
DSGN: Deep Stereo Geometry Network for 3D Object Detection

Yilun Chen1 Shu Liu2 Xiaoyong Shen2 Jiaya Jia1,2
1The Chinese University of Hong Kong 2SmartMore

{ylchen, leojia}@cse.cuhk.edu.hk {sliu, xiaoyong}@smartmore.com

Abstract

Most state-of-the-art 3D object detectors heavily rely
on LiDAR sensors because there is a large performance
gap between image-based and LiDAR-based methods. It
is caused by the way to form representation for the predic-
tion in 3D scenarios. Our method, called Deep Stereo Ge-
ometry Network (DSGN), significantly reduces this gap by
detecting 3D objects on a differentiable volumetric repre-
sentation – 3D geometric volume, which effectively encodes
3D geometric structure for 3D regular space. With this rep-
resentation, we learn depth information and semantic cues
simultaneously. For the first time, we provide a simple and
effective one-stage stereo-based 3D detection pipeline that
jointly estimates the depth and detects 3D objects in an
end-to-end learning manner. Our approach outperforms
previous stereo-based 3D detectors (about 10 higher in
terms of AP) and even achieves comparable performance
with several LiDAR-based methods on the KITTI 3D object
detection leaderboard. Our code is publicly available at
https://github.com/chenyilun95/DSGN .

1. Introduction
3D scene understanding is a challenging task in 3D per-

ception, which serves as a basic component for autonomous
driving and robotics. Due to the great capability of LiDAR
sensors to accurately retrieve 3D information, we witness
fast progress on 3D object detection. Various 3D object de-
tectors were proposed [9, 25, 60, 28, 29, 35, 41, 55, 10] to
exploit LiDAR point cloud representation. The limitation
of LiDAR is on the relatively sparse resolution of data with
several laser beams and on the high price of the devices.

In comparison, video cameras are cheaper and are with
much denser resolutions. The way to compute scene depth
on stereo images is to consider disparity via stereo corre-
spondence estimation. Albeit recently several 3D detec-
tors based on either monocular [38, 7, 6, 32, 50] or stereo
[27, 47, 39, 58] setting push the limit of image-based 3D ob-
ject detection, the accuracy is still left far behind compared
with the LiDAR-based approaches.
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Figure 1. DSGN jointly estimates depth and detects 3D objects
from a stereo image pair. It intermediately generates a plane-
sweep volume and 3D geometric volume to represent 3D structure
in two different 3D space.

Challenges One of the greatest challenges for image-
based approaches is to give appropriate and effective rep-
resentation for predicting 3D objects. Most recent work
[27, 38, 50, 39, 42, 2] divides this task into two sub ones,
i.e., depth prediction and object detection. Camera projec-
tion is a process that maps 3D world into a 2D image. One
3D feature in different object poses causes local appearance
changes, making it hard for a 2D network to extract stable
3D information.

Another line of solutions [47, 58, 49, 32] generate inter-
mediate point cloud followed by a LiDAR-based 3D object
detector. This 3D representation is less effective since the
transformation is non-differentiable and incorporates sev-
eral independent networks. Besides, the point cloud faces
the challenge of object artifacts [19, 49, 58] that limits the
detection accuracy of the following 3D object detector.

Our Solution In this paper, we propose a stereo-based
end-to-end 3D object detection pipeline (Figure 1) – Deep
Stereo Geometry Network (DSGN), which relies on space
transformation from 2D features to an effective 3D struc-
ture, called 3D geometric volume (3DGV).

The insight behind 3DGV lies in the approach to con-
struct the 3D volume that encodes 3D geometry. 3D geo-
metric volume is defined in 3D world space, transformed
from a plane-sweep volume (PSV) [11, 12] constructed in
the camera frustum. The pixel-correspondence constraint
can be well learned in PSV, while 3D features for real-world
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objects can be learned in 3DGV. The volume construction
is fully differentiable and thus can be jointly optimized for
learning of both stereo matching and object detection.

This volumetric representation has two key advantages.
First, it is easy to impose the pixel-correspondence con-
straint and encode full depth information into 3D real-world
volume. Second, it provides 3D representation with geome-
try information that makes it possible to learn 3D geometric
features for real-world objects. As far as we know, there
was no study yet to explicitly investigate the way of encod-
ing 3D geometry into an image-based detection network.
Our contribution is summarized as follows.

