
MotionNet: Joint Perception and Motion Prediction for Autonomous Driving
Based on Bird’s Eye View Maps

Pengxiang Wu∗

Rutgers University
pw241@cs.rutgers.edu

Siheng Chen
Mitsubishi Electric Research Laboratories

schen@merl.com

Dimitris Metaxas
Rutgers University
dnm@cs.rutgers.edu

Abstract

The ability to reliably perceive the environmental states,
particularly the existence of objects and their motion behav-
ior, is crucial for autonomous driving. In this work, we pro-
pose an efficient deep model, called MotionNet, to jointly
perform perception and motion prediction from 3D point
clouds. MotionNet takes a sequence of LiDAR sweeps as
input and outputs a bird’s eye view (BEV) map, which en-
codes the object category and motion information in each
grid cell. The backbone of MotionNet is a novel spatio-
temporal pyramid network, which extracts deep spatial and
temporal features in a hierarchical fashion. To enforce
the smoothness of predictions over both space and time,
the training of MotionNet is further regularized with novel
spatial and temporal consistency losses. Extensive experi-
ments show that the proposed method overall outperforms
the state-of-the-arts, including the latest scene-flow- and
3D-object-detection-based methods. This indicates the po-
tential value of the proposed method serving as a backup
to the bounding-box-based system, and providing comple-
mentary information to the motion planner in autonomous
driving. Code is available at https://github.com/
pxiangwu/MotionNet.

1. Introduction
Determining the environmental states is critical for de-

ploying autonomous vehicles (AVs) [11]. Accurate state
information would facilitate motion planning and provide
smooth user experience. The estimation of environmental
state typically comprises two tasks: (1) perception, which
identifies the foreground objects from the background; (2)
motion prediction, which predicts the future trajectories of
objects. In the past years, various methods have been de-
veloped to handle these two tasks independently or jointly,
achieving remarkable progress with the aid of deep learn-
ing [22, 5]. In this work, we consider joint perception and
motion prediction from a sequence of LiDAR point clouds.

Traditional approaches to the perception of environment
∗Work done during an internship at MERL.

3D
 O

bj
ec

t D
et

ec
tio

n
M

ot
io

nN
et

(a) LiDAR data (BEV)

(e) Predicted motion (BEV) (f) GT motion (BEV)(d) Front camera image

(b) Predicted 3D box (BEV) (c) GT 3D box (BEV)

3D Object 
Detection

MotionNet Motion
Planning

2. Example: disabled person in a wheelchair

1. A system for autonomous driving 

Tracking & 
Trajectory 
Prediction

BEV map with motion and categoryLiDAR point cloud

3D bounding boxes

Vehicle
Wheelchair

Vehicle
Wheelchair

Vehicle
Wheelchair

Vehicle
Wheelchair

Figure 1. Top: MotionNet is a system based on bird’s eye
view (BEV) map, and performs perception and motion prediction
jointly without using bounding boxes. It can potentially serve as
a backup to the standard bounding-box-based-system and provide
complementary information for motion planning. Bottom: Dur-
ing testing, given an object (e.g., disabled person on a wheelchair,
as illustrated in (d)) that never appears in the training data, 3D ob-
ject detection (e.g., [46]) tends to fail; see plots (b) and (c). In
contrast, MotionNet is still able to perceive the object and fore-
cast its motion; see plots (e) and (f), where the color represents the
category and the arrow denotes the future displacement.

mainly rely on the bounding box detection, which is im-
plemented through 2D object detection based on camera
data [41, 27, 20, 63], 3D object detection based on LiDAR
data [64, 19, 46], or fusion-based detection [6, 24, 23]. The

1

ar
X

iv
:2

00
3.

06
75

4v
1 

 [
cs

.C
V

] 
 1

5 
M

ar
 2

02
0

https://github.com/pxiangwu/MotionNet
https://github.com/pxiangwu/MotionNet


detected bounding boxes are then fed into an object tracker,
followed by a motion predictor; see Fig. 1(1). Some re-
cent works implement all these modules into an end-to-end
framework, which directly produces bounding boxes along
with future trajectories [31, 4, 59]. While being widely
adopted, the above state estimation strategies tend to fail in
open-set scenarios of real traffic due to the dependency on
object detection. In particular, the object detectors are dif-
ficult to generalize to classes that have never been present
in the training set, consequently leading to catastrophic fail-
ures for the downstream modules, as illustrated in Fig. 1(2).

One alternative direction is to represent the 3D environ-
mental information by using an occupancy grid map (OGM)
[14, 34, 44]. An OGM discretizes the 3D point cloud into
equal 2D grid cells, each of which contains the belief that
the corresponding space is occupied by at least one point.
With this design, OGMs can be used to specify the driv-
able space into the future and thereby provide support for
motion planning. One major weakness of OGM is the dif-
ficulty to find the correspondence between the cells across
time. This makes it difficult to explicitly model the dynam-
ics of objects. In addition, the object category information
is typically discarded in OGMs, and thus it is impossible
to consider category-specific constraints on the motions of
traffic actors for relationship understanding.

To address these weaknesses, we represent the environ-
mental state based on a bird’s eye view (BEV) map. Simi-
lar to OGM, we discretize a point cloud around ego-vehicle
into independent cells (i.e., a BEV map). The BEV map
extends OGM and provides three-fold information: occu-
pancy, motion, and category information; see Fig. 2. We
encode the motion information by associating each cell with
displacement vectors, which represent the positions into the
future and could characterize nonlinear dynamics. In this
way, we are able to determine the drivable space as well as
describe the motion behavior of each individual object. The
cell categories are derived from the object they belong to,
and are used to facilitate the understanding of environment.

