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Abstract

Body shape plays an important role in determining what
garments will best suit a given person, yet today’s clothing
recommendation methods take a “one shape fits all” ap-
proach. These body-agnostic vision methods and datasets
are a barrier to inclusion, ill-equipped to provide good
suggestions for diverse body shapes. We introduce ViBE,
a VIsual Body-aware Embedding that captures clothing’s
affinity with different body shapes. Given an image of a
person, the proposed embedding identifies garments that
will flatter her specific body shape. We show how to learn
the embedding from an online catalog displaying fashion
models of various shapes and sizes wearing the products,
and we devise a method to explain the algorithm’s sugges-
tions for well-fitting garments. We apply our approach to a
dataset of diverse subjects, and demonstrate its strong ad-
vantages over status quo body-agnostic recommendation,
both according to automated metrics and human opinion.

1. Introduction
Research in computer vision is poised to transform the

world of consumer fashion. Exciting recent advances can
link street photos to catalogs [47,54], recommend garments
to complete a look [25,33,34,40,73,76], discover styles and
trends [3, 32, 57], and search based on subtle visual proper-
ties [22, 46]. All such directions promise to augment and
accelerate the clothing shopping experience, providing con-
sumers with personalized recommendations and putting a
content-based index of products at their fingertips.

However, when it comes to body shape, state-of-the-art
recommendation methods falsely assume a “one shape fits
all” approach. Despite the fact that the same garment will
flatter different bodies differently, existing methods neglect
the significance of an individual’s body shape when esti-
mating the relevance of a given garment or outfit. This
limitation stems from two key factors. First, current large-
scale datasets are heavily biased to a narrow set of body
shapes1—typically thin and tall, owing to the fashionista or
celebrity photos from which they are drawn [26, 51, 55, 66,

1not to mention skin tone, age, gender, and other demographic factors
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Figure 1: Trained largely from images of slender fashionistas and
celebrities (bottom row), existing methods ignore body shape’s ef-
fect on clothing recommendation and exclude much of the spec-
trum of real body shapes. Our proposed embedding considers
diverse body shapes (top row) and learns which garments flatter
which across the spectrum of the real population. Histogram plots
the distribution of the second principal component of SMPL [56]
(known to capture weight [31, 69]) for the dataset we collected
(orange) and DeepFashion [55] (purple).

84] (see Fig. 1). This restricts everything learned down-
stream, including the extent of bodies considered for vir-
tual try-on [26, 63, 79]. Second, prior methods to gauge
clothing compatibility often learn from co-purchase pat-
terns [25, 76, 77] or occasion-based rules [40, 53], divorced
from any statistics on body shape.

Body-agnostic vision methods and datasets are thus a
barrier to diversity and inclusion. Meanwhile, aspects of
fit and cut are paramount to what continues to separate the
shopping experience in the physical world from that of the
virtual (online) world. It is well-known that a majority of
today’s online shopping returns stem from problems with
fit [61], and being unable to imagine how a garment would
complement one’s body can prevent a shopper from making
the purchase altogether.

To overcome this barrier, we propose ViBE, a VIsual
Body-aware Embedding that captures clothing’s affinity
with different body shapes. The learned embedding maps
a given body shape and its most complementary garments
close together. To train the model, we explore a novel
source of Web photo data containing fashion models of di-
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verse body shapes. Each model appears in only a subset of
all catalog items, and these pairings serve as implicit posi-
tive examples for body-garment compatibility.

Having learned these compatibilities, our approach can
retrieve body-aware garment recommendations for a new
body shape—a task we show is handled poorly by existing
body-agnostic models, and is simply impossible for tradi-
tional recommendation systems facing a cold start. Further-
more, we show how to visualize what the embedding has
learned, by highlighting what properties (sleeve length, fab-
ric, cut, etc.) or localized regions (e.g., neck, waist, straps
areas) in a garment are most suitable for a given body shape.

We demonstrate our approach on a new body-diverse
dataset spanning thousands of garments. With both quan-
titative metrics and human subject evaluations, we show the
clear advantage of modeling body shape’s interaction with
clothing to provide accurate recommendations.

2. Related Work
Fashion styles and compatibility Early work on com-
puter vision for fashion addresses recognition problems,
like matching items seen on the street to a catalog [47, 54],
searching for products [22, 46, 86], or parsing an outfit into
garments [17, 51, 83, 87]. Beyond recognition, recent work
explores models for compatibility that score garments for
their mutual affinity [24,33,34,36,73,76,77]. Styles—meta-
patterns in what people wear—can be learned from images,
often with visual attributes [?,3,32,43,57], and Web photos
with timestamps and social media “likes” can help model
the relative popularity of trends [50, 74]. Unlike our ap-
proach, none of the above models account for the influence
of body shape on garment compatibility or style.

Fashion image datasets Celebrities [30, 51], fashionista
social media influencers [43, 52, 74, 83, 84], and catalog
models [18, 26, 55, 66] are all natural sources of data for
computer vision datasets studying fashion. However, these
sources inject bias into the body shapes (and other demo-
graphics) represented, which can be useful for some appli-
cations but limiting for others. Some recent dataset efforts
leverage social media and photo sharing platforms like In-
stagram and Flickr which may access a more inclusive sam-
ple of people [42, 57], but their results do not address body
shape. We explore a new rich online catalog dataset com-
prised of models of diverse body shape.