• To bridge the gap between 2D image and 3D space, we
establish stereo correspondence in a plane-sweep vol-
ume and then transform it to 3D geometric volume for
capability to encode both 3D geometry and semantic
cues for prediction in 3D regular space.

• We design an end-to-end pipeline for extracting pixel-
level features for stereo matching and high-level fea-
tures for object recognition. The proposed network
jointly estimates scene depth and detects 3D objects
in 3D world, enabling many practical applications.

• Without bells and whistles, our simple and fully-
differentiable network outperforms all other stereo-
based 3D object detectors (10 points higher in terms
of AP) on the official KITTI leaderboard [14].

2. Related Work
We briefly review recent work on stereo matching and

multi-view stereo. Then we survey 3D object detection
based on LiDAR, monocular images, and stereo images.

Stereo Matching In the field of stereo matching on binoc-
ular images, methods of [22, 4, 59, 15, 45, 48] process
the left and right images by a Siamese network and con-
struct a 3D cost volume to compute the matching cost.
Correlation-based cost volume is applied in recent work
[33, 57, 54, 15, 30, 44]. GC-Net [22] forms a concatenation-
based cost volume and applies 3D convolution to regress
disparity estimates. Recent PSMNet [4] further improves
the accuracy by introducing pyramid pooling module and
stacks hourglass modules [34]. State-of-the-art methods al-
ready achieved less than 2% 3-pixel error on KITTI 2015
stereo benchmark.

Multi-View Stereo Methods of [5, 56, 20, 21, 18, 17] re-
construct 3D objects in a multi-view stereo setting [1, 3].

MVSNet [56] constructs plane-sweep volumes upon a
camera frustum to generate the depth map for each view.
Point-MVSNet [5] instead intermediately transforms the
plane-sweep volume to point cloud representation to save
computation. Kar et al. [21] proposed the differentiable pro-
jection and unprojection operation on multi-view images.

LiDAR-based 3D Detection LiDAR sensors are very
powerful, proven by several leading 3D detectors. Gener-
ally two types of architectures, i.e., voxel-based approaches
[60, 9, 26, 10] and point-based approaches [36, 37, 41, 55,
51], were proposed to process point cloud.

Image-based 3D Detection Another line of detection is
based on images. Regardless of monocular- or stereo-based
setting, methods can be classified into two types according
to intermediate representation existence.

3D detector with depth predictor: the solution relies on
2D image detectors and depth information extraction from
monocular or stereo images. Stereo R-CNNStereo [27] for-
mulates 3D detection into multiple branches/stages to ex-
plicitly resolve several constraints. We note that the key-
point constraint may be hard to generalize to other cate-
gories like Pedestrian, and the dense alignment for stereo
matching directly operating raw RGB images may be vul-
nerable to occlusion.

MonoGRNetMono [38] consists of four subnetworks for
progressive 3D localization and directly learning 3D infor-
mation based solely on semantic cues. MonoDISMono [42]
disentangles the loss for 2D and 3D detection. It achieves
both tasks in an end-to-end manner. M3D-RPNMono [2]
applies multiple 2D convolutions of non-shared weights to
learn location-specific features for joint prediction of 2D
and 3D boxes. TriangulationStereo [39] directly learns offset
from predefined 3D anchors on bird’s eye view and estab-
lishes object correspondence on RoI-level features. Due to
low resolutions, pixel correspondence is not fully exploited.

3D representation based 3D Detector: 3DOPStereo [7, 8]
generates point cloud by stereo and encodes the prior
knowledge and depth in an energy function. Several meth-
ods [47, 58, 49, 32] transform the depth map to Pseudo-
LiDAR (point cloud) intermediately followed by another in-
dependent network. This pipeline yields large improvement
over previous methods. OFT-NetMono [40] maps image fea-
ture into an orthographic bird’s eye view representation and
detects 3D objects on bird’s eye view.

3. Our Approach

In this section, we first explore the proper representation
for 3D space and motivate our network design. Based on the
discussion, we present our complete 3D detection pipeline
under a binocular image pair setting.