Based on a temporal sequence of such BEV maps, we
propose a novel deep model for jointly reasoning about the
category and motion information for each cell. We name
our model MotionNet, with an emphasis on its ability to
predict motions, even for unseen objects in the training set.
MotionNet is bounding-box free, and is able to leverage
motion clues for object recognition. The core of Motion-
Net is a novel spatio-temporal pyramid network (STPN). To
extract the spatio-temporal features, STPN performs a se-
ries of spatio-temporal convolutions (STC) in a hierarchical
fashion. Each STC relies on 2D spatial convolutions, fol-
lowed by a light-weight pseudo-1D temporal convolution,
yielding an efficient system. In practice, MotionNet runs
at 53 Hz, making it suitable to deploy in real-time systems.
The outputs of STPN are delivered to different heads for

cell classification, state estimation and motion prediction,
respectively; see Fig. 2. During inference, to make the pre-
dictions consistent across tasks, we regularize the predicted
motions with the guide of classification results. To further
enforce the smoothness of predictions over space and time,
we constrain the network training with several novel spa-
tial and temporal consistency losses, which promote more
realistic motion forecast.

We evaluate our approach on the large-scale nuScenes
dataset [3] and compare with different prior arts for envi-
ronmental state estimation, including those based on scene
flow and object detection. Experimental results demonstrate
the effectiveness and superiority of our method. Our study
shows the potential value of MotionNet in the real-world
settings for autonomous driving: it can work collaboratively
with other modules, and provide complementary perception
and motion information for motion planning.

To summarize, the main contributions of our work are:
• We propose a novel model, called MotionNet, for joint

perception and motion prediction based on BEV maps.
MotionNet is bounding-box free and can provide com-
plementary information for autonomous driving;
• We propose a novel spatio-temporal pyramid network

to extract spatio-temporal features in a hierarchical
fashion. This structure is light-weight and highly ef-
ficient, and thus is suitable for real-time deployment;
• We develop spatial and temporal consistency losses to

constrain the network training, enforcing the smooth-
ness of predictions both spatially and temporally; and
• Extensive experiments validate the effectiveness of our

method, and in-depth analysis is provided to illustrate
the motivations behind our design.

2. Related Work
Perception. This task aims to identify the locations and
categories of objects in the surrounding environments. One
typical formulation of this task is the bounding box detec-
tion. Depending on the input modality, existing works can
be divided into three categories: (1) 2D object detection on
images [41, 7, 27, 40, 26, 20, 63]; (2) 3D object detection on
point clouds [58, 18, 57, 48, 64, 56, 19, 47, 55, 36, 46, 35],
and (3) fusion-based detection [6, 24, 23]. Nevertheless,
object detection relies on shape recognition and is difficult
to detect objects whose categories are never present in the
training set. This would cause fatal consequences in numer-
ous real-world scenarios. In contrast to bounding boxes,
the proposed BEV-map-based representation extends occu-
pancy maps and does not rely on shape recognition. The
resulting system is able to perceive salient traffic actors and
provide complementary information to the motion planner.
Motion prediction. This task aims to predict the future
positions of objects based on the history information. Clas-
sical methods typically formulate this task as trajectory pre-



Synchronization 
& discretization

Spatio-temporal pyramid 
network

Cell Classification

Motion Prediction

State Estimation

A sequence of LiDAR sweeps BEV maps Output BEV map for time 𝜏𝜏

Color: category; Arrow: motion

Figure 2. Overview of MotionNet. Given a sequence of LiDAR sweeps, we first represent the raw point clouds into BEV maps, which
are essentially 2D images with multiple channels. Each pixel (cell) in a BEV map is associated with a feature vector along the height
dimension. We then feed the BEV maps into the spatio-temporal pyramid network (STPN) for feature extraction. The output of STPN is
finally delivered to three heads: (1) cell classification, which perceives the category of each cell, such as vehicle, pedestrian or background;
(2) motion prediction, which predicts the future trajectory of each cell; (3) state estimation, which estimates the current motion status of
each cell, such as static or moving. The final output is a BEV map, which includes both perception and motion prediction information.

diction, which, however, relies on accurate object detec-
tion and tracking for trajectory acquisition [1, 21, 32, 13, 8,
42, 62, 43, 60, 33]. Another direction proposes to jointly
perform 3D detection, tracking and motion forecasting,
and has demonstrated remarkable performance [31, 4, 59].
Still, due to the dependence on the bounding box detection,
such a strategy tends to fail in the presence of unexpected
objects. This weakness can be circumvented with occu-
pancy grid map [10], particularly the multi-step dynamic
OGMs [14, 34, 44], which represent the object locations
and dynamics with the occupancy state of cells and their as-
sociated velocities, respectively. This representation is able
to represent the drivable space and motions easily without
the need for object boxes. However, due to the lack of cell
correspondences between OGMs across time, it is difficult
to model the nonlinear dynamic behavior of objects. This
property, together with another one that OGM typically ig-
nores object categories, make it impractical to explicitly
capture the object interaction relationships. In contrast, the
proposed BEV-map-based representation contains both cat-
egory and motion information.
Flow estimation. Different from motion prediction, this
task aims to estimate the motion from the past to current
time. Depending on the input data, the motion information
can be extracted from 2D optical flow [15, 30, 9, 16] or 3D
scene flow [12, 28, 29]. In practice, we can exploit the esti-
mated flow to predict future trajectories by assuming linear
dynamics, as demonstrated in Sec. 4.

3. Methodology
In this section, we present MotionNet; see Fig. 2. The

pipeline includes three parts: (1) data representation from
raw 3D point clouds to BEV maps; (2) spatio-temporal
pyramid network as the backbone; and (3) task-specific
heads for grid cell classification and motion prediction.

3.1. Ego-motion compensation
Our input is a sequence of 3D point clouds, where each

original point cloud frame is described by its local coordi-

nate system. We need to synchronize all the past frames to
the current one, i.e., represent all the point clouds within
the current coordinate system of ego vehicle via coordinate
transformation. This is critical for counteracting the ego-
motion of AV and avoiding specious motion estimation. In
addition, it aggregates more points for the static background
while providing clues on the motions of moving objects.

