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Abstract

Our goal is to use overhead imagery to understand pat-
terns in traffic flow, for instance answering questions such
as how fast could you traverse Times Square at 3am on a
Sunday. A traditional approach for solving this problem
would be to model the speed of each road segment as a func-
tion of time. However, this strategy is limited in that a signif-
icant amount of data must first be collected before a model
can be used and it fails to generalize to new areas. Instead,
we propose an automatic approach for generating dynamic
maps of traffic speeds using convolutional neural networks.
Our method operates on overhead imagery, is conditioned
on location and time, and outputs a local motion model that
captures likely directions of travel and corresponding travel
speeds. To train our model, we take advantage of historical
traffic data collected from New York City. Experimental re-
sults demonstrate that our method can be applied to gener-
ate accurate city-scale traffic models.

1. Introduction
Road transportation networks have become extremely

large and complex. According to the Bureau of Transporta-
tion Statistics [31], there are approximately 6.6 million kilo-
meters of roads in the United States alone. For most indi-
viduals, navigating these complex road networks is a daily
challenge. A recent study found that the average driver in
the U.S. travels approximately 17 500 kilometers per year in
their vehicle, which equates to more than 290 hours behind
the wheel [33].

As such, traffic modeling and analysis has become an in-
creasingly important topic for urban development and plan-
ning. The Texas A&M Transportation Institute [26] esti-
mated that in 2017, considering 494 U.S. urban areas, there
were 8.8 billion vehicle-hours of delay and 12.5 billion
liters of wasted fuel, resulting in a congestion cost of 179
billion dollars. Given these far-reaching implications, there
is significant interest in understanding traffic flow and de-
veloping new methods to counteract congestion.

Numerous cities are starting to equip themselves with
intelligent transportation systems, such as adaptive traffic

Figure 1: Using our approach to dynamically model traffic
flow in The Bronx, New York City. (left) Predicted traf-
fic speeds for Monday at 4am and (right) Monday at 8am.
Green (red) corresponds to faster (slower).

control, that take advantage of recent advances in computer
vision and machine learning. For example, Pittsburgh re-
cently deployed smart traffic signals at fifty intersections
that use artificial intelligence to estimate traffic volume and
optimize traffic flow in real-time. An initial pilot study [27]
indicated travel times were reduced by 25%, time spent
waiting at signals by 40%, number of stops by 30%, and
emissions by 20%. Ultimately, interest in applying ma-
chine learning to problems in traffic management continues
to grow due to its potential for improving safety, decreasing
congestion, and reducing emissions.

Direct access to empirical traffic data is useful for plan-
ners to analyze congestion in relation to the underlying
street network, as well as for validating models and guid-
ing infrastructure investments. Unfortunately, historical in-
formation relating time, traffic speeds, and street networks
has typically been expensive to acquire and limited to only
primary roads. Only very recently has a large corpus of
traffic speed data been released to the public. In May
of 2019, Uber Technologies, Inc. (an American multina-
tional ridesharing company) announced Uber Movement
Speeds [1], a dataset of street speeds collected from drivers
of their ridesharing platform. However, even this data has
limitations, including: 1) coverage, speed data is only avail-
able for 5 large metropolitan cities at the time of release
and 2) granularity, not all roads are traversed at all times (or
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Figure 2: In urban environments, traffic speeds change drastically throughout the day. For example, traffic congestion in
downtown Cincinnati during the (left) early morning (12am to 7am) is minimal compared to (right) afternoon peak (4pm to
7pm) on a weekday (visualization from [1]). Speeds are shown as percent from free-flow where green (red) is faster (slower).

traversed at all). For example, only 29% of road segments
in New York City have historical traffic data for Monday at
12pm, considering every Monday in 2018.

In this work, our goal is to use historical traffic speeds
to build a complete model of traffic flow for a given city
(Figure 2). Traditional approaches for modeling traffic flow
assume that the road network is known (i.e., in the form
of a graph reflecting the presence and connectivity of road
segments) and model road segments individually. However,
this approach is limited in that it cannot generalize to new
areas and it gives noisy estimates for road segments with
few samples. Instead, we explore how image-driven map-
ping can be applied to model traffic flow directly from over-
head imagery. We envision that such a model could be used
by urban planners to understand city-scale traffic patterns
when the complete road network is unknown or insufficient
empirical traffic data is available.