Virtual try on and clothing retargeting Virtual try-on en-
tails visualizing a source garment on a target human subject,
as if the person were actually wearing it. Current methods
estimate garment draping on a 3D body scan [20,48,62,68],
retarget styles for people in 2D images or video [4,5,7,85],
or render a virtual try-on with sophisticated image genera-
tion methods [23, 26, 63, 79]. While existing methods dis-
play a garment on a person, they do not infer whether the

garment flatters the body or not. Furthermore, in prac-
tice, vision-based results are limited to a narrow set of body
shapes (typically tall and thin as in Fig. 1) due to the implicit
bias of existing datasets discussed above.

Body and garment shape estimation Estimating people
and clothing’s 3D geometry from 2D RGB images has a
long history in graphics, broadly categorizable into body
only [8, 38, 89], garment only [11, 37, 82, 88], joint [49, 59,
67], and simultaneous but separate estimations [4, 5, 7, 85].
In this work, we integrate two body-based models to esti-
mate a user’s body shape from images. However, different
from any of the above, our approach goes beyond estimat-
ing body shape to learn the affinity between human body
shape and well-fitting garments.

Sizing clothing While most prior work recommends cloth-
ing based on an individual’s purchase history [28,35,39,77]
or inferred style model [33, 40, 53], limited prior work ex-
plores product size recommendation [14, 21, 41, 58, 72].
Given a product and the purchase history of a user, these
methods predict whether a given size will be too large,
small, or just right. Rather than predict which size of a
given garment is appropriate, our goal is to infer which gar-
ments will flatter the body shape of a given user. More-
over, unlike our approach, existing methods do not consider
the visual content of the garments or person [14,21,58,72].
While SizeNet [41] uses product images, the task is to pre-
dict whether the product will have fit issues in general, un-
conditioned on any person’s body.

Clothing preference based on body shape To our knowl-
edge, the only prior work that considers body shape’s con-
nection to clothing is the “Fashion Takes Shape” project,
which studies the correlation between a subject’s weight
and clothing categories typically worn (e.g., curvier people
are more likely to wear jeans than shorts) [69], and the rec-
ommendation system of [30] that discovers which styles are
dominant for which celebrity body types given their known
body measurements. In contrast to either of these meth-
ods, our approach suggests specific garments conditioned
on an individual’s body shape. Furthermore, whereas [69]
is about observing in hindsight what a collection of peo-
ple wore, our approach actively makes recommendations
for novel bodies and garments. Unlike [30], our method
handles data beyond high-fashion celebrities and uses the
inferred body shape of a person as input.

3. Approach
While the reasons for selecting clothes are complex [80],

fit in a garment is an important factor that contributes to the
confidence and comfort of the wearer. Specifically, a gar-
ment that fits a wearer well flatters the wearer’s body. Fit
is a frequent reason for whether to make an apparel pur-
chase [6]. Searching for the right fit is time-consuming:
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STYLE TIP:

Go for soft silks 
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STYLE TIP:
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Also, color blocking 
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STYLE TIP:
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Try cut-out dresses and 
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Figure 2: Example categories of body shapes, with styling tips and
recommended dresses for each, according to fashion blogs [1, 2].

women may try on as many as 20 pairs of jeans before they
find a pair that fits [64].

The ‘Female Figure Identification Technique (FFIT)
System’ classifies the female body into 9 shapes—
hourglass, rectangle, triangle, spoon, etc.—using the pro-
portional relationships of dimensions for bust, waist, high
hip, and hips [13]. No matter which body type a woman
belongs to, researchers find that women participants tend
to select clothes to create an hourglass look for them-
selves [19]. Clothing is used strategically to manage bodily
appearance, so that perceived “problem areas/flaws” can be
covered up, and assets are accentuated [16,19]. Fig. 2 shows
examples from fashion blogs with different styling tips and
recommended dresses for different body shapes.

Our goal is to discover such strategies, by learning
a body-aware embedding that recommends clothing that
complements a specific body and vice versa. We first in-
troduce a dataset and supervision paradigm that allow for
learning such an embedding (Sec. 3.1, Sec. 3.2). Then we
present our model (Sec. 3.3) and the representation we use
for clothing and body shape (Sec. 3.4). Finally, beyond rec-
ommending garments, we show how to visualize the strate-
gies learned by our model (Sec. 3.5).

3.1. A Body-Diverse Dataset

An ideal dataset for learning body-garment compati-
bility should meet the following properties: (1) clothed
people with diverse body shapes; (2) full body photos so
the body shapes can be estimated; (3) some sort of rat-
ing of whether the garment flatters the person to serve as
supervision. Datasets with 3D scans of people in cloth-
ing [4, 5, 7, 65] meet (1) and (2), but are rather small and
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Figure 3: Example page from the website where we collected our
dataset. It provides the image of the model wearing the cata-
log item, the clean catalog photo of the garment on its own, the
model’s body measurements, and the item’s attribute description.
Each item is worn by models of multiple body shapes.

have limited clothing styles. Datasets of celebrities [30,51],
fashionistas [43,74,84], and catalog models [26,55,66] sat-
isfy (2) and (3), but they lack body shape diversity. Datasets
from social media platforms [42, 57] include more diverse
body shapes (1), but are usually cluttered and show only the
upper body, preventing body shape estimation.