3.1. Motivation

Due to perspective, objects appear smaller with the in-
crease of distance, which makes it possible to roughly es-
timate the depth according to the relative scale of objects
sizes and the context. However, 3D objects of the same
category may still have various sizes and orientations. It
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Figure 2. Overview of Deep Stereo Geometry Network (DSGN). The whole neural network consists of four components. (a) A 2D image
feature extractor for capture of both pixel- and high-level feature. (b) Constructing the plane-sweep volume and 3D geometric volume. (c)
Depth Estimation on the plane-sweep volume. (d) 3D object detection on 3D geometric volume.

greatly increases the difficulty to make accurate prediction.
Besides, the visual effect of foreshortening causes that

nearby 3D objects are not scaled evenly in images. A regu-
lar cuboid car appears like an irregular frustum. These two
problems impose major challenges for 2D neural networks
to model the relationship between 2D imaging and real 3D
objects [27]. Thus, instead of relying on 2D representation,
by reversing the process of projection, an intermediate 3D
representation provides a more promising way for 3D ob-
ject understanding. The following two representations can
be typically used in 3D world.

Point-based Representation Current state-of-the-art
pipelines [47, 58, 32] generate intermediate 3D structure of
point cloud by depth prediction approaches [13, 4, 22] and
apply LiDAR-based 3D object detectors. The main possible
weakness is that it involves several independent networks
and potentially loses information during intermediate trans-
formation, making the 3D structure (such as cost volume)
boiled down to point cloud.

This representation often encounters streaking artifacts
near object edges [19, 49, 58]. Besides, the network is hard
to be differentiated for multi-object scenes [5, 10].

Voxel-based Representation Volumetric representation,
as another way of 3D representation, is investigated less in-
tensively. OFT-Netmono [40] directly maps the image fea-
ture to the 3D voxel grid and then collapses it to the feature
on bird’s eye view. However, this transformation keeps the
2D representation for this view and does not explicitly en-
code the 3D geometry of data.

Our Advantage The key to establishment of an effective
3D representation relies on the ability to encode accurate
3D geometric information of the 3D space. A stereo cam-
era provides an explicit pixel-correspondence constraint for
computing depth. Aiming to design a unified network to ex-
ploit this constraint, we explore deep architectures capable
of extracting both pixel-level features for stereo correspon-

dence and high-level features for semantic cues.
On the other hand, the pixel-correspondence constraint is

supposedly imposed along the projection ray through each
pixel where the depth is considered to be definite. To this
end, we create an intermediate plane-sweep volume from
a binocular image pair to learn stereo correspondence con-
straint in camera frustum and then transform it to a 3D vol-
ume in 3D space. In this 3D volume with 3D geometric in-
formation lifted from the plane-sweep volume, we are able
to well learn 3D features for real-world objects.

3.2. Deep Stereo Geometry Network

In this subsection, we describe our overall pipeline –
Deep Stereo Geometry Network (DSGN) as shown in Fig-
ure 2. Taking the input of a binocular image pair (IL, IR),
we extract features by a Siamese network and construct a
plane-sweep volume (PSV). The pixel-correspondence is
learned on this volume. By differentiable warping, we
transform PSV to a 3D geometric volume (3DGV) to es-
tablish 3D geometry in 3D world space. Then the follow-
ing 3D neural network on the 3D volume learns necessary
structure for 3D object detection.

3.2.1 Image Feature Extraction

Networks for stereo matching [22, 4, 15] and object recog-
nition [16, 43] have different architecture designs for their
respective tasks. To ensure reasonable accuracy of stereo
matching, we adopt the main design of PSMNet [4].

Because the detection network requires a discriminative
feature based on high-level semantic features and large con-
text information, we modify the network for grasping more
high-level information. Besides, the following 3D CNN
for cost volume aggregation takes much more computation,
which gives us room to modify the 2D feature extractor
without introducing extra heavy computation overhead in
the overall network.
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Network Architecture Details Here we use the nota-
tions conv 1, conv 2, ..., conv 5 following [16]. The
key modification for 2D feature extractor is as follows.

• Shift more computation from conv 3 to conv 4 and
conv 5, i.e., changing the numbers of basic blocks of
conv 2 to conv 5 from {3, 16, 3, 3} to {3, 6, 12, 4}.
• The SPP module used in PSMNet concatenates the

output layers of conv 4 and conv 5.