We propose an automatic approach for generating dy-
namic maps of traffic speeds using convolutional neural net-
works (CNNs). We frame this as a multi-task learning prob-
lem, and design a network architecture that simultaneously
learns to segment roads, estimate orientation, and predict
traffic speeds. Along with overhead imagery, the network
takes as input contextual information describing the loca-
tion and time. Ultimately, the output of our method can be
considered as a local motion model that captures likely di-
rections of travel and corresponding travel speeds. To sup-
port training and evaluating our methods, we introduce a
new dataset that takes advantage of a year of traffic speeds
for New York City, collected from Uber Movement Speeds.

Extensive experiments show that our approach is able to
capture complex relationships between the underlying road
infrastructure and traffic flow, enabling understanding of
city-scale traffic patterns, without requiring the road net-
work to be known in advance. This enables our approach
to generalize to new areas. The main contributions of this
work are summarized as follows:

• introducing a new dataset for fine-grained road under-
standing,

• proposing a multi-task CNN architecture for estimat-
ing a localized motion model directly from an over-
head image,

• integrating location and time metadata to enable dy-
namic traffic modeling,

• an extensive quantitative and qualitative analysis,
including generating dynamic city-scale travel-time
maps.

Our approach has several potential real-world applications,
including forecasting traffic speeds and providing estimates
of historical traffic speeds on roads which were not tra-
versed during a specific time period.

2. Related Work

The field of urban planning [15] seeks to understand ur-
ban environments and how they are used in order to guide
future decision making. The overarching goal is to shape
the pattern of growth as a community expands to achieve a
desirable land-use pattern. A major factor here is under-
standing how the environment influences human activity.
For example, research has shown how the physical environ-
ment is associated with physical activity (walking/cycling)
and subsequently impacts health [24].

Transportation planning is a specific subarea of urban
planning that focuses on the design of transportation sys-
tems. The goal is to develop systems of travel that align
with and promote a desired policy of human activity [19].
Decisions might include how and where to place roads,
sidewalks, and other infrastructure to minimize congestion.
As such, decades of research has focused on understanding
traffic flow, i.e., the interactions of travelers and the under-
lying infrastructure. For example, Krauß [14] proposes a
model of microscopic traffic flow to understand different
types of traffic congestion. Meanwhile other work focuses
on simulating urban mobility [13].



In computer vision, relevant work seeks to infer prop-
erties of the local environment directly from imagery. For
example estimating physical attributes like land cover and
land use [23, 37], categorizing the type of scene [41], and
relating appearance to location [25, 35, 36]. Other work
focuses on understanding urban environments. Albert et
al. [4] analyze and compare urban environments at the scale
of cities using satellite imagery. Dubey et al. [8] explore
the relationship between the appearance of the physical en-
vironment and the urban perception of its residents by pre-
dicting perceptual attributes such as safe and beautiful.

Specific to urban transportation, many studies have ex-
plored how to identify roads and infer road networks di-
rectly from overhead imagery [5, 17, 18, 20, 32]. Recent
methods in this area take advantage of convolutional neu-
ral networks for segmenting an overhead image, then gen-
erate a graph topology directly from the segmentation out-
put. Mapping roads is an important problem as it can posi-
tively impact local communities as well as support disaster
response [21, 28]. However, identifying roads is just the
first step. Other work has focused on estimating properties
of roads, including safety [30].

Understanding how roads are used, in particular traffic
speeds, is important for studying driver behavior, improving
safety, decreasing collisions, and aiding infrastructure plan-
ning. Therefore, several works have tackled the problem of
estimating traffic speeds from imagery. Hua et al. [11] de-
tect, track, and estimate traffic speeds for vehicles in traffic
videos. Song et al. [29] estimate the free-flow speed of a
road segment from a co-located overhead image and corre-
sponding road metadata. Van Etten [9] segments roads and
estimates road speed limits. Unlike this previous work, our
goal is to dynamically model traffic flow over time.