To overcome the above limitations, we collect a dataset
from an online shopping website called Birdsnest.2 Bird-
snest provides a wide range of sizes (8 to 18 in Australian
measurements) in most styles. Fig. 3 shows an example cat-
alog page. It contains the front and back views of the gar-
ment, the image of the fashion model wearing the item, her
body measurements, and an attribute-like textual descrip-
tions of the item. Most importantly, each item is worn by a
variety of models of different body shapes. We collect two
categories of items, 958 dresses and 999 tops, spanning 68
fashion models in total. While our approach is not specific
to women, since the site has only women’s clothing, our
current study is focused accordingly. This data provides us
with properties (1) and (2). We next explain how we obtain
positive and negative examples from it, property (3).

3.2. Implicit Rating from Catalog Fashion Models

Fashion models wearing a specific catalog item can
safely be assumed to have body shapes that are flattered
by that garment. Thus, the catalog offers implicit positive
body-garment pairings. How do we get negatives? An in-
tuitive way would be to assume that all unobserved body-
garment pairings from the dataset are negatives. However,

2https://www.birdsnest.com.au/

https://www.birdsnest.com.au/


Figure 4: Columns show bodies sampled from the five discovered
body types for dresses (see Supp. for tops). Each type roughly
maps to 1) average, 2) curvy, 3) slender, 4) tall and curvy, 5) petite.

about 50% of the dresses are worn by only 1 or 2 distinct
bodies (3% of the models), suggesting that many positive
pairings are not observed.

Instead, we propose to propagate missing positives be-
tween similar body shapes. Our assumption is that if two
body shapes are very similar, clothing that flatters one will
likely flatter the other. To this end, we use k-means [78]
clustering (on features defined in Sec. 3.4) to quantize the
body shapes in our dataset into five types. Fig. 4 shows bod-
ies sampled from each cluster. We propagate positive cloth-
ing pairs from each model observed wearing a garment to
all other bodies of her type. Since most of the garments are
worn by multiple models, and thus possibly multiple types,
we define negative clothing for a type by pairing bodies in
that type with clothing never worn by any body in that type.

With this label propagation, most dresses are worn by 2
distinct body types, which is about 40% of the bodies in the
dataset, largely decreasing the probability of missing true
positives. To validate our label propagation procedure with
ground truth, we conduct a user study explicitly asking hu-
man judges on Mechanical Turk whether each pair of bodies
in the same cluster could wear similar clothing, and whether
pairs in different clusters could. Their answers agreed with
the propagated labels 81% and 63% of the time for the two
respective cases (see Supp. for details).

3.3. Training a Visual Body-Aware Embedding

Now having the dataset with all the desired properties,
we introduce our VIsual Body-aware Embedding, ViBE,
that captures clothing’s affinity with body shapes. In an
ideal embedding, nearest neighbors are always relevant in-
stances, while irrelevant instances are separated by a large
margin. This goal is achieved by correctly ranking all
triplets, where each triplet consists of an anchor za, a posi-
tive zp that is relevant to za, and a negative zn that is not rel-

evant to za. The embedding should rank the positive closer
to the anchor than the negative, D(za, zp) < D(za, zn)
(with D(., .) denoting Euclidean distance). Amargin-based
loss [81] optimizes for this ranking:

L(za, zp, zn) := (D(za, zp)− αp)+ + (αn −D(za, zn))+

where αp, αn is the margin for positive and negative pairs
respectively, and the subscript + denotes max(0, ·). We
constrain the embedding to live on the d-dimensional hy-
persphere for training stability, following [70].

In our joint embedding ViBE, we have two kinds of
triplets, one between bodies and clothing, and one between
bodies and bodies. So our final loss combines two instances
of the margin-based loss:

L = Lbody,cloth + Lbody,body. (1)

Let fcloth, fbody be the respective functions that map in-
stances of clothing xg and body shape xb to points in ViBE.
For the triplet in our body-clothing loss Lbody,cloth, za is a
mapped body instance fbody(xba), zp is a compatible cloth-
ing item fcloth(xg

p), and zn is an incompatible clothing
item fcloth(xg

n). This loss aims to map body shapes near
their compatible clothing items.

We introduce the body-body loss Lbody,body to facili-
tate training stability. Recall that each garment could be
compatible with multiple bodies. By simply pulling these
shared clothing items closer to all their compatible bodies,
all clothing worn on those bodies would also become close
to each other, making the embedding at risk of model col-
lapse (see Fig. 5a, blue plot). Hence, we introduce an addi-
tional constraint on triplets of bodies: za is again a mapped
body instance fbody(xba), zp is now a body fbody(xbp) that
belongs to the same type (i.e., cluster) as xba, and zn is
a body fbody(xbn) from a different type. This body-body
loss Lbody,body explicitly distinguishes similar bodies from
dissimilar ones. Fig. 5a plots the distribution of pairwise
clothing distances with and without this additional con-
straint, showing that this second loss effectively alleviates
the model collapse issue.

We stress that the quantization for body types (Sec. 3.2)
is solely for propagating labels to form the training triplets.
When learning and applying the embedding itself, we oper-
ate in a continuous space for the body representation. That
is, a new image is mapped to individualized recommenda-
tions potentially unique to that image, not a batch of recom-
mendations common to all bodies within a type.