3.2. BEV-map-based representation
Unlike 2D images, 3D point clouds are sparse and irreg-

ularly scattered, and thus cannot be processed directly with
standard convolutions. To address this issue, we convert the
point clouds into BEV maps, which are amenable to clas-
sic 2D convolutions. Specifically, we first quantize the 3D
points into regular voxels. Different from [64, 56], which
encode the point distribution within each voxel into high-
level features through PointNet [37], we simply use a binary
state as a proxy of a voxel, indicating whether the voxel is
occupied by at least one point. Then we represent the 3D
voxel lattice as a 2D pseudo-image, with the height dimen-
sion corresponding to image channels. Such a 2D image is
virtually a BEV map, where each cell is associated with a
binary vector along the vertical axis. With this representa-
tion, we can apply 2D convolutions to the BEV maps rather
than the 3D convolutions for feature learning.

Compared to prior arts relying on 3D voxels [64, 56] or
raw point clouds [38, 52], our approach allows employing
standard 2D convolutions, which are well supported in both
software and hardware levels, and therefore is extremely ef-
ficient [53]. In addition, the BEV maps keep the height in-
formation as well as the metric space, allowing the network
to leverage priors on the physical extensions of objects [58].

3.3. Spatio-temporal pyramid network
As described above, the input to our model is virtually

a sequence of 2D pseudo-images. To efficiently capture the
spatio-temporal features, we follow the spirit of recent stud-
ies on video classification task, which suggests replacing
the bulky 3D convolutions with the low-cost ones (e.g., 2D



Input: 𝑇𝑇×𝐶𝐶×𝐻𝐻×𝑊𝑊
…

…
…

…

STC Block-1

STC Block-2

STC Block-3

STC 
Block-4

Temporal 
Pooling

Temporal 
Pooling

Temporal 
Pooling

Temporal 
Pooling

Temporal 
Pooling

Concat
2D Conv

Concat
2D Conv

Concat
2D Conv

Concat
2D Conv

Output: 1×𝐶𝐶×𝐻𝐻×𝑊𝑊

1×𝐶𝐶×𝐻𝐻×𝑊𝑊

𝑇𝑇1×2𝐶𝐶×
𝐻𝐻
2

×
𝑊𝑊
2

𝑇𝑇2×4𝐶𝐶×
𝐻𝐻
4

×
𝑊𝑊
4

𝑇𝑇3×8𝐶𝐶×
𝐻𝐻
8

×
𝑊𝑊
8

1×16𝐶𝐶×
𝐻𝐻
16

×
𝑊𝑊
16

Deconv

Deconv

Deconv

Deconv

1×8𝐶𝐶×
𝐻𝐻
8

×
𝑊𝑊
8

1×4𝐶𝐶×
𝐻𝐻
4

×
𝑊𝑊
4

1×2𝐶𝐶×
𝐻𝐻
2

×
𝑊𝑊
2

1×8𝐶𝐶×
𝐻𝐻
8

×
𝑊𝑊
8

1×4𝐶𝐶×
𝐻𝐻
4

×
𝑊𝑊
4

1×2𝐶𝐶×
𝐻𝐻
2

×
𝑊𝑊
2

𝑇𝑇4×16𝐶𝐶×
𝐻𝐻
16

×
𝑊𝑊
16

Figure 3. Spatio-temporal pyramid network. Each STC block con-
sists of two consecutive 2D convolutions followed by one pseudo-
1D convolution. The temporal pooling is applied to the temporal
dimension and squeezes it to length 1. T1 ≥ T2 ≥ T3 ≥ T4.

convolutions) [39, 51, 54, 50, 25]. However, unlike classical
video classification task which only predicts one category
label for the whole image sequence, we aim to classify each
BEV lattice cell at the current time and estimate its future
position. In particular, there are two issues that need to be
addressed. First, when and how to aggregate the temporal
features. As is indicated in [51, 54], the timing of tempo-
ral convolutions is critical for achieving good performance.
Second, how to extract the multi-scale spatio-temporal fea-
tures, which are known to be essential for capturing both
local and global contexts in dense prediction task [61].

To address these issues, we develop a spatio-temporal
pyramid network (STPN) to extract features along both
the spatial and temporal dimensions in a hierarchical fash-
ion; see Fig. 3. The basic building block of STPN is the
spatio-temporal convolution (STC) block. Each STC block
consists of standard 2D convolutions, followed by a degen-
erate 3D convolution, to capture the spatial and temporal
features, respectively. The kernel size of the 3D convolution
is k×1×1, where k corresponds to the temporal dimension.
Such a 3D filter is essentially a pseudo-1D convolution and
thus enables a reduction of model complexity.

To promote multi-scale feature learning, STPN com-
putes a feature hierarchy over the space and time with STC
blocks. In particular, for the spatial dimension, we com-
pute the feature maps at several scales with a scaling step
of 2. Similarly, for the temporal dimension, we gradually
reduce the temporal resolution after each temporal convo-
lution, thereby extracting temporal semantics of different
scales. To fuse the spatio-temporal features across differ-
ent levels, we perform global temporal pooling to capture

(a) Ground-truth (b) Before suppression (c) After suppression

Figure 4. The outputs of cell-classification and state-estimation
heads can be used to suppress the undesirable jitters (e.g., back-
ground may have non-zero motion). Gray: background; blue: ve-
hicle. Arrow: motion. (Zoom in for best view.)

the salient temporal features, and deliver them to the up-
sampled layers of feature decoder via lateral connections.
This design encourages the flow of local and global spatio-
temporal contexts, which is beneficial to our dense predic-
tion task. The overall structure of STPN only relies on 2D
and pseudo-1D convolutions and thus is highly efficient.