Similarly, traffic forecasting is an important research
area. Abadi et al. [3] propose an autoregressive model
for predicting the flows of a traffic network and demon-
strate the ability to forecast near-term future traffic flows.
Zhang et al. [38] predict crowd flows between subregions
of a city based on historical trajectory data, weather, and
events. Wang et al. [34] propose a deep learning framework
for path-based travel time estimation. These methods typi-
cally assume prior knowledge of the spatial connectivity of
the road network, unlike our work which operates directly
on overhead imagery.

3. A Large Traffic Speeds Dataset

To support training and evaluating our methods, we in-
troduce the Dynamic Traffic Speeds (DTS) dataset that
takes advantage of a year of historical traffic speeds for New
York City. Our traffic speed data is collected from Uber
Movement Speeds [1], a dataset of publicly available aggre-
gated speed data over road segments at hourly frequencies.

Figure 3: Example traffic speed data from Uber Movement
Speeds for New York City (visualized as free-flow speeds
for January 2018).

3.1. Uber Movement Speeds

During rideshare trips, Uber (via their Uber Driver appli-
cation) frequently collects GPS data including latitude, lon-
gitude, speed, direction, and time. While this data supports
many functionalities, it is also stored for offline processing,
where it is aggregated and used to derive speed data. Ad-
ditionally, Uber uses OpenStreetMap as the source of their
underlying map data (i.e., road network).1

Given the map and GPS data as input, an extensive pro-
cess is used to 1) match the GPS data to locations on the
street network, 2) compute segment traversal speeds us-
ing the matched data, and 3) aggregate speeds along each
segment. Please refer to the whitepaper [2] for a detailed
overview of this process. Ultimately, the publicly released
data includes the road segment identifier and average speed
along that segment at an hourly resolution. Note that bidi-
rectional roads, represented as line strings, are twinned and
a speed estimate is provided for each direction.

3.2. Augmenting with Overhead Imagery

To support our methods, we generated an aligned dataset
of overhead images, contained road segments, and histori-
cal traffic speeds. We started by collecting road geometries
and speed data from Uber Movement Speeds for New York
City during the 2018 calendar year. This resulted in over
292 million records, or approximately 22GB (not including
road geometries). For reference, there are around 290 thou-
sand road segments in NYC when considering bidirectional
roads. Figure 3 shows the free-flow speed along these seg-
ments for January 2018, where free-flow speed is defined as

1https://www.openstreetmap.org

 https://www.openstreetmap.org


the 85th percentile of all recorded traffic speeds.
Starting from a bounding box around New York City,

we generated a set of non-overlapping tiles using the stan-
dard XYZ style spherical Mercator tile. For each tile, we
identified the contained road segments, extracted the corre-
sponding speed data along those segments, and downloaded
an overhead image from Bing Maps (filtering out tiles that
do not contain any roads). This process resulted in approx-
imately 12 000 1024× 1024 overhead images at ∼ 0.3 me-
ters / pixel. We partitioned these non-overlapping tiles into
85% training, 5% validation, and 10% testing. The result is
a large dataset containing overhead images (over 12 billion
pixels), road geometries, and traffic speed data (along with
other road attributes).

Figure 4 shows some example data: from left to right, an
overhead image, the corresponding road mask, and a mask
characterizing the traffic speeds at a given time. Notice that,
depending on the time, not all roads have valid speed data.
For this visualization, road geometries are buffered (con-
verted to polygons) with two meter half width.

3.3. Aggregating Traffic Speeds

For a single road segment, there are a possible 8760
(365 × 24) unique recorded speeds for that segment over
the course of a year. When considering all roads, this is a
large amount of data. For this work, we instead aggregate
speed data for each road segment using day of week and
hour of day, retaining the number of samples observed (i.e.,
the number of days per year that traffic was recorded at that
time on a particular segment). This reduces the number of
possible traffic speeds to 168 (7× 24) per segment.