3.4. Clothing and Body Shape Features

Having defined the embedding’s objective, now we de-
scribe the input features xb and xg for bodies and garments.

For clothing, we have the front and back view images of
the catalog item (without a body) and its textual description.
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Figure 5: Left (a): Distribution of pairwise distances between
clothing items with (red) and without (blue) the proposed body-
body triplet loss. Without it, clothing embeddings are very con-
centrated and have close to 0 distance, causing instability in train-
ing. Right (b): Human body shape estimation stages.

We use a ResNet-50 [27] pretrained on ImageNet [12] to
extract visual features from the catalog images, which cap-
tures the overall color, pattern, and silhouette of the cloth-
ing. We mine the top frequent words in all descriptions
for all catalog entries to build a vocabulary of attributes,
and obtain an array of binary attributes for each garment,
which captures localized and subtle properties such as spe-
cific necklines, sleeve cuts, and fabric.

For body shape, we have images of the fashion models
and their measurements for height, bust, waist, and hips, the
so called vital statistics. We concatenate the vital statistics
in a 4D array and standardize them. However, the girths
and lengths of limbs, the shoulder width, and many other
characteristics of the body shape are not captured by the vi-
tal statistics, but are visible in the fashion models’ images.
Thus, we estimate a 3D human body model from each im-
age to capture these fine-grained shape cues.

To obtain 3D shape estimates, we devise a hybrid ap-
proach built from two existing methods, outlined in Fig. 5b.
Following the basic strategy of HMD [89], we estimate an
initial 3D mesh, and then stage-wise update the 3D mesh
by projecting it back to 2D and deforming it to fit the sil-
houette of the human in the RGB image. However, the ini-
tial 3D mesh that HMD is built on, i.e., HMR [38], only
supports gender-neutral body shapes. Hence we use SM-
PLify [8], which does support female bodies, to create the
initial mesh.3 We then deform the mesh with HMD.

Finally, rather than return the mesh itself—whose high-
dimensionality presents an obstacle for data efficient em-
bedding learning— we optimize for a compact set of body
shape model parameters that best fits the mesh. In particu-
lar, we fit SMPL [56] to the mesh and use its first 10 princi-
pal components as our final 3D body representation. These

3We apply OpenPose [9] to the RGB images to obtain the 2D joint
positions required by SMPLify. We could not directly use the SMPLify
estimated bodies because only their pose is accurate but not their shape.

• Floral print

• Round neckline

• Extended cap sleeves

• Slight pleat gathering at side waist

• Small elasticated band at back waist

• Subtle handkerchief skirt cut

• Knee length

• Semi fitted

• Lightweight soft fabric

• Height: 176 cm

• Bust: 86.5 cm

• Waist: 70.0 cm

• Hips: 91.5 cm
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Figure 6: Overview of our visual body-aware embedding (ViBE).
We use mined attributes with CNN features for clothing, and es-
timated SMPL [56] parameters and vital statistics for body shape
(Sec. 3.4). Following learned projections, they are mapped into the
joint embedding that measures body-clothing affinities (Sec. 3.3).

dimensions roughly capture weight, waist height, mascu-
line/feminine characteristics, etc. [31, 75]. When multiple
images (up to 6) for a fashion model are available, we pro-
cess all of them, and take the median per dimension.

In summary, for clothing, we accompany mined at-
tributes (64 and 100 attributes for dresses and tops respec-
tively) with CNN features (2048-D); for body shape, we ac-
company estimated 3D parameters (10-D) with vital statis-
tics (4-D). Each is first reduced into a lower dimensional
space with learned projection functions (hattr, hcnn, hsmpl,
hmeas). Then the reduced attribute and CNN features are
concatenated as the representation xg for clothing, and the
reduced SMPL and vital features are concatenated as the
representation xb for body shape. Both are forwarded into
the joint embedding (defined in Sec. 3.3) by fcloth and fbody
to measure their affinity. Fig. 6 overviews the entire proce-
dure. See Supp. for architecture details.

3.5. Recommendations and Explanation

After learning our embedding, we make clothing rec-
ommendations for a new person by retrieving the garments
closest to her body shape in this space. In addition, we pro-
pose an automatic approach to convey the underlying strat-
egy learned by our model. The output should be general
enough for users to apply to future clothing selections, in
the spirit of the expert advice as shown in Fig. 2—e.g., the
styling tip for apple body shape is to wear A-line dresses—
but potentially even more tailored to the individual body.

To achieve this, we visualize the embedding’s learned
decision with separate classifiers (cf. Fig. 10). We first map
a subject’s body shape into the learned embedding, and take



Dresses Tops
type 1 2 3 4 5 1 2 3 4 5

Train body 18 7 11 4 6 19 4 8 15 6
clothing 587 481 301 165 167 498 202 481 493 232

Test body 5 2 3 2 2 5 2 3 4 2
clothing 149 126 76 42 34 115 54 115 129 58

Table 1: Dataset statistics: number of garments and fashion mod-
els for each clustered type.

the closest and furthest 400 clothing items as the most and
least suitable garments for this subject. We then train binary
classifiers to predict whether a clothing item is suitable for
this subject. By training a linear classifier over the attribute
features of the clothing, the high and low weights reveal
the most and least suitable attributes for this subject. By
training a classifier over the CNN features of the clothing,
we can apply CNN visualization techniques [15,60,71] (we
use [60]) to localize important regions (as heatmaps) that
activate the positive or negative prediction.