• The output channel number of convolutions in conv 1
is 64 instead of 32 and the output channel number of a
basic residual block is 192 instead of 128.

Full details of our 2D feature extraction network are in-
cluded in the supplementary material.

3.2.2 Constructing 3D Geometric Volume

To learn 3D convolutional features in 3D regular space, we
first create a 3D geometric volume (3DGV) by warping a
plane-sweep volume to 3D regular space. Without loss of
generality, we discretize the region of interest in 3D world
space to a 3D voxel occupancy grid of size (WV , HV , DV )
along the right, down and front directions in camera view.
WV , HV , DV denote the width, height and length of the
grid, respectively. Each voxel is of size (vw, vh, vd).

Plane-Sweep Volume In binocular vision, an image pair
(IL, IR) is used to construct a disparity-based cost volume
for computing matching cost, which matches a pixel i in the
left image IL to the correspondence in the right image IR
horizontally shifted by an integral disparity value d. The
depth is inversely proportional to disparity.

It is thus hard to distinguish among distant objects due to
the similar disparity values [27, 47, 58]. For example, ob-
jects 40-meter and 39-meter away have almost no difference
(< 0.25pix) on disparity on KITTI benchmark [14].

In a different way to construct the cost volume, we fol-
low the classic plane sweeping approach [11, 12, 56] to
construct a plane-sweep volume by concatenating the left
image feature FL and the reprojected right image feature
FR−>L at equally spaced depth interval, which avoids im-
balanced mapping of features to 3D space.

The coordinate of PSV is represented by (u, v, d), where
(u, v) represents (u, v)-pixel in the image and it adds an-
other axis orthogonal to the image plane for depth. We call
the space of (u, v, d) grid camera frustum space. The depth
candidates di are uniformly sampled along the depth di-
mension with interval vd following the pre-defined 3D grid.
Concatenation-based volume enables the network to learn
semantic features for object recognition.

We apply 3D convolution to this volume and finally get
a matching cost volume for all depth. To ease computation,
we apply only one 3D hourglass module, contrary to the
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Figure 3. Illustration of volume transformation. The image is cap-
tured at the image plane (red solid line). PSV is constructed by
projecting images at equally spaced depth (blue dotted lines) in
left camera frustum, which is shown in the 3D world space (left)
and camera frustum space (middle). Car is shown to be distorted
in the middle. Mapping by the camera intrinsic matrix K, PSV is
warped to 3DGV, which restores the car.

three used in PSMNet [4]. We note that the resulting perfor-
mance degradation can be compensated in the following de-
tection network since the overall network is differentiable.

3D Geometric Volume With known camera internal pa-
rameters, we transform the last feature map of PSV be-
fore computing matching cost from camera frustum space
(u, v, d) to 3D world space (x, y, z) by reversing 3D pro-
jection withxy

z

 =

1/fx 0 −cu/fx
0 1/fy −cv/fy
0 0 1

udvd
d

 (1)

where fx, fy are the horizontal and vertical focal lengths.
This transformation is fully-differentiable and saves com-
putation by eliminating background outside the pre-defined
grid, such as the sky. It can be implemented by warp opera-
tion with trilinear interpolation.

Figure 3 illustrates the transformation process. The
common pixel-correspondence constraint (red dotted lines)
is imposed in camera frustum while object recognition is
learned in regular 3D world space (Euclidean space). There
obviously is difference in these two representations.

In the last feature map of plane-sweep volume, a low-
cost voxel (u, v, d) means the high probability of object ex-
isting at depth d along the ray through the focal point and
image point (u, v). With the transformation to regular 3D
world space, the feature of low cost suggests that this voxel
is occupied in the front surface of the scene, which can serve
as a feature for 3D geometric structure. Thus it is possible
for the following 3D network to learn 3D object features on
this volume.

This operation is fundamentally different from differen-
tiable unprojection [21], which directly lifts the image fea-
ture from 2D image frame to 3D world by bilinear interpo-
lation. Our goal is to lift geometric information from cost
volume to 3D world grid. We make pixel-correspondence
constraint easy to be imposed along the projection ray.