3.4. Discussion

While the current version of the dataset includes only
New York City, we are actively working towards expanding
it to include other cities where traffic speed data is available
(e.g., London, Cincinnati). Further, we plan to incorporate
other contextual road attributes (e.g., type of road, surface
material, number of lanes) so that our dataset is useful for
other tasks in fine-grained road understanding. Our hope is
that this dataset will inspire further work in computer vision
directed towards traffic modeling, with a positive impact on
urban planning and minimizing traffic congestion.

4. Modeling Traffic Flow

We propose a novel CNN that fuses high-resolution
overhead imagery, location, and time to estimate a dy-
namic model of traffic flow. We can think of our task as
learning a conditional probability distribution over velocity,
P (~v|S(l), l, t), where l is a latitude-longitude coordinate,
S(l) is an overhead image centered at that location, and t
represents the time.

Figure 4: Our dataset: (left) example image, (middle) road
mask, and (right) speed mask (rendered using a random
time). Notice that speed data is not available for every road
at every time.

4.1. Architecture Overview

We propose a multi-task architecture that simultaneously
solves three pixel-wise labeling tasks: segmenting roads,
estimating orientation, and predicting traffic speeds. Our
network (Figure 5) has three inputs: a location, l, the
time, t, and an overhead image, S(l), centered at l (of size
H ×W × C). We build on a modern, lightweight, seman-
tic segmentation architecture, LinkNet [7], that follows an
encoder/decoder approach with skip connections between
every layer. Specifically, we use LinkNet-34, which is
LinkNet with a ResNet-34 [10] encoder. For our purposes,
we modify the baseline architecture to a multi-task version,
with a shared encoder and separate decoder for each task.
Though we use LinkNet, our approach would work with
any modern encoder/decoder segmentation architecture.

Integrating Location and Time Context To make lo-
cation and time-dependent traffic flow predictions, we in-
tegrate location and time into the final speed classifica-
tion layers. We represent location as normalized lati-
tude/longitude coordinates (µ = 0, σ2 = 1). Time is param-
eterized as day of week (0-6) and hour of day (0-23). Each
time dimension is represented as an embedding lookup with
an embedding dimension of 3. To form a context feature, we
concatenate the parameterized location and time embedding
outputs together. The context feature is then tiled and fused
in the decoder at each of the final two convolutional layers
(concatenated on as additional feature channels).

Loss Function We simultaneously optimize the entire
network, in an end-to-end manner, for all three tasks. The
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Figure 5: An overview of our network architecture.

final loss function becomes:

L = Lroad + Lorientation + Lspeed + αrLreg, (1)

where Lroad, Lorientation, and Lspeed correspond to the
task-specific objective function for road segmentation, ori-
entation estimation, and traffic speed prediction, respec-
tively. Additionally, Lreg is a regularization term that is
weighted by a scalar αr. In the following sections we de-
tail the specifics of each task, including the architecture and
respective loss terms.

4.2. Identifying Presence of Roads

The objective of the first decoder is to segment roads in
an overhead image. We represent this as a binary classifica-
tion task (road vs. not road) resulting in a single output per
pixel (H ×W × 1). The output is passed through a sigmoid
activation function. We follow recent trends in state-of-the-
art road segmentation [42] and formulate the objective func-
tion as a combination of multiple individual elements. The
objective is:

Lroad = Lbce + (1− Ldice), (2)

where Lbce is binary cross entropy, a standard loss function
used in binary classification tasks, and Ldice is the dice co-
efficient, which measures spatial overlap.

4.3. Estimating Direction of Travel

The objective of the second decoder is to estimate the
direction of travel along the road at each pixel. We represent

this as a multi-class classification task over K angular bins,
resulting in K outputs per pixel (H ×W ×K). A softmax
activation function is applied to the output. For this task,
the per-pixel loss function is categorical cross entropy:

Lorientation = − log(G(S(l); Θ)(y)), (3)

where G(S(l); Θ) represents our CNN as a function that
outputs a probability distribution over the K angular bins
and y indicates the true label. We compute road orientation,
θ, as the angle the road direction vector makes with the pos-
itive X axis. The valid range of values is between −π and
π and we generate angular bins by dividing this space uni-
formly.

