP, which includes

two fully-connected layers, the function σ(·) indicates the

tanh activation. Note that we perform structure-level match-

ing on both visual and textual graphs, which can learn

phrase correspondence complement to each other. The

overall matching score of an image-text pair is computed

as the sum of matching score at two directions

g(G1, G2) = st→i + si→t. (9)

3.2.3 Objective Function

Following previous approaches [18, 14, 2, 30], we employ

the triplet loss as the objective function. When using the text

T as query, we sample its matched images and mismatched

images at each mini-batch, which form positive pairs and

negative pairs. The similarity in positive pairs should be

higher than that in negative pairs by a margin γ. Analo-

gously, when using the image I as query, the negative sam-

ple should be a text that mismatches the given query, their

similarity relative to positive pairs should also satisfy the

above constraints. We focus on optimizing hard negative

samples that produce the highest loss, that is

L =
∑

(I,T )

[γ−g(I, T )+g(I, T
′

)]++[γ−g(I, T )+g(I
′

, T )]+.

(10)

where I
′

, T
′

are hard negatives, the function [·]+ is equiv-

alent to max[·, 0], and g(·) is the global similarity of an

image-text pair computed by equation 9.

3.3. Feature Representation

Visual Representation. Given an image I , we represent

its feature as a combination of its n salient regions, which

are detected by Faster-RCNN pretrained on Visual Genome

[13]. The detected regions are feed into pretrained ResNet-

101 [5] to extract features, and then transformed into a d-

dimensional feature space using a fully connected layer:

vi = Wm[CNN(Ii)] + bm. (11)

where CNN(·) encodes each region within bounding box

as a region feature, Wm, bm are parameters of the fully con-

nected layer that transforms the feature into the common

space. These region features form the image representation,

denoted as [v1, v2, · · · , vn].
Textual Representation. Given a text T that contains m

words, we represent its feature as [u1, u2, · · · , um], where

each word is associated with a feature vector. We first repre-

sent each word as a one-hot vector, and then embed it into d-

dimensional feature space using a Bidirectional Gated Re-

current Unit (BiGRU), which enables to integrated forward

and backward contextual information into text embeddings.

The representation of i-th word is obtained by averaging the

hidden state of forward and backward GRU at i-th time step.

4. Experiment

4.1. Dataset and Implementation Details

To validate the effectiveness of our proposed method, we

evaluate it on two most widely used benchmarks, Flickr30K

[25] and MSCOCO [16]. Each benchmark contains multi-

ple image-text pairs, where each image is described by five

corresponding sentences. Flickr30K collects 31,000 images

and 31,000 × 5 = 155,000 sentences in total. Following the

settings in previous works [12], this benchmark is split into

29,000 training images, 1,000 validation images, and 1,000

testing images. A large-scale benchmark MSCOCO con-

tains 123,287 images and 123,287× 5 = 616,435 sentences,

we use 113,287 images for training, both the validation and

testing sets contain 5,000 instances. The evaluation result is

calculated on 5-folds of testing images.

The commonly used evaluation metrics for image-text

matching are Recall@K (K=1,5,10), denoted as R@1,

R@5, and R@10, which depict the percentage of ground

truth being retrieved at top 1, 5, 10 results, respectively.

The higher Recall@K indicates better performance. Addi-

tionally, to show the overall matching performance, we also

compute the sum of all the Recall values (rSum) at image-

to-text and text-to-image directions, that is

rSum = R@1+R@5 +R@10
︸ ︷︷ ︸

Image as query

+R@1+R@5 +R@10
︸ ︷︷ ︸

Text as query

.

(12)

As for implementation details, we train the proposed net-

work on training set and validate it at each epoch on vali-

dation set, selecting the model with the highest rSum to be

test. We train the proposed method on 1 Titan Xp GPU



Table 1: Image-text matching results on Flickr30K, ′ft′ and ′fixed′ are fine-tuning and no fine-tuning. The bests are in bold.