3.4. Output heads

To generate the final outputs, we append three heads to
the end of STPN: (1) cell-classification head, which essen-
tially performs BEV map segmentation and perceives the
category of each cell; (2) motion-prediction head, which
forecasts the positions of cells into the future; and (3) state-
estimation head, which estimates the motion status for each
cell (i.e., static or moving) and provides auxiliary informa-
tion for motion prediction. We implement these three heads
with two-layer 2D convolutions. For the cell-classification
head, the shape of output is H ×W × C, where C is the
number of cell categories. For motion-prediction head, it
represents the predicted cell positions as {X(τ)}t+Nτ=t , where
X(τ) ∈ RH×W×2 denotes the positions at time τ , t is the
current time and N is the number of future frames; thus
its output shape is N × H × W × 2. Note that the mo-
tion is assumed to be on the ground, which is reasonable
in autonomous driving as traffic actors do not fly. For the
state-estimation head, the shape of output is H ×W , where
each element denotes the probability of being static.

The motion-prediction head can be trained with regres-
sion loss (e.g., smooth L1). However, naively regressing
the future positions of cells will lead to undesirable jitters
of static cells. For example, even though the cells are classi-
fied as background, they could still have small movements;
see Fig. 4. To remedy this issue, we use the outputs from
the other two heads to regularize the predicted cell trajecto-
ries. Specifically, we threshold the motions for cells that are
predicted as background, i.e., set their corresponding mo-
tion estimations to zero. In addition, to deal with the static
foreground objects, such as parking vehicles, we use the es-
timated states from the state-estimation head, and suppress
the jitter effect by thresholding the motions of static cells.



Remarks. Compared to bounding-box-based methods, the
above design potentially enables to better perceive the un-
seen objects beyond training set. The intuitions are: (1)
the box-based methods capture objects using ROI global
shape/texture information, which is different across object
categories and hard to generalize from seen objects to un-
seen ones. In contrast, our method effectively decomposes
ROIs into grid cells, and in each cell it extracts local in-
formation shared by many object categories; (2) the box-
based methods involve object proposals and NMS, which
might remove uncertain detections (especially for the un-
seen); while our method makes predictions for all occupied
cells; and (3) temporal information leveraged by MotionNet
provides clues on the existence of objects and their motions.

3.5. Loss function
We train the network to simultaneously minimize the

losses associated with three heads. For the classification and
state-estimation heads, we employ the cross-entropy loss,
where each category term is assigned a different weight so
as to handle the class imbalance issue. For the motion-
prediction head, we adopt weighted smooth L1 loss, where
the weights are determined following the same specification
of classification head. However, the above losses are only
able to regularize the network training globally, but do not
ensure the spatial and temporal consistencies locally. To ad-
dress this weakness, we introduce additional losses below.

Spatial consistency loss. Intuitively, for the cells be-
longing to the same rigid object, their predicted motions
should be very close without much divergence. Inspired by
this observation, we constrain the estimated motions locally
with the following spatial consistency loss:

Ls =
∑
k

∑
(i,j),(i′,j′)∈ok

∥∥∥X(τ)
i,j −X

(τ)
i′,j′

∥∥∥ , (1)

where ‖·‖ is the smooth L1 loss, ok denotes the object in-
stance with index k, and X(τ)

i,j ∈ R2 is the predicted mo-
tion at position (i, j) and time τ . Note that it is computa-
tionally expensive to exhaustively compare all pairs ofX(τ)

i,j

andX(τ)
i′,j′ . To avoid this, we only consider a subset of pairs,

each of which involves two positions adjacent in index.
Foreground temporal consistency loss. Similar to spa-

tial consistency, we can also pose temporal constraint over
the local time window. In particular, for each object, we
can reasonably assume that there will be no sharp change of
motions between two consecutive frames. This assumption
can be achieved by minimizing the following loss:

Lft =
∑
k

∥∥∥X(τ)
ok
−X(τ+∆t)

ok

∥∥∥ , (2)

where X(τ)
ok ∈ R2 denotes the overall motion of object k,

which in our implementation is represented by the average

motion: X(τ)
ok =

∑
(i,j)∈ok X

(τ)
i,j /M , where M is the num-

ber of cells belonging to ok.
Background temporal consistency loss. Note that Lft

mainly operates on the foreground objects, such as vehicles,
and does not consider the background cells. As a compensa-
tion for this weakness, we introduce another temporal loss:

Lbt =
∑

(i,j)∈X(τ)∩T (X̃(τ−∆t))

∥∥∥X(τ)
i,j − Ti,j

(
X̃(τ−∆t)

)∥∥∥ ,
(3)

where X(τ) and X̃(τ) are the predictions with current time
being t and t + ∆t, respectively; T ∈ SE(3) is a rigid
transformation which aligns X̃(τ−∆t) with X(τ). In prac-
tice, T could be derived from the ground-truth ego motion,
or from point cloud registration algorithms (e.g., ICP [2]).
Note that since X̃(τ−∆t) is a discrete grid, the transformed
result is interpolated on the cells. After applying this trans-
formation, T (X̃(τ−∆t)) will be partially overlapped with
X(τ) on the static cells which are mainly background. By
minimizing this loss, we encourage the network to produce
coherent results on the overlapped regions, thereby leading
to temporally smooth predictions.

To summarize, the overall loss function for the training
of MotionNet is defined as:

L = Lcls + Lmotion + Lstate + αLs + βLft + γLbt, (4)

where Lcls and Lstate are cross-entropy losses for the cell-
classification and state-estimation heads, Lmotion is smooth
L1 loss for the motion-prediction head; α, β and γ are the
balancing factors. Since L involves multiple tasks, it could
be minimized within multi-objective optimization frame-
work, which enables adaptive trade-off between tasks [45].