4.4. Predicting Traffic Speeds

The objective of the final decoder is to estimate local
traffic speeds, taking into account the imagery, the loca-
tion, and the time. Instead of predicting a single speed value
for each pixel, we make angle-dependent predictions. The
road speed decoder has K outputs per pixel (H ×W ×K)
and a softplus output activation, log(1 + exp(x)), to en-
sure positivity. For a given road angle θ, we compute the
estimated speed as an orientation-weighted average using
wµ = ek cos(θ−µ) as the weight for each bin where µ is
the angle of the corresponding bin and k = 25 is a fixed
smoothing factor. Weights are normalized to sum to one.
Note that we can predict angle-dependent speeds using ei-
ther the true angle if known, or the predicted angle.



For traffic speed estimation, we minimize the Charbon-
nier loss (also known as the Pseudo-Huber loss):

Lspeed = δ2(
√

1 + (a/δ)2 − 1), (4)

where y and ŷ are the observed and predicted values, re-
spectively, and a = y− ŷ is their residual. The Charbonnier
loss is a smooth approximation of the Huber loss, where δ
controls the steepness. In addition, we add a regularization
term, Lreg , to reduce noise and encourage spatial smooth-
ness. For this we use the anisotropic version of total varia-
tion, f(x) = (xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2, averaged
over all pixels, i, j, in the raw output.

Region Aggregation The target labels for traffic speed
are provided as averages over road segments, which means
we cannot use a traditional per-pixel loss. The naı̈ve ap-
proach would be to assume the speed is constant across the
entire road segment, which would lead to over-smoothing
and incorrect predictions. Instead, we use a variant of the
region aggregation layer [12], adapted to compute the aver-
age of the per-pixel estimated speeds over the segment. We
optimize our network to generate per-pixel speeds such that
the segment averages match the true speed. In practice we
predict angle-dependent speeds, compute the orientation-
weighted average, and then apply region aggregation; fi-
nally, computing the average loss over road segments.

4.5. Implementation Details

Our methods are implemented using PyTorch [22] and
optimized using RAdam [16] (λ = 10−3) with Looka-
head [39] (k = 5, α = 0.5). We initialize the encoder
with weights from a network pretrained on ImageNet. For
fairness, we train all networks with a batch size of 6 for
50 epochs, on random crops of size 640 × 640. We use
K = 16 angular bins and set αr = 10−2, chosen empiri-
cally. For this work, we set δ = 2. Our networks are trained
in a dynamic manner; instead of rendering a segmentation
mask at every possible time, for every training image, we
sample a time during training and dynamically render the
speed mask. The alternative would be to pregenerate over a
million segmentation masks. Additionally, we train the ori-
entation and speed estimation decoders in a sparse manner
by sampling pixels along road segments (every one meter
along the segment and up to two meters on each side, per-
pendicularly) and computing orientation from correspond-
ing direction vectors. For road segmentation, we buffer the
road geometries (two meter half width) and do not sample.
Model selection is performed using the validation set.

5. Evaluation
We train and evaluate our method using the dataset de-

scribed in Section 3. We primarily evaluate our model for

Table 1: Evaluating the impact of multi-task learning for
traffic speed estimation.

Road Orientation RMSE MAE R2

7 7 10.87 8.35 0.442
7 3 10.78 8.21 0.452
3 7 10.73 8.19 0.456
3 3 10.66 8.10 0.464

traffic speed estimation, but present quantitative and quali-
tative results for both road segmentation and orientation es-
timation.

5.1. Ablation Study

We conducted an extensive ablation study to evaluate the
impact of various components of our proposed architecture.
For evaluation, we use the reserved test set, but evaluate on
a single timestep per image (randomly selected from the ob-
served traffic speeds using a fixed seed). When computing
metrics, we represent speeds using kilometers per hour and
average predictions along each road segment before com-
paring to the ground truth.