4. Experiments
We now evaluate our body-aware embedding with both

quantitative evaluation and user studies.

Experiment setup. Using the process described in Sec. 3.1
and Sec. 3.2, we collect two sets of data, one for dresses and
one for tops, and train separately on each for all models.
To propagate positive labels, we cluster the body shapes to
k = 5 types. We find the cluster corresponding to an av-
erage body type is the largest, while tall and curvy is the
smallest. To prevent the largest cluster’s bodies from domi-
nating the evaluation, we randomly hold out 20%, or at least
two bodies, for each cluster to comprise the test set. For
clothing, we randomly hold out 20% of positive clothing
for each cluster. Tab. 1 summarizes the dataset breakdown.

Baselines. Since no prior work tackles this problem, we
develop baselines based on problems most related to ours:
user-item recommendation and garment compatibility mod-
eling. Suggesting clothing to flatter a body shape can be
treated as a recommendation problem, where people are
users and clothing are items. We compare with two stan-
dard recommendation methods: (1) body-AGNOSTIC-CF:
a vanilla collaborative filtering (CF) model that uses nei-
ther users’ nor items’ content; and (2) body-AWARE-CF: a
hybrid CF model that uses the body features and clothing
visual features as content (“side information” [10]). Both
use a popular matrix completion [45] algorithm [29]. In ad-
dition, we compare to a (3) body-AGNOSTIC-EMBEDDING
that uses the exact same features and models as our body-
AWARE-EMBEDDING (ViBE), but—as done implicitly by
current methods—is only trained on bodies of the same
type, limiting body shape diversity.4 It uses all bodies and
clothing in the largest cluster (average body type), since

4The proposed body-body triplet loss is not valid for this baseline.
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Figure 7: Recommendation accuracy measured by AUC over all
person-garment pairs. Our body-aware embedding (ViBE) per-
forms best on all test scenarios by a clear margin.

results for the baseline were best on this type. This base-
line resembles current embeddings for garment compatibil-
ity [28, 76, 77], by changing garment type to body shape.

Implementation. All dimensionality reduction functions
hattr, hcnn, hsmpl, hmeas are 2-layer MLPs, and the em-
bedding functions fcloth and fbody are single fully con-
nected layers. We train the body-aware (agnostic) embed-
dings with Adam-optimizer [44], learning rate 0.003 (0.05),
weight decay 0.01, decay the learning rate by 0.3 at epoch
100 (70) and 130 (100), and train until epoch 180 (130). See
Supp. for more architecture and training details. We use the
best models in quantitative evaluation for each method to
run the human evaluation.

4.1. Quantitative evaluation

We compare the methods on three different recommen-
dation cases: i) person (“user”) seen but garment (“item”)
unseen during training, ii) garment seen but person unseen,
iii) neither person nor garment seen. These scenarios cap-
ture realistic use cases, where the system must make recom-
mendations for new bodies and/or garments. We exhaust all
pairings of test bodies and clothing, and report the mean
AUC with standard deviation across 10 runs.

Fig. 7a and Fig. 7b show the results. Our model out-
performs all methods by a clear margin. AGNOSTIC-CF
performs the worst, as all three test cases involve cold-start
problems, and it can only rely on the learned bias terms.
Including the person’s body shape and clothing’s features
in the CF method (AWARE-CF) significantly boosts its per-
formance, demonstrating the importance of this content for
clothing recommendation. In general, the embedding-based
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Figure 9: Example recommendations for 2 subjects by all meth-
ods. Subjects’ images and their estimated body shapes are shown
on the top of the tables. Each row gives one method’s most and
least recommended dresses. See text for discussion.

methods perform better than the CF-based methods. This
suggests that clothing-body affinity is modeled better by
ranking than classification; an embedding can maintain the
individual idiosyncrasies of the body shapes and garments.

All methods perform better on dresses than tops. This
may be due to the fact that dresses cover a larger portion of
the body, and thus could be inherently more selective about
which bodies are suitable. In general, the more selective
or body-specific a garment is, the more value a body-aware
recommendation system can offer; the more body-versatile
a garment is, the less impact an intelligent recommendation
can have. To quantify this trend, we evaluate the embed-
dings’ accuracy for scenario (iii) as a function of the test
garments’ versatility, as quantified by the number of distinct
body types (clusters) that wear the garment. Fig. 8 shows
the results. As we focus on the body-specific garments
(right hand side of plots) our body-aware embedding’s gain

Agnostic-
CF Aware-CF Agnostic-

embed ViBE

AUC 0.51 0.52 0.55 0.58
Table 2: Recommendation AUC on unseen people paired with gar-
ments sampled from the entire dataset, where ground-truth labels
are provided by human judges. Consistent with Fig. 7a, the pro-
posed model outperforms all the baselines.

over the body-agnostic baseline increases.

4.2. Example recommendations and explanations

Fig. 9 shows example recommendations for all methods
on two heldout subjects: each row is a method, with most
and least recommended garments. Being agnostic to body
shape, AGNOSTIC-CF and AGNOSTIC-EMBEDDING make
near identical recommendations for subjects with different
body shapes: top recommended dresses are mostly body-
versatile (captured as popularity by the bias term in CF
based methods), while least recommended are either body-
specific or less interesting, solid shift dresses. ViBE rec-
ommends knee-length, extended sleeves, or wrap dresses
for curvy subjects, which flow naturally on her body, and
recommends shorter dresses that fit or flare for the slender
subjects, which could show off her legs.