Image-to-Text Text-to-Image

Method Image Backbone Text Backbone R@1 R@5 R@10 R@1 R@5 R@10 rSum

m-CNN [20] fixed VGG-19 ft CNN 33.6 64.1 74.9 26.2 56.3 69.6 324.7

DSPE [29] fixed VGG-19 w2v+HGLMM 40.3 68.9 79.9 29.7 60.1 72.1 351.0

VSE++ [2] ft ResNet-152 ft GRU 52.9 79.1 87.2 39.6 69.6 79.5 407.9

TIMAM [27] fixed ResNet-152 Bert 53.1 78.8 87.6 42.6 71.6 81.9 415.6

DANs [23] ft ResNet-152 ft LSTM 55.0 81.8 89.0 39.4 69.2 79.1 413.5

SCO [9] fixed ResNet-152 ft LSTM 55.5 82.0 89.3 41.1 70.5 80.1 418.5

GXN [4] ft ResNet-152 ft GRU 56.8 - 89.6 41.5 - 80.1 268.0

SCAN [14] Faster R-CNN ft Bi-GRU 67.4 90.3 95.8 48.6 77.7 85.2 465.0

BFAN [18] Faster R-CNN ft Bi-GRU 68.1 91.4 - 50.8 78.4 - 288.7

PFAN [30] Faster R-CNN ft Bi-GRU 70.0 91.8 95.0 50.4 78.7 86.1 472.0

GSMN (sparse) Faster R-CNN ft Bi-GRU 71.4 92.0 96.1 53.9 79.7 87.1 480.1

GSMN (dense) Faster R-CNN ft Bi-GRU 72.6 93.5 96.8 53.7 80.0 87.0 483.6

GSMN (sparse+dense) Faster R-CNN ft Bi-GRU 76.4 94.3 97.3 57.4 82.3 89.0 496.8

Table 2: Image-text matching results on MSCOCO, ′ft′ and ′fixed′ are fine-tuning and no fine-tuning. The bests are in bold.