5.1.1 Impact of Multi-Task Learning

For our first experiment, we quantify the impact of multi-
task learning for estimating traffic speeds. In other words,
we evaluate whether or not simultaneously performing the
road segmentation and orientation estimation tasks im-
proves the results for estimating traffic speeds. We compare
our full method (Section 4) to variants with subsets of the
multi-task components. The results of this experiment are
shown in Table 1 for three metrics: root-mean-square error
(RMSE), mean absolute error (MAE) and the coefficient of
determination (R2).

As observed, the multi-task nature of our architecture
improves the final speed predictions. Adding the road seg-
mentation and orientation estimation tasks improves results
over a baseline that only estimates traffic speed, with the
best performing model integrating both tasks. Our results
are in line with previous work [40] that demonstrates multi-
task learning can be helpful when the auxiliary tasks are re-
lated to the primary task. For the remainder of the ablation
study, we only consider our full architecture that performs
all three tasks.

5.1.2 Impact of Region Aggregation

Next, we consider how region aggregation affects traffic
speed estimation. As described in Section 4, the target
speeds for the traffic speed estimation task are averages
over each road segment. Here we compare two approaches



Figure 6: Qualitative examples showing the impact of re-
gion aggregation (top) versus no aggregation (bottom).

for training using these labels: 1) naı̈vely replicating the
target labels spatially across the entire road segment, and
2) our approach that integrates a variant of the region ag-
gregation layer [12], which enables prediction of per-pixel
speeds such that the segment averages match the ground-
truth speed label for that segment.

To evaluate both approaches, we average predictions
along each road segment and compare to the true traffic
speed label. The baseline method achieves an RMSE score
of 11.10, which is worse than our method (RMSE = 10.66).
Additionally, we show some qualitative results of the two
approaches in Figure 6. Our method which incorporates
region aggregation (top) is better able to capture real-world
properties of traffic speed, such as slowing down at intersec-
tions or around corners. For the remainder of the ablation
study, we only consider methods which were optimized and
evaluated using region aggregation.

5.1.3 Impact of Location and Time Context

Finally, we evaluate how integrating location and time con-
text impacts our traffic speed predictions. For this exper-
iment, we compare against several baseline methods that
share many low-level components with our proposed archi-
tecture. Our full model includes all three components im-
age, loc, and time. For the metadata only approaches, those
without image, we use our proposed architecture, but omit
all layers prior to concatenating in the context feature.

The results of this experiment are shown in Table 2. Both
location and time improve the resulting traffic speed pre-
dictions. Our method, which integrates overhead imagery,
location, and time, outperforms all other models. Addition-
ally, we show results for road segmentation (F1 score) and
orientation estimation (top-1 accuracy). These tasks do not
rely on location and time, so their performance is compara-
ble, but our method still performs best.

Table 2: Evaluating the impact of location and time context.

Road Orientation Speed
(F1 Score) (Accuracy) (RMSE)

loc – – 13.38
time – – 14.06
loc, time – – 13.14

image 0.796 75.05% 11.35
image, loc 0.798 75.63% 10.95
image, time 0.798 76.04% 10.68
image, loc, time 0.800 76.32% 10.66

Figure 7: Estimating directions of travel. (left) An over-
head image and estimated orientation represented as a flow
field. (right) Predicted distributions over orientation for cor-
responding dots in the image. (top, right) The predicted dis-
tribution for the green dot correctly identifies multiple pos-
sible directions of travel. This makes sense as the location
in the image is at an intersection.

5.2. Visualizing Traffic Flow

In this section, we qualitatively evaluate our proposed
methods ability to capture spatial and temporal patterns in
traffic flow. First, we examine how well our approach is
able to estimate directions of travel. Figure 7 (left) visual-
izes the predicted per-pixel orientation for an overhead im-
age, overlaid as a vector field (colored by predicted angle).
As observed, our method is able to capture primary direc-
tions of travel, including differences in one way and bidi-
rectional roads. Additionally, Figure 7 (right) shows radial
histograms representing the predicted distributions over ori-
entation for corresponding color-coded dots in the overhead
image. For example, the predicted distribution for the green
dot (top, right), which represents an intersection in the im-
age, correctly identifies several possible directions of travel.
Alternatively, the predicted distribution for the yellow dot
is more uniform, which makes sense as the location is not a
road.