Fig. 10 shows example explanations (cf. Sec. 3.5) for
ViBE’s recommendations. For a petite subject, the most
suitable attributes are waistbands and empire styles that cre-
ate taller looks, and embroidery and ruffles that increase
volume. For a curvier subject, the most suitable attributes
are extended or 3/4 sleeves that cover the arms, v-necklines
that create an extended slimmer appearance, and wrap or
side-splits that define waists while revealing curves around
upper-legs. The heatmaps showing important regions for
why a dress is suitable for the subject closely correspond to
these attributes. We also take the top 10 suitable dresses and
their heatmaps to generate a weighted average dress to rep-
resent the gestalt shape of suitable dresses for this person.

4.3. Human judged ground truth evaluation

Having quantified results against the catalog ground
truth, next we solicit human opinions. We recruit 329 sub-
jects on Mechanical Turk to judge which dresses better flat-
ter the body shape of the test subjects. See Supp. for all
user study interfaces. We first ask subjects to judge each
dress as either body-specific or body-versatile. Then we ran-
domly sample 10 to 25 pairs of clothing items that are the
same type (i.e., both body-specific or -versatile) for each of
14 test bodies, and for each one we ask 7 subjects to rank
which dress is more suitable for the given body. We dis-
card responses with low consensus (i.e., difference of votes
is less than 2), which yields 306 total pairs.

Tab. 2 shows the results for all methods. The overall
trend is consistent with the automatic evaluation in Fig-



Subject

• Embroider • Elastic waist, waistband
• Ruffle, high-low hem• Short, cuff sleeves

• A-line
• Empire

Suitable 
silhouette

Most suitable

• Side split • Square, v neckline
• 3/4 sleeve • Wrap

• Fit • Shift
• Belt • Crepe, linen, jersey fabric

• Wrap
• Side Split

• Bell sleeve, 3/4 sleeve, extended sleeve
• Overlay • v-neckline

• Relaxed fit
• No stretch

• Elastic waist, waistband
• Embroider, floral • Tier

• A-line • Short sleeve

Least suitable

Figure 10: Example recommendations and explanations from our model: for each subject (row), we show the predicted most (left) and
least (right) suitable attributes (text at the bottom) and garments, along with the garments’ explanation localization maps. The “suitable
silhouette” image represents the gestalt of the recommendation. The localization maps show where our method sees (un)suitable visual
details, which agree with our method’s predictions for (un)recommended attributes.

My shoulder/arms are fairly 
tuned with flat chest. I can 
pull of sleeveless straight 
body dresses fairly easily

My body is straight with bigger 
hips. It will highlight my flat chest 
and big hips and make me very 
self conscious.

Very clear waistline with 
extra shapes that "hide" 
belly rolls

High neckline + sagging shoulders 
out would not be a good mix.  I 
really can't see anyone benefitting 
from the dress' neckline

The draping and ruching on 
dress compliments the body 
shape better

Too much fabric in dress would 
increase appearance of body's 
volume

0.72

0.55

0.66

More recommended Less recommended

Figure 11: Examples of our model’s more/less recommended
dresses for users (body types selected by users; numbers shown
under are AUC for each), along with the reasons why users pre-
ferred a dress or not. Our model’s explanation roughly corre-
sponds to users’ reasoning: user 2 prefers a clear waistline to hide
the belly, while user 1 tends to draw attention away from the chest.

ure 7a. As tops are in general less body-specific than
dresses, human judges seldom reach consensus for tops,
thus we did not include a human annotated benchmark for
it. See Supp. for examples of Turkers’ explanations for their
selections. We share the collected ground truth to allow
benchmarking future methods.5

Next we perform a second user study in which women
judge which garments would best flatter their own body

5http://vision.cs.utexas.edu/projects/VIBE

shape, since arguably each person knows her own body best.
We first ask subjects to select the body shape among 15
candidates (adopted from BodyTalk [75]) that best resem-
bles themselves, and then select which dresses they prefer
to wear. We use the selected dresses as positive, unselected
as negative, and evaluate our model’s performance by rank-
ing AUC. In total, 4 volunteers participated, each answered
7 to 18 different pairs of dresses, summing up to 61 pairs
of dresses. Our body-aware embedding6 achieves a mean
AUC of 0.611 across all subjects, compared to 0.585 by the
body-agnostic embedding (the best competing baseline).

Fig. 11 shows our method’s recommendations for cases
where subjects explained the garments they preferred (or
not) for their own body shape. We see that our model’s vi-
sual explanation roughly corresponds to subjects’ own rea-
soning (e.g., (de)emphasizing specific areas).

5. Conclusion
We explored clothing recommendations that comple-

ment an individual’s body shape. We identified a novel
source of Web photo data containing fashion models of di-
verse body shapes, and developed a body-aware embedding
to capture clothing’s affinity with different bodies. Through
quantitative measurements and human judgments, we ver-
ified our model’s effectiveness over body-agnostic models,
the status quo in the literature. In future work, we plan to
incorporate our body-aware embedding to address fashion
styling and compatibility tasks.