Image-to-Text Text-to-Image

Method Image Backbone Text Backbone R@1 R@5 R@10 R@1 R@5 R@10 rSum

m-CNN [20] fixed VGG-19 ft CNN 42.8 73.1 84.1 32.6 68.6 82.8 384.0

DSPE [29] fixed VGG-19 w2v+HGLMM 50.1 79.7 89.2 39.6 75.2 86.9 420.7

VSE++ [2] ft ResNet-152 ft GRU 64.7 - 95.9 52.0 - 92.0 304.6

DPC [35] ft ResNet-152 ft ResNet-152 65.5 89.8 95.5 47.1 79.9 90.0 467.8

GXN [4] ft ResNet-152 ft GRU 68.5 - 97.9 56.6 - 94.5 317.5

SCO [9] fixed ResNet-152 ft LSTM 69.9 92.9 97.5 56.7 87.5 94.8 499.3

SCAN [14] Faster R-CNN ft Bi-GRU 72.7 94.8 98.4 58.8 88.4 94.8 507.9

BFAN [18] Faster R-CNN ft Bi-GRU 74.9 95.2 - 59.4 88.4 - 317.9

PFAN [30] Faster R-CNN ft Bi-GRU 76.5 96.3 99.0 61.6 89.6 95.2 518.2

GSMN (sparse) Faster R-CNN ft Bi-GRU 76.1 95.6 98.3 60.4 88.7 95.0 514.0

GSMN (dense) Faster R-CNN ft Bi-GRU 74.7 95.3 98.2 60.3 88.5 94.6 511.6

GSMN (sparse+dense) Faster R-CNN ft Bi-GRU 78.4 96.4 98.6 63.3 90.1 95.7 522.5

with 30 and 20 epochs for Flickr30K and MSCOCO, re-

spectively. The Adam optimizer is employed with mini

batch size 64. The initial learning rate is set as 0.0002 with

decaying 10% every 15 epochs on Flickr30K, and 0.0005

with decaying 10% every 5 epochs on MSCOCO. We set

the dimension of word embeddings as 300, which are then

feed into Bi-GRU to get 1024-diemensioanl word represen-

tation. As for image feature, each image contains 36 re-

gions that are most salient, and extract 2048-dimensional

features for each region. The region feature is then trans-

formed into a 1024-dimensional visual representation by a

fully-connected layer. At the structure-level matching, we

use one spatial graph convolution layer with 8 kernels, each

of which are 32-dimensional. After that, we feed each node

in the graph into two fully-connected layers followed by a

tanh activation to reason the matching score. The scaling

factor λ setting is investigated at section 4.2.3. As for opti-

mization, the margin γ is empirically set as 0.2.

4.2. Experimental Results

4.2.1 Comparisons with state-of-the-arts

Baselines. we make a comparison with several networks in

image-text matching, including (1) typical works m-CNN

[20], DSPE [29] and DANs [23] that learn global image-

text correspondence by designing different network blocks.

(2) VSE++ [2], DPC [35] and TIMAM [27] that learn cor-

respondence using different optimization. (3) SCO [9],

GXN [4] that learn region-word correspondence by design-

ing specific networks. (4) state-of-the-art methods SCAN

[14], BFAN [18], PFAN [30].

Quantitative Analysis. We provide two versions of our ap-

proach, one models the text as a sparse graph and another

one models it as a dense graph. We ensemble them by aver-

aging their similarity of image-text pairs, and find that can

greatly improve the performance. Note that state-of-the-art



Table 3: The ablation study on Flickr30K to investigate the

effect of different network structures.

Image-to-Text Text-to-Image

Model R@1 R@10 R@1 R@10

GSMN-w/o graph 63.2 94.5 48.7 84.5

GSMN-w/o t2i 64.6 93.5 45.8 82.6

GSMN-w/o i2t 67.0 95.5 52.3 86.3

GSMN-2GCN 68.4 94.8 51.5 86.0

GSMN-GRU 71.1 95.3 50.9 85.6

GSMN-full (sparse) 71.4 96.1 53.9 87.1

GSMN-full (dense) 72.6 96.8 53.7 87.0

(a) (b)

(c) (d)

Figure 3: Comparison of Recall@1 results on Flickr30K

and MSCOCO with different λ settings. (a) Image-to-text

on Flickr30K. (b) Text-to-image on Flickr30K. (c) Image-

to-text on MSCOCO. (d) Text-to-image on MSCOCO.

methods [30, 14, 18] also use ensemble model. As shown

in Table 1, we can observe that the proposed network out-

performs state-of-the-arts with respect to all the evaluation

metrics on Flickr30K. Compared with the state-of-the-art

method PFAN [30] that also utilizing the position informa-

tion of salient regions, our approach obtains relative R@1

gains with 6.4% and 7% at image-to-text and text-to-image

matching. Differs from PFAN [30] that embeds position

information into visual representation, our approach em-

ploys it as the weight of graph edge. The improvement in-

dicates that structured models object, relation and attribute

can greatly improve the matching performance. Although

a previous approach SCAN [14] uses similar method to

learn object correspondence, our approach achieves more

improvement, with nearly 10% R@1 gain, since it ignores

to explicitly learn correspondence of the relation and at-

tribute. In addition, our single model also outperforms their

ensemble model by a large margin, and the dense model is

better than sparse one as it can discover latent dependencies.

The quantitative results on a larger and more complicated

dataset MSCOCO is shown at Table 2. We can observe

that our approach can outperform state-of-the-art methods

with nearly 2% improvement in terms of Recall@1, which

is more concerned by users in real applications. Our Re-

call@10 in image-to-text matching is slightly lower than

PFAN since noise exists. Compared with SCAN that is

most relevant to our work, we suppress it in terms of all

the evaluation metrics, getting over 5.5% and 4.5% rela-

tive Recall@1 improvements on two directions. Note that

the sparse model performs better than the dense model, it

mainly arises from the sentence in this dataset is more com-

plicated, and thus might incorrectly correlate totally irrele-

vant words if a fully-connected graph is built.