Next, we examine how our model captures temporal
trends in traffic flow. Figure 9 visualizes traffic speed pre-



(a) Manhattan (b) Brooklyn

Figure 8: Isochrone maps obtained by using our approach. Isocontours represent the amount of time that it would take to
travel to all locations within the borough, starting from the center. For each borough the maps correspond to (left) Monday
at 4am and (right) Monday at 8am. As anticipated, travel is more restrictive at 8am, likely corresponding to rush hour traffic.

dictions for a residential road segment colored in red. Fig-
ure 9 (right) shows the predicted speeds for this segment
versus the day of the week, with each day representing
twenty four hours. As observed, the predicted speeds cap-
ture temporal trends both daily, and over the course of the
full week. Finally, Figure 1 shows predicted traffic speeds
for The Bronx, New York City for Monday at 4am (left)
versus Monday at 8am (right). As expected, there is a large
slow down likely corresponding to rush hour. These re-
sults demonstrate that our model is capturing meaningful
patterns in both space and time.

5.3. Application: Generating Travel Time Maps

Our approach can be used to generate dynamic traffic
maps at the scale of a city. To demonstrate this, we generate
travel time maps at different times. We use OSMnx [6], a
library for modeling street networks from OpenStreetMap,
to represent the underlying street network topology for New
York City as a graph. Our approach is as follows. For each
image in our dataset, we estimate traffic speeds at a given
time. Then we update the edge weights of the graph (cor-
responding to each road segment) to represent travel times
using the length of each segment in meters and our traffic
speed predictions. For any road segment not represented
in our dataset, we use the average predicted traffic speed
for that time. Figure 8 shows several results, visualized as
isochrone maps that depict areas of equal travel time.

6. Conclusion

Understanding traffic flow is important and has many
potential implications. We developed a method for dy-

Figure 9: Visualizing how predicted speeds for a segment
capture daily and weekly trends.

namically modeling traffic flow using overhead imagery.
Though our method incorporates time, a unique overhead
image is not required for every timestamp. Our model
is conditioned on location and time metadata and can
be used to render dynamic city-scale traffic maps. To
support our efforts, we introduced a novel dataset for
fine-grained road understanding. Our hope is that this
dataset will inspire further work in the area of image-driven
traffic modeling. By simultaneously optimizing for road
segmentation, orientation estimation, and traffic speed
prediction, our method can be applied for understanding
traffic flow patterns in novel areas. Potential applications of
our method include assisting urban planners, augmenting
routing engines, and for providing a general understanding
of how to traverse an environment.
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Supplemental Material :
Dynamic Traffic Modeling from Overhead Imagery

This document contains additional details and experi-
ments related to our methods.

1. Dynamic Traffic Speeds Dataset
We presented a new dataset for fine-grained road under-

standing containing 11 902 non-overlapping overhead im-
ages, associated road attributes, and historical traffic data.
Figure S1 shows the spatial coverage of our dataset, with
yellow, blue, and magenta corresponding to the location of
training, testing, and validation images, respectively. Fig-
ure S3 shows example images from the dataset along with
the road mask and a speed mask rendered using a random
time (road segments buffered to two meter half width).

We also report some statistics of the underlying histori-
cal traffic speed data. Note that these numbers are computed
on the provided aggregated traffic speed data, which is then
further aggregated by day of week and hour of day. The av-
erage road segment speed in NYC for 2018 (averaging road
segments over time first, then averaging across segments) is
approximately 30.47 km/h (σ = 11.99). In Figure S2, we
visualize the average road segment speed versus time. Ad-
ditionally, Figure S4 shows the average speed according to
OpenStreetMap’s road type classification.