4. Experiments
In this section, we evaluate the performance of the pro-

posed network on the nuScenes [3] dataset. We first in-
troduce the implementation details of MotionNet, and then
compare it with previous state-of-the-art methods. We fi-
nally provide ablation studies to analyze our design choices.
Dataset. nuScenes [3] is a large-scale dataset for au-
tonomous driving, and contains different types of sensor
data with 360◦ coverage on the surroundings. In this work,
we only utilize its LiDAR point clouds, which are captured
with a frequency of 20Hz and collected from 1,000 scenes.
Each scene comprises a sequence of LiDAR sweeps with
a duration of 20s. Since the original focus of nuScenes is
on object detection, for each sweep it only provides anno-
tated bounding boxes without motion information. To adapt
this dataset to our task, we derive the ground-truth cell mo-
tions between two sweeps as follows: for each cell inside
a bounding box, its motion is computed as Rx + c∆ − x,
where x is the cell position, R is the yaw rotation with re-
spect to the box center, and c∆ is the displacement of box



Method Static Speed ≤ 5m/s Speed > 5m/s Classification Accuracy (%) Infer.
Mean Median Mean Median Mean Median Bg Vehicle Ped. Bike Others MCA OA Speed

Static Model 0 0 0.6111 0.0971 8.6517 8.1412 - - - - - - - -
FlowNet3D (pretrain) [28] 2.0514 0 2.2058 0.3172 9.1923 8.4923 - - - - - - - 0.434s
FlowNet3D [28] 0.0410 0 0.8183 0.1782 8.5261 8.0230 - - - - - - - 0.434s
HPLFlowNet (pretrain) [12] 2.2165 1.4925 1.5477 1.1269 5.9841 4.8553 - - - - - - - 0.352s
HPLFlowNet [12] 0.0041 0.0002 0.4458 0.0960 4.3206 2.4881 - - - - - - - 0.352s
PointRCNN [46] 0.0204 0 0.5514 0.1627 3.9888 1.6252 98.4 78.7 44.1 11.9 44.0 55.4 96.0 0.201s
LSTM-Encoder-Decoder [44] 0.0358 0 0.3551 0.1044 1.5885 1.0003 93.8 91.0 73.4 17.9 71.7 69.6 92.8 0.042s
MotionNet 0.0256 0 0.2565 0.0962 1.0744 0.7332 97.3 91.1 76.2 20.6 66.1 70.3 96.1 0.019s
MotionNet + Ls 0.0256 0 0.2488 0.0958 1.0110 0.7001 97.5 91.3 76.2 23.7 67.6 71.2 96.3 0.019s
MotionNet + Lft 0.0252 0 0.2515 0.0962 1.0360 0.7136 97.6 90.6 75.3 21.9 65.2 70.1 96.3 0.019s
MotionNet + Lbt 0.0240 0 0.2530 0.0960 1.0399 0.7131 97.5 91.1 74.6 25.2 68.0 71.3 96.3 0.019s
MotionNet + Ls + Lft + Lbt 0.0239 0 0.2467 0.0961 1.0109 0.6994 97.6 90.7 77.2 25.8 65.1 71.3 96.3 0.019s
MotionNet + MGDA 0.0222 0 0.2366 0.0953 0.9675 0.6639 97.1 90.5 78.4 22.1 67.4 71.1 95.7 0.019s
MotionNet + {L} + MGDA 0.0201 0 0.2292 0.0952 0.9454 0.6180 97.0 90.7 77.7 19.7 66.3 70.3 95.8 0.019s

Table 1. Performance comparison on perception and motion prediction. MotionNet is significantly faster than all the baselines and overall
achieves the best performance. The proposed spatial and temporal consistency losses are able to help improve the accuracy of MotionNet.

center; for those cells outside bounding boxes, we simply
set their motions to be zero. In nuScenes, the box annota-
tions are only accessible for the training and validation sets,
and therefore we only use them as our experimental data
and ignore the official testing data. As a result, we have 850
scenes in total, and in the experiment we use 500 of them
for training, 100 for validation and 250 for testing.

We divide each scene into short clips as the input of
networks. To reduce redundancy, each clip only consists
of a keyframe that corresponds to the current time, and
four history sweeps that are synchronized to the keyframe.
The keyframes are sampled at 2Hz for training, while for
val/testing they are sampled at 1Hz to reduce the similarity
between clips. The time span between each two consecutive
frames in a clip is 0.2s. For the training data, apart from the
keyframe clips, we extract additional clips whose current
time is (t + 0.05)s, where t represents the time of neigh-
boring keyframe. These additional clips are paired with the
keyframe ones to compute the temporal consistency losses.
In summary, we have 17,065 clip pairs for training, 1,719
clips for validation and 4,309 clips for testing.
Implementation details. The point clouds are cropped to
reside within a region defined by [−32, 32] × [−32, 32] ×
[−3, 2] meters, which correspond to the XYZ ranges, re-
spectively1. The resolution of each partitioned voxel is
(∆x,∆y,∆z) = (0.25, 0.25, 0.4) m. For the temporal in-
formation, we use 5 frames of synchronized point clouds,
where 4 are from the past timestamps and 1 corresponds to
the current time. We define 5 cell categories for the percep-
tion: background, vehicle (comprising car and bus), pedes-
trian, bicycle and others. The “others” category includes
all the remaining foreground objects from nuScenes, and
is introduced to handle the possibly unseen objects beyond
training data. Note that such a setting makes the classifi-
cation task fairly challenging, as the objects in the “others”

1The nuScenes dataset adopts 32-line LiDAR. Distant objects have too
few LiDAR points to do detection.

category involve various shapes and some of them are sim-
ilar to those from the “vehicle” category in appearance.

For MotionNet, its input is a 4D tensor of size 5× 13×
256 × 256. Before feeding this tensor to STPN, we firstly
lift its channel size to 32 with two-layer 2D convolutions.
As for STPN, we employ the spatio-temporal convolutions
only in STC blocks 1 and 2, and gradually decrease the tem-
poral resolution by unpadding the feature maps. This gives
T1 = 5, T2 = 3, T3 = T4 = 1. As a result, STC blocks
3 and 4 degenerate to regular 2D convolutions. For the
motion estimation, we predict the positions of each cell at
timestamps {τ}t+1

τ=t+0.05, where t is the current time. How-
ever, instead of directly regressing the motions, we predict
the relative displacement between two adjacent timestamps,
i.e., ∆dτ = dτ+0.05 − dτ , where dτ denotes the displace-
ment from current time t to future time τ . Therefore, during
inference, the absolute displacement at timestamp τ is cal-
culated as dτ =

∑τ−0.05
i=t ∆di. Finally, for the training loss,

we set the balancing factors as α = 15, β = 2.5, γ = 0.1.
Evaluation criteria. For motion prediction, we evaluate
the performance by dividing the cells into 3 groups, which
have different speeds: static, slow (≤ 5m/s), and fast (>
5m/s). In each group, we compute the average L2 distances
between the estimated displacements and the ground-truth
displacements. Apart from this mean value, we also report
the median value. For the classification, we measure the
performance with two metrics: (1) overall cell classification
accuracy (OA), which is the average accuracy over all cells;
(2) mean category accuracy (MCA), which is the average
accuracy over all five categories. All the evaluations only
involve the non-empty cells.