4.2.2 Impact of different network structures

To validate the impact of different network structures, we

conduct ablation studies incrementally on Flickr30K. We

compare the full dense model and full sparse model with

five models: (1) GSMN-w/o graph, which only performs

node-level matching. (2) GSMN-w/o i2t, which only ap-

plies the node-level matching and structure-level match-

ing on image-to-text direction. (3) GSMN-w/o t2i, which

only applies the node-level matching and structure-level

matching on text-to-image direction. (4) GSMN-2GCN, its

depth of GCN layer is set as 2. (5) GSMN-GRU, a net-

work that only uses GRU instead of Bi-GRU as the text en-

coder. As shown in Table 3, The two full models outper-

form all these types of networks, and they largely exceed

the network that only performs matching on single direc-

tion. Note that GSMN-2GCN requires more computational

cost and GPU memory, results show that a deeper network

will drop the performance as it additionally considers indi-

rectly connected nodes, which will disturb the learned cor-

respondence. Compared with GSMN-GRU, our approach

achieves more improvement on text-to-image graph, it de-

rives from the Bi-GRU can better model the semantic de-

pendency among object, relation and attribute than GRU,

and hence the edge weight of textual graph can be accu-

rately reflected. Note that GSMN-w/o i2t gets better per-

formance than GSMN-w/o t2i, because the implicit relation

among regions is difficult to be discovered.

4.2.3 Impact of different parameters

To validate the impact of different parameters, we conduct

extensive experiments on two benchmarks. In this work,

the most sensitive parameter is the scaling factor λ that

determines the relative weight of different nodes in node-

level matching, and the edge weight of textual graph. A

large λ will filter out extensive nodes, and only preserve lit-

tle nodes that are highly relevant to the specific node. A



Figure 4: Visualization of node correspondence and phrase correspondence with score inside the box. Best viewed in color.

Figure 5: Visualization of text-to-image matching on

Flickr30K. For each text query, we show top 3 ranked im-

ages from left to right, where mismatched images are with

red boxes and matched images are with green boxes.

small λ is unable to distinguish relevant nodes from irrele-

vant ones. Hence, an appropriate parameter is important in

our proposed network. Here, we investigate the matching

performance with setting the λ as 5, 10 and 20, see figure

3. We observe the Recall@1 on validation set at each train-

ing epoch. The top two subfigures are on Flickr30K, it is

obvious that when λ = 20, the proposed network yields

better Recall@1 on two matching directions, and there is

just little difference when the parameter is set as 5 and 10.

The bottom two subfigures are on MSCOCO, showing that

λ = 10 is much better. The different parameter setting on

two datasets might be caused by different data distribution.

4.2.4 Case Study

We provide a visualization to show the learned node cor-

respondence and phrase correspondence in Figure 4. Note

that we only show the most relevant region for each textual

node, it shows different kinds of nodes can associate with

their corresponding regions with relatively higher scores.

Moreover, we can infer phrase correspondence enclosed by

multiple bounding boxes, and their scores are greatly im-

proved. Also, we visualize the text-to-image and image-to-

text matching results on Flickr30K, shown in Figure 5 and

Figure 6. These show our approach always retrieves the

Figure 6: Visualization of image-to-text matching on

Flickr30K. For each image query, we show top 5 ranked

texts, where mismatched texts are marked as red.

ground truth with a high rank. In addition, our approach

is able to learn fine-grained correspondence of the relation

and attribute. For example, for the first text query in Figure

5, our network can distinguish different kinds of hats.

4.3. Conclusion

In this paper, we propose a graph structured matching

network for image-text matching, which performs match-

ing on heterogeneous visual and textual graphs. This is

achieved by node-level matching and structure-level match-

ing that infer fine-grained correspondence by propagating

node correspondence along the graph edge. Moreover, such

a design can learn correspondence of relation and attribute,

which are mostly ignored by previous works. With the guid-

ance of relation and attribute, the object correspondence can

be greatly improved. Extensive experiments demonstrate

the superiority of our network.
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