The contemporary work [58] applies a similar idea to
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construct depth-cost-volume like plane-sweep volume. Dif-
ferently, we aim to avoid imbalanced warping from plane-
sweep volume to 3D geometric volume, and deal with the
streaking artifact problem. Besides, our transformation
keeps the distribution of depth instead of deducting it to a
depth map. Our strategy intriguingly avoids object artifacts.

3.2.3 Depth Regression on Plane-Sweep Cost Volume

To compute the matching cost on the plane-sweep volume,
we reduce the final feature map of plane-sweep volume by
two 3D convolutions to get 1D cost volume (called plane-
sweep cost volume). Soft arg-min operation [22, 4, 59] is
applied to compute the expectation for all depth candidates
with probability σ(−cd) as

d̂ =
∑

d∈{zmin,zmin+vd,...,zmax}

d× σ(−cd) (2)

where the depth candidates are uniformly sampled within
pre-defined grid [zmin, zmax] with interval vd. The softmax
function encourages the model to pick a single depth plane
per pixel.

3.2.4 3D Object Detector on 3D Geometric Volume

Motivated by recent one-stage 2D detector FCOS [46], we
extend the idea of centerness branch in our pipeline and de-
sign a distance-based strategy to assign targets for the real
world. Because objects of the same category are of similar
size in 3D scene, we still keep the design of anchors.

Let V ∈ RW×H×D×C be the feature map for 3DGV
of size (W,H,D) and denote the channels as C. Consider-
ing the scenario of autonomous driving, we gradually down-
sample along the height dimension and finally get the fea-
ture mapF of size (W,H) for bird’s eye view. The network
architecture is included in the supplementary material.

For each location (x, z) in F , several anchors of dif-
ferent orientations and sizes are placed. Anchors A and
ground-truth boxes G are represented by the location, prior
size and orientation, i.e., (xA, yA, zA, hA, wA, lA, θA)
and (xG, yG, zG, hG, wG, lG, θG). Our network re-
gresses from anchor and gets the final prediction
(hAe

δh, wAe
δw, lAe

δl, xA + δx, yA + δy, zA + δz, θA +
π/Nθ tanh(δθ)), where Nθ denotes the number of anchor
orientations and δ· is the learned offset for each parameter.

Distance-based Target Assignment Taking object orien-
tation into consideration, we propose distance-based target
assignment. The distance is defined as the distance of 8 cor-
ners between anchor and ground-truth boxes as

distance(A,G) =
1

8

8∑
i=1

√
(xAi

− xGi
)2 + (zAi

− zGi
)2)

In order to balance the ratio of positive and negative
samples, we let the anchors with top N nearest distance to
ground-truth as positive samples, whereN = γ×k and k is
the number of voxels inside ground-truth box on bird’s eye
view. γ adjusts the number of positive samples. Our center-
ness is defined as the exponent of the negative normalized
distance of eight corners as

centerness(A,G) = e−norm(distance(A,G)), (3)

where norm denotes min-max normalization.

3.3. Multi-task Training

Our network with stereo matching network and 3D ob-
ject detector is trained in an end-to-end fashion. We train
the overall 3D object detector with a multi-task loss as

Loss = Ldepth + Lcls + Lreg + Lcenterness. (4)

For the loss of depth regression, we adopt smooth L1 loss
[22] in this branch as

Ldepth =
1

ND

ND∑
i=1

smoothL1

(
di − d̂i

)
, (5)

where ND is the number of pixels with ground-truth depth
(obtained from the sparse LiDAR sensor).

For the loss of classification, focal loss [31] is adopted in
our network to deal with the class imbalance problem in 3D
world as

Lcls =
1

Npos

∑
(x,z)∈F

Focal Loss(pA(x,z)
, pG(x,z)

), (6)

whereNpos denotes the number of positive samples. Binary
cross-entropy (BCE) loss is used for centerness.

For the loss of 3D bounding box regression, smooth L1

Loss is used for the regression of bounding boxes as

Lreg =
1

Npos

∑
(x,z)∈Fpos

centerness(A,G)×

smoothL1(l1 distance(A,G))

(7)

where Fpos denotes all positive samples on bird’s eye view.
We try two different regression targets with and without

jointly learning all parameters.

• Separably optimizing box parameters. The re-
gression loss is directly applied to the offset of
(x, y, z, h, w, l, θ).