Acknowledgements: We thank our human subjects: Angel,
Chelsea, Cindy, Layla, MongChi, Ping, Yenyen, and our
anonymous friends and volunteers from Facebook. We also
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by NSF IIS-1514118.

6Since we do not have these subjects’ vital statistics, we train another
version of our model that uses only SMPL and CNN features.
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Figure 12: Tops dataset: columns show bodies sampled from the
five discovered body types. Each type roughly maps to 1) average,
2) curvy, 3) tall, 4) slender, 5) curvy and tall.

Supplementary Material

This supplementary file consists of:

• Sampled bodies from clustered types for tops dataset

• Details for user study on validating propagation of pos-
itive clothing-body-pairs

• Proposed ViBE’s architecture details

• Implementation details for collaborative-filtering (CF)
baselines

• Qualitative examples for tops recommendation

• All user study interfaces

• Examples of body-versatile and body-specific dresses
judged by Turkers

• Example explanations for Turkers’ dress selections

I. Clustered Body Types for Tops Data
We use k-means [78] clustering (on features defined in

main paper Sec.3.4) to quantize the body shapes in our
dataset into five types. We do this separately for tops and
dresses datasets. Fig. 12 shows bodies sampled from each
cluster for the tops dataset, and the result for dresses are in
the main paper in Fig. 4.

II. User Study to Validate Label Propagation
In this Birdsnest dataset we collected, positive body-

clothing pairs are directly obtained from the website, where
fashion models wear a specific catalog item. Negative pairs
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Figure 13: Dress dataset: comparison of number of distinct mod-
els vs body types wearing the same dress. Left: initially, over 50%
of the dresses are worn by fewer than 3% of the models, indicat-
ing a false negative problem. Right: using our discovered body
types, most dresses are worn by 2 distinct body types (40% of the
models).

are all the unobserved body-clothing pairings. Taking the
dress dataset we collected as an example, we plot the his-
togram of the number of distinct models wearing the same
dress in Fig. 13a. A high portion of false negatives can be
observed . After propagating positive clothing pairs within
each clustered type, the new histogram with the number of
distinct body types wearing the same dress is in Fig. 13b.
We see most dresses are worn by at least 2 distinct body
types, which corresponds to at least 40% individual models
being paired with each dress.

To validate whether pairing bodies with clothing worn
by different body types gives us true negatives, and whether
propagating positive clothing pairs within similar body
types gives us true positives, we randomly sample ∼ 1000
body-body pairs where each are from a different clustered
type (negatives), and sample 50% of the body-body pairs
within each clustered type (positives), and explicitly ask hu-
man judges on Amazon Mechanical Turk whether subject A
and B have similar body shapes such that the same item of
clothing will look similar on them. The instruction inter-
face is in Fig. 18 and the question interface is in Fig. 19.
Each body-body pair is answered by 7 Turkers, and we use
majority vote as the final consensus. In total, 81% of the
positive body-body pairs are judged as similar enough that
the same clothing will look similar on them. When we break
down the result by cluster types in Tab. 3, we can see that
the larger clusters tend to have more similar bodies. On the
other hand, 63% of the negative body-body pairs are judged
as not similar enough to look similar in the same clothing,
making them true negatives.

III. Architecture Definition for ViBE
The architectures of our embedding model are defined

as follows: Let fck denote a fully connected layer with k
filters, using ReLU as activation function. hattr is an MLP
defined as fcn, fc32, fc8; hcnn is defined as fcn, fc256,



Cluster type 1 2 3 4 5

Number of bodies 23 9 14 6 8
Agreement (%) 98 45 82 29 58

Table 3: Dress dataset: body-body similarity within the same
type, as judged by humans.

fc8; hmeas is defined as fcn, fc4, fc4; hsmpl is defined as
fcn, fc8, fc4. n is the original features’ dimensions, with
n = 64 and 100 for dresses’ and tops’ attributes, n = 2048
for CNN feature, n = 4 for measurement of vital statis-
tics, and n = 10 for SMPL parameters. fcloth is defined as
fc8, fc4; fbody is defined as fc16, fc4.

IV. Implementation Details for CF-based
Baseline

The collaborative filtering (CF) based baselines consist
of a global bias term bg ∈ R, an embedding vector xu ∈ Rd

and a corresponding bias term bu ∈ R for each user u, and
an embedding vector yi ∈ Rd and a corresponding bias term
bi ∈ R for each item i. The interaction between user u and
item i is denoted as:

pui =

{
1, if u observed with i
0, otherwise.

(2)

The goal of the embedding vectors and bias terms is to fac-
tor users’ preference, meaning

p̂ui = xu
T yi +

∑
∗=u,i,g

b∗. (3)

The model is optimized by minimizing the binary cross en-
tropy loss of the interaction:

min
x∗,y∗

∑
u,i

pui log(p̂ui) + (1− pui) log(1− p̂ui). (4)

For body-AWARE-CF, we augment the users’ and items’
embeddings with body and clothing features, vu, vi ∈ Rn:
xu
′ = [xu, vu], yi′ = [yi, vi]. These augmented embed-

dings of users and items, together with the bias terms, pro-
duce the final prediction p̂ui. We found using d = 20 and
n = 5 to be optimal for this baseline. We train it with SGD
with a learning rate of 0.0001 and weight decay 0.0001, de-
cay it by 0.1 at the last 20 epoch and the last 10 epoch, and
train until epoch 60 and 80 for the body-agnostic and body-
aware CF variants, respectively.