2. Extended Evaluation
In the main document, we presented an evaluation for

traffic speed estimation where each image in the test set was
associated with a random time to represent the ground truth
speed data. These image/time pairs were then fixed for all
methods evaluated. Here we explore a macro evaluation,
where we consider the relationship between performance
and time. Table S1 shows the results of this experiment for
a subset of times. When computing metrics, we select all
images in the test set which have at least one segment with
empirical traffic speed data at the time of interest. Then, we
compute metrics for each time and average the result (treat-
ing all times equally). For this experiment, we consider
Monday and Saturday and selected the following hours of
the day: 12am, 4am, 8am, 12pm, 5pm, and 8pm. Consistent
with our earlier results, our method that integrates location
and time outperforms an image-only baseline.

2.1. Impact of Angle-Dependent Speeds

In our approach, we estimate angle-dependent speeds as
opposed to predicting a single speed per location. The intu-
ition behind this idea is that speed tends to depend on direc-

Figure S1: Coverage of our dataset. Each dot corresponds
to a non-overlapping overhead image (yellow training, blue
testing, magenta validation).

Figure S2: Average road segment speed versus time.

Table S1: Quantitative evaluation of traffic speed estimation
(RMSE).

image Ours (uniform) Ours

Monday (4am) 15.82 13.31 13.24
Monday (12pm) 10.96 10.59 10.41
Saturday (5pm) 10.65 10.39 10.36
Saturday (8pm) 10.43 10.32 10.27

Overall 11.903 11.145 11.134

tion, e.g., a bridge that crosses over a highway. Following



Figure S3: Examples from our dataset: (top) image, (middle) road mask, and (bottom) speed mask rendered using a random
time (where red is slower and green faster). Notice that historical speed data is not available for every road at every time.

Figure S4: Average road segment speed versus time, where
each road is categorized by its OpenStreetMap road type
classification.

the above evaluation scheme, we compare our strategy of
making angle-dependent speed predictions to a baseline that
instead uses uniform weights. In other words, we replace
the orientation-weighted average with an equal-weighted
average. The results are shown in Table S1. Our full ap-
proach outperforms the uniform variant.

3. Application: Augmenting Routing Engines

Our method can be applied to generate optimal travel
routes that take into account traffic speeds at different times.
For this experiment, we use the OSMnx library [6] to repre-
sent the underlying road topology. We compute the traversal
time of each edge based on the road segment length and our
speed estimate. Figure S5 shows the results of this exper-
iment for a route in Queens, New York. Figure S5 (left)
shows the route corresponding to shortest overall distance.
Figure S5 (middle) shows the route corresponding to the
shortest travel time on Monday at 4am. Figure S5 (right)
shows the route corresponding to the shortest travel time on
Monday at 8am.

4. Additional Results

Visualizing the Time Embedding In Figure S6 we visu-
alize the learned time embedding. To form this image, we
take the three dimensional embedding for each dimension
of time (day of shape 7 × 3 and hour of shape 24 × 3) and
form a false color image of shape 7×24×3 by broadcasting;
then average across channels. As observed, the learned em-
beddings are clearly capturing traffic speed patterns related



Shortest Distance Travel Time (Monday at 4am) Travel Time (Monday at 8am)

Figure S5: Using dynamic traffic speed predictions to augment route generation. The routes correspond to (left) the shortest
path in terms of total length, (middle) travel time on a Monday at 4am, and (right) travel time on a Monday at 8am. Note that
for the travel time routes, edge weights are represented by traversal times and computed using the length of the road segment
and corresponding traffic speed estimated by our approach.

Figure S6: Visualizing the learned time embedding.

to time. For example, on Friday and Saturday the embed-
ding reflects much larger values (red) around the middle of
the day as opposed to other days of the week. This makes
sense as many people work half days on Friday and leave
work early or take the family shopping on Saturday. This
result also agrees with the temporal patterns for traffic speed
shown in Figure S2.

Qualitative Results Figure S7 shows several example im-
ages alongside the ground-truth road mask and the predic-
tion from our approach. Similarly, Figure S8 shows addi-
tional examples for orientation estimation, visualized as a
flow field for a subset of points.

Image Target Prediction Error

Figure S7: Qualitative results from road segmentation. The
error image (right) shows false positives (negatives) color
coded as purple (yellow).



Figure S8: Using our approach to estimate directions of travel (visualized as flow fields).