4.1. Comparison with state-of-the-art methods
Baselines. We compare with the following methods: (1)
Static Model, which assumes the environment is static. (2)
FlowNet3D [28] and HPLFlowNet [12], which estimate the
scene flow between two point clouds. We employ these two
methods by assuming linear dynamics: given flow ∆d be-



Figure 5. Qualitative results show that MotionNet produces both high-quality classification and motion prediction. Top row: ground-truth.
Bottom: MotionNet predictions. Gray: background; blue: vehicle; red: pedestrian; orange: bicycle; green: others. (Zoom in for best view.)

tween two point clouds at time t−δ and t, we can predict the
flow from current time t to the future time t + nδ as n∆d.
The predicted flow is then projected onto BEV map for per-
formance evaluation. (3) PointRCNN [46], which predicts
the 3D object bounding boxes from the raw point cloud. Af-
ter obtaining the bounding boxes for the sequence of point
clouds, we use Kalman filter [17] to track the objects and
predict their future trajectories. The trajectories are finally
converted to BEV map. Note that, following [46], here we
train 4 models to separately handle each object category,
and the final detection results are obtained by combining
the outputs from each model. (4) LSTM-Encoder-Decoder
[44], which estimates the multi-step OGMs. We adapt this
method to our task by using the same output heads with
MotionNet, while preserving its backbone structure.
Results. We list the performance of different methods in
Table 1, where motions are predicted 1s into the future. As
can be seen, our method is significantly faster than the base-
lines, and outperforms them by a large margin for slow and
fast cell speeds. For static case, the Static Model achieves
the best result, which is not surprising. However, the Static
Model is only used to demonstrate the theoretical limit and
is not reasonable to deploy in reality. In Table 1 we also
report the performance of FlowNet3D and HPLFlowNet
which are pretrained on FlyingThings3D [28, 12] and tested
on nuScenes without fine-tuning. As is shown, their per-
formances are even inferior to that of Static Model. Al-
though this situation can be improved by training them di-
rectly on nuScenes LiDAR data, their overall performance
is still far from good: HPLFlowNet behaves similarly to
Static Model while FlowNet3D is worse. Finally, in Table 1
we observe that the performance of PointRCNN is not satis-
fying. This is mainly due to the unstable object detection in
point cloud sequence, which leads to significant failure of
trajectory prediction. In contrast, our method predicts the
motion more accurately and efficiently, indicating its poten-
tial value in providing complementary information to the

Frame # Static Speed Speed MCA OA Infer.
≤ 5m/s > 5m/s Speed

2 0.0270 0.2921 1.2445 69.7 95.6 0.013s
3 0.0264 0.2738 1.0953 69.6 95.9 0.014s
4 0.0258 0.2597 1.0804 70.2 96.0 0.017s
5 0.0256 0.2565 1.0744 70.3 96.1 0.019s
6 0.0254 0.2657 1.1220 69.7 96.2 0.021s
7 0.0255 0.2582 1.0779 70.0 96.2 0.022s

Table 2. The effects of frame number on model performance. For
motion prediction, the mean errors are reported. Using frame num-
ber 5 enables a good trade-off between efficiency and accuracy.

motion planning. We show the qualitative results in Fig. 5.
Table 1 also demonstrates the effectiveness of spatial and

temporal consistency losses. In particular, the spatial loss
Ls benefits the prediction of moving cells, while temporal
losses Lft and Lbt facilitate the learning of static environ-
ment. Their combination further boosts the prediction per-
formance by exploiting their respective advantages. In Ta-
ble 1 we also give the results when training the network with
multiple-gradient descent algorithm (MGDA) [45], which
enables adaptive trade-off among the 3 prediction heads.
As is shown, MGDA is able to enhance the motion pre-
diction significantly while sacrificing the classification ac-
curacy mildly. When equipped with spatio-temporal consis-
tency losses, MGDA achieves the best motion predictions.

Note that Table 1 shows that the classification accuracy
for the “bicycle” category is low. This is mainly due to the
limited number of bicycles in the training set. In addition,
the size of bicycles is small in the BEV maps, making it
difficult to recognize them. This issue cannot be solved even
if we increase the training weight for the “bicycle” category.

4.2. Ablation studies
Below we investigate a few design choices of MotionNet.
Number of frames. We show the effects of point cloud
frame number in Table 2. As can be seen, more frames



Synch. Strategy Static Speed Speed MCA OA≤ 5m/s > 5m/s
No Synch. 0.0281 0.4245 1.7317 67.1 95.2

ICP [2] 0.0279 0.4073 1.6614 67.4 95.3
GT Synch. 0.0256 0.2565 1.0744 70.3 96.1

Table 3. The effects of sweep synchronization. Ego-motion com-
pensation is important for achieving good performance.