V. Qualitative Figures for Tops
We show qualitative recommendation examples on un-

seen people (heldout users) for dresses in Fig. 9 in the main
paper, and for tops in Fig. 14 here. Each row is a method,

Figure 14: Tops dataset: example recommendations for two sub-
jects by all methods. Subjects’ images and their estimated body
shapes are shown on the top of the tables. Each row gives one
method’s most and least recommended tops. Discussion in Sec. V.

and we show its most and least recommended garments
for that person. As the tops are less body-specific (in this
dataset), either body-AGNOSTIC-CF, AGNOSTIC-EMBED
or AWARE-CF fails to recommend garments adapting to
subjects with very different body shapes, and most/least
recommended garments are almost the same for the two
subjects. ViBE recommends cardigans and sweaters with
longer hems for the average body shape user, which could
create a slimming and extending effect, and it recommends
sleeveless, ruched tops for the slender user that shows off
her slim arms while balancing the volume to her torso.

VI. User Study Interfaces
In total, we have 4 user studies. Aside from the self-

evaluation, each question in a user study is answered by 7
Turkers in order to robustly report results according to their
consensus.

Body-similarity user study. This study is to decide
whether two subjects (in the same cluster) have similar body
shapes such that the same piece of clothing will look sim-
ilar on them. The instructions for this user study are in
Fig. 18, and the question interface is in Fig. 19. This user
study validates our positive pairing propagation (see results
in Sec. 3.2 in the main paper and Sec. II in this supplemen-
tary file).

Dress type user study. This study is to decide whether a
dress is body-versatile or body-specific. The instructions
for this user study are in Fig. 20, and the question interface
is in Fig. 21. We show the most body-versatile and body-
specific dresses as rated by the Turkers in Fig. 15. Dresses
rated as most body-versatile are mostly solid, loose, shift
dresses, and those rated as most body-specific are mostly



(a) Body-versatile

(b) Body-specific

Figure 15: Dress data: top 10 body-specific and -versatile dresses
voted by human annotators.

sleeveless, tight or wrapped dresses with special neckline
designs. This is because dresses that cover up most body
parts would not accentuate any specific areas, which “play
it safe” and are suitable for most body shapes. Dresses that
expose specific areas may flatter some body shapes but not
others. In total, 65% of the dresses are annotated as more
body-versatile than body-specific. This user study is for
better analyzing garments in our dataset, as a body-aware
clothing recommendation system offers more impact when
garments are body-specific. (See results in Sec. 4.1 in the
main paper.)

Complementary subject-dress user study. This study is
to decide which dress complements a subject’s body shape
better. The instructions for this user study are in Fig. 22, and
the question is in Fig. 23. This user study is for creating a
human-annotated benchmark for clothing recommendation
based on users’ body shapes. (See results in Sec. 4.3 of the
main paper.)

Self evaluation. This study is to collect user feedback on
which dress complements one’s own body shape better. The
instructions for this user study are the same as the comple-
mentary subject-dress user study above. The interface for
users to select the body shape that best resembles them is in
Fig. 24, and the question is in Fig. 25. We ask participants
to select a 3D body shape directly, as opposed to providing
their own photos, for the sake of privacy. This user study
is for more accurate clothing recommendation evaluation,
as each person knows her own body best. (See results in
Sec. 4.3 of the main paper.)

VII. Explanations for Turkers’ Dress Selec-
tions

In our complementary subject-dress user study, we ask
Turkers to select which dress complements a given subject’s
body shape better, and to briefly explain reasons for their se-
lections, in terms of the fit and shape of the dresses and the
subject (see Sec. 4.3 in the main paper). The provided ex-
planations are utilized as a criterion for evaluating whether
the Turker has domain knowledge for answering this task;
we do not adopt responses from those that fail this criterion.

(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 16: Dress data: examples of Turkers’ explanations for their
selections for four subjects. Two more examples are in Fig. 17.

Example explanations for adopted responses on 6 differ-
ent subjects are shown in Fig. 16 and Fig. 17. The reason for
why a dress is preferred (or not) are usually similar across
multiple Turkers, validating that their selections are not ar-
bitrary nor based on personal style preferences. We believe
that including these explanations in our benchmark further
enriches its usage. For example, one could utilize it to de-
velop models that provide natural-language-explanations in
clothing recommendation.



(a) Subject 5 (b) Subject 6

Figure 17: Dress data: examples of Turkers’ explanations for their
selections for two more subjects. See text for discussion.



Figure 18: Body similarity user study: instructions for judging whether two subjects have similar body shapes such that the same piece of
clothing will look similar on them.



Figure 19: Body similarity user study: question to Turkers for judging whether two subjects have similar body shapes such that the same
piece of clothing will look similar on them.



Figure 20: Dress type user study: instructions for deciding whether a dress is body-versatile or body-specific.



Figure 21: Dress type user study: question for deciding whether a dress is body-versatile or body-specific.



Figure 22: Complementary subject-dress user study: instructions for deciding which dress complements a subject’s body shape better.



Figure 23: Complementary subject-dress user study: question for deciding which dress complements a subject’s body shape better.



Figure 24: Self evaluation: interface for selecting the body shape that best resembles one’s self.



Figure 25: Self evaluation: question for deciding which dress complements one’s own body better.