Data Rep. Static Speed Speed MCA OA Infer.
≤ 5m/s > 5m/s Speed

Voxel 0.0257 0.2546 1.0712 69.6 96.2 0.107s
Pillar 0.0258 0.2612 1.0747 70.0 96.1 0.096s
BEV 0.0256 0.2565 1.0744 70.3 96.1 0.019s

(1.0, 1.0, 0.5)∆ 0.0253 0.2540 1.0752 70.1 96.0 0.024s
(1.0, 1.0, 1.5)∆ 0.0253 0.2562 1.0726 70.1 95.9 0.014s
(0.5, 0.5, 0.5)∆ 0.0261 0.2561 1.0806 70.5 96.1 0.106s
(0.5, 0.5, 1.0)∆ 0.0269 0.2545 1.0761 71.0 95.9 0.064s
(0.5, 0.5, 1.5)∆ 0.0257 0.2547 1.0733 70.9 96.0 0.050s

Table 4. The effects of input data representation. Finer geometric
details do not necessarily lead to much better performance, but
would introduce extra computational costs.

would lead to improved performance at the cost of extra
computation. When the frame number exceeds 5, the model
accuracy saturates with small performance gain. Thus, we
choose frame number 5 as an accuracy-efficiency trade-off.
Ego-motion compensation. As is shown in Table 3, sweep
synchronization affects the model performance greatly.
When without synchronization, the performance drops sig-
nificantly compared to the one using ground-truth align-
ment between point clouds. This validates the importance
of ego-motion compensation. From Table 3 we also see that
ICP [2] is able to help undo the ego-motion to some extent,
but is still inferior to using ground-truth synchronization.
Input data representations. We study the effects of differ-
ent data representations on model performance. In particu-
lar, we consider replacing input BEV maps with voxels [64]
or pillars [19] which contain fine geometric information. To
further explore the effects of shape details, we adjust the
resolution of binary voxels in our BEV maps. For exam-
ple, in Table 4, (0.5, 0.5, 0.5)∆ = (0.5∆x, 0.5∆y, 0.5∆z)
means subdividing the voxels by half, which generates 8×
more binary voxels for the original ∆x×∆y region. To pro-
duce the final input BEV map, we reshape the subdivided
voxels into a binary vector for each ∆x × ∆y region, thus
growing the size of feature channel by 8×. From Table 4 we
can see that, fine geometric details do not necessarily lead
to improved performance for our task, but instead would in-
troduce extra computational costs. Our BEV representation
enables a good trade-off between accuracy and speed.
Spatio-temporal feature extraction. To validate our de-
sign choice, we compare our method with another two
variants which aggregate spatio-temporal features at dif-
ferent times: (1) Early fusion, which first uses two STC
blocks (without spatial downsampling) to gradually reduce

Block
Fusion Early Mid Late Static Speed Speed MCA OA Infer.

≤ 5m/s > 5m/s Speed
STC X 0.0271 0.2596 1.1002 70.5 96.0 0.015s
STC X 0.0256 0.2565 1.0744 70.3 96.1 0.019s
STC X 0.0256 0.2748 1.0838 70.4 96.0 0.019s

C3D [49] X 0.0257 0.2624 1.0831 70.5 96.1 0.021s
S3D [54] X 0.0267 0.2644 1.1236 70.9 95.9 0.019s
TSM [25] X 0.0262 0.2651 1.1241 70.9 96.0 0.018s
CS3D [50] X 0.0261 0.2631 1.1787 71.0 96.0 0.021s

Table 5. Different strategies for spatio-temporal feature fusion.
Overall, the middle fusion with STC blocks provides the best
trade-off between accuracy and efficiency.

State Relative J.S. w/ J.S. w/ Static Speed Speed MCA OAHead Offset Cls State ≤ 5m/s > 5m/s
1 X X 0.0284 0.2610 1.0957 69.8 95.0
2 X X X 0.0264 0.2621 1.1121 70.2 95.8
3 X X 0.0331 0.2547 1.0601 70.3 96.1
4 X X X 0.0259 0.2564 1.0722 70.3 96.1
5 X X X 0.0264 0.2554 1.0657 70.3 96.1
6 X X X X 0.0256 0.2565 1.0744 70.3 96.1

Table 6. The effects of different training and prediction strategies.
We study the following factors: (1) using auxiliary state head; (2)
predicting the relative offset between adjacent timestamps, vs. di-
rectly regressing the motions at the target timestamp; (3-5) using
classification and state estimation results for motion jitter suppres-
sion (J.S.). The specification of our final model is listed in (6).

the temporal resolution, and then employs STPN but dis-
cards its temporal convolutions; i.e., Ti = 1, i ∈ [1, 4]; (2)
Late fusion, which also uses STPN but only employs tem-
poral convolutions in STC blocks 3 and 4; i.e., T1 = T2 =
5, T3 = 3, T4 = 1. Against these two variants, we consider
our method as middle fusion, which overall achieves the
best accuracy (see Table 5). The reason could be that, for
early fusion, there is little correlation over the frames within
a temporal receptive field, especially for objects moving
fast; for late fusion, it ignores too many low-level motion
cues. Under the framework of middle fusion, we also inves-
tigate several other spatio-temporal convolutions, including
C3D [49], S3D [54], TSM [25] and CS3D [50]. Specif-
ically, we replace the 2D and pseudo-1D convolutions of
STC with the above operations, while keeping the other net-
work components fixed. Table 5 shows that our STC block
achieves the best trade-off between accuracy and speed.
Prediction strategies. Table 6 shows the effects of differ-
ent training and prediction strategies. First, we see that us-
ing auxiliary state-estimation head benefits the model per-
formance greatly. The reason could be that this additional
head brings extra supervision to the network learning, as
well as helps suppress the background jitters. Second, Ta-
ble 6 validates the effectiveness of predicting the relative
displacement between timestamps, which in practice is able
to ease the training of network. Finally, we observe that
both classification and state estimation results are helpful in
suppressing the jitters significantly, while only sacrificing
the accuracies for cells with slow and fast speeds slightly.



5. Conclusion
We present a novel deep network, MotionNet, for joint

perception and motion prediction based on BEV maps. We
demonstrate the effectiveness and superiority of our method
through extensive experiments on nuScenes dataset. Our re-
sults suggest the potential value of MotionNet in serving as
a backup system and providing complementary information
to the motion planning in autonomous driving.

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016. 3

[2] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 5, 8

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019. 2, 5

[4] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet:
Learning to predict intention from raw sensor data. In Con-
ference on Robot Learning, pages 947–956, 2018. 2, 3

[5] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-
Gonzalez, and Carl Wellington. 3d point cloud processing
and learning for autonomous driving. IEEE Signal Process-
ing Magazine, Special Issue on Autonomous Driving, 2020.
1

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1907–1915,
2017. 1, 2

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
Advances in neural information processing systems, pages
379–387, 2016. 2

[8] Nachiket Deo and Mohan M Trivedi. Convolutional social
pooling for vehicle trajectory prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1468–1476, 2018. 3

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 3

[10] Alberto Elfes. Using occupancy grids for mobile robot per-
ception and navigation. Computer, 22(6):46–57, 1989. 3

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark

suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361, 2012. 1

[12] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3254–3263, 2019. 3, 6, 7

[13] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2255–2264, 2018. 3

[14] Stefan Hoermann, Martin Bach, and Klaus Dietmayer. Dy-
namic occupancy grid prediction for urban autonomous driv-
ing: A deep learning approach with fully automatic labeling.
In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2056–2063, 2018. 2, 3

[15] Berthold KP Horn and Brian G Schunck. Determining opti-
cal flow. Artificial intelligence, 17(1-3):185–203, 1981. 3

[16] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462–2470, 2017. 3

[17] Rudolph Emil Kalman. A new approach to linear filter-
ing and prediction problems. Journal of basic Engineering,
82(1):35–45, 1960. 7

[18] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven L Waslander. Joint 3d proposal generation and
object detection from view aggregation. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 1–8, 2018. 2

[19] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 12697–12705, 2019. 1, 2, 8

[20] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision, pages 734–750, 2018. 1, 2

[21] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 336–345, 2017. 3

[22] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A
survey on motion prediction and risk assessment for intelli-
gent vehicles. ROBOMECH journal, 1(1):1, 2014. 1

[23] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-
sun. Multi-task multi-sensor fusion for 3d object detection.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7345–7353, 2019. 1, 2

[24] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.
Deep continuous fusion for multi-sensor 3d object detection.
In Proceedings of the European Conference on Computer Vi-
sion, pages 641–656, 2018. 1, 2

[25] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In Proceedings



of the IEEE International Conference on Computer Vision,
2019. 4, 8

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In Proceedings
of the European Conference on Computer Vision, pages 21–
37, 2016. 1, 2

[28] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 529–537, 2019. 3, 6, 7

[29] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteornet:
Deep learning on dynamic 3d point cloud sequences. arXiv
preprint arXiv:1910.09165, 2019. 3

[30] Bruce D Lucas, Takeo Kanade, et al. An iterative image
registration technique with an application to stereo vision.
1981. 3

[31] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 3569–3577, 2018. 2, 3

[32] Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M
Kitani. Forecasting interactive dynamics of pedestrians with
fictitious play. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 774–782,
2017. 3

[33] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wen-
ping Wang, and Dinesh Manocha. Trafficpredict: Trajectory
prediction for heterogeneous traffic-agents. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33,
pages 6120–6127, 2019. 3

[34] Nima Mohajerin and Mohsen Rohani. Multi-step predic-
tion of occupancy grid maps with recurrent neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10600–10608, 2019. 2, 3

[35] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. arXiv preprint arXiv:1904.09664, 2019. 2

[36] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 918–927, 2018. 2

[37] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660,
2017. 3

[38] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 3

[39] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-
temporal representation with pseudo-3d residual networks.

In proceedings of the IEEE International Conference on
Computer Vision, pages 5533–5541, 2017. 4

[40] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 2

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1, 2

[42] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2:
A reparameterized pushforward policy for diverse, precise
generative path forecasting. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 772–788,
2018. 3

[43] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1349–
1358, 2019. 3

[44] Marcel Schreiber, Stefan Hoermann, and Klaus Dietmayer.
Long-term occupancy grid prediction using recurrent neural
networks. In 2019 International Conference on Robotics and
Automation (ICRA), pages 9299–9305, 2019. 2, 3, 6, 7

[45] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. In Advances in Neural Infor-
mation Processing Systems, pages 527–538, 2018. 5, 7

[46] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–779, 2019. 1, 2,
6, 7

[47] Shaoshuai Shi, Zhe Wang, Xiaogang Wang, and Hongsheng
Li. Part-aˆ 2 net: 3d part-aware and aggregation neural net-
work for object detection from point cloud. arXiv preprint
arXiv:1907.03670, 2019. 2

[48] Martin Simon, Stefan Milz, Karl Amende, and Horst-
Michael Gross. Complex-yolo: An euler-region-proposal for
real-time 3d object detection on point clouds. In Proceedings
of the European Conference on Computer Vision, pages 197–
209, 2018. 2

[49] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 8

[50] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feis-
zli. Video classification with channel-separated convolu-
tional networks. arXiv preprint arXiv:1904.02811, 2019. 4,
8

[51] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459, 2018. 4

[52] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic



graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):146, 2019. 3

[53] Pengxiang Wu, Chao Chen, Jingru Yi, and Dimitris Metaxas.
Point cloud processing via recurrent set encoding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 5441–5449, 2019. 3

[54] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In Pro-
ceedings of the European Conference on Computer Vision,
pages 305–321, 2018. 4, 8

[55] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfu-
sion: Deep sensor fusion for 3d bounding box estimation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 244–253, 2018. 2

[56] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 2,
3

[57] Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploit-
ing hd maps for 3d object detection. In Conference on Robot
Learning, pages 146–155, 2018. 2

[58] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7652–7660, 2018. 2, 3

[59] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8660–8669, 2019. 2, 3

[60] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. Sr-lstm: State refinement for lstm towards
pedestrian trajectory prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 12085–12094, 2019. 3

[61] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 4

[62] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi,
Chris Baker, Yibiao Zhao, Yizhou Wang, and Ying Nian Wu.
Multi-agent tensor fusion for contextual trajectory predic-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 12126–12134, 2019.
3

[63] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 1,
2

[64] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4490–4499, 2018. 1, 2, 3, 8