• Jointly optimizing box corners. For jointly optimiz-
ing box parameters, the loss is made on the average
L1 distance of eight box corners between predicted
boxes from 3D anchors and ground-truth boxes follow-
ing that of [35].
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In our experiments, we use the second regression target
for Car and the first regression target for Pedestrian and Cy-
clist. Because it is hard for even human to accurately predict
or annotate the orientation of objects like Pedestrian from
an image, other parameter estimation under joint optimiza-
tion can be affected.

4. Experiments

Datasets Our approach is evaluated on the popular KITTI
3D object detection dataset [14], which is union of 7, 481
stereo image-pairs and point clouds for training and 7, 518
for testing. The ground-truth depth maps are generated from
point clouds following [47, 58]. The training data has an-
notation for Car, Pedestrian and Cyclist. The KITTI leader-
board limits the access to submission to the server for eval-
uating test set. Thus, following the protocol in [9, 27, 47],
the training data is divided into a training set (3,712 images)
and a validation set (3,769 images). All ablation studies are
conducted on the split. For the submission of our approach,
our model is trained from scratch on the 7K training data
only.

Evaluation Metric KITTI has three levels of difficulty set-
ting of easy, moderate (main index) and hard, according to
the occlusion/truncation and the size of an object in the 2D
image. All methods are evaluated for three levels of diffi-
culty under different IoU criteria per class , i.e., IoU ≥ 0.7
for Car and IoU ≥ 0.5 for Pedestrian and Cyclist for 2D,
bird’s eye view and 3D detection.

Following most image-based 3D object detection setting
[47, 27, 39, 38, 2, 42], the ablation experiments are con-
ducted on Car. We also report the results of Pedestrian
and Cyclist for reference in the supplementary file. KITTI
benchmark recently changes evaluation where AP calcula-
tion uses 40 recall positions instead of the 11 recall po-
sitions proposed in the original Pascal VOC benchmark.
Thus, we show the main test results following the official
KITTI leaderboard. We generate the validation results us-
ing the original evaluation code for fair comparison with
other approaches in ablation studies.

4.1. Implementation

Training Details By default, models are trained on 4
NVIDIA Tesla V100 (32G) GPUs with batch-size 4 – that
is, each GPU holds one pair of stereo images of size
384 × 1248. We apply ADAM [23] optimizer with initial
learning rate 0.001. We train our network for 50 epochs and
the learning rate is decreased by 10 at 50-th epoch. The
overall training time is about 17 hours. The data augmenta-
tion used is horizontal flipping only.

Following other approaches [58, 47, 60, 52, 41, 10], an-
other network is trained for Pedestrian and Cyclist, we first
pre-train the network with all training images for the stereo

network and then apply fine-tune with 3D box annotation
for both branches because only about 1/3 images have an-
notations of these two objects.
Implementation Details For constructing plane-sweep
volume, the image feature map is shrunk to 32D and down-
sampled by 4 for both left and right images. Then by re-
projection and concatenation, we construct the volume of
shape (WI/4, HI/4, DI/4, 64), where the image size is
(WI = 1248, HI = 384) and the number of depth is
DI = 192. It is followed by one 3D hourglass module
[4, 34] and extra 3D convolutions to get the matching cost
volume of shape (WI/4, HI/4, DI/4, 1). Then interpola-
tion is used to upsample this volume to fit the image size.

To construct 3D geometric volume, We discretize the re-
gion in range [−30.4, 30.4] × [−1, 3] × [2, 40.4] (meters)
to a 3D voxel occupancy grid of size (WV = 300, HV =
20, DV = 192) along the right (X), down (Y ) and front
(Z) directions in camera’s view. 3D geometric volume is
formed by warping the last feature map of PSV. Each voxel
is a cube of size (0.2, 0.2, 0.2) (meter).

Other implementation details and the network architec-
ture are included in the supplementary file.

4.2. Main Results

We give comparison with state-of-the-art 3D detectors
in Tables 1 and 2. Without bells and whistles, our approach
outperforms all other image-based methods on 3D and BEV
object detection. We note that Pseudo-LiDARs [47, 58]
is with pre-trained PSMNet [4] on a large-scale synthetic
scene flow dataset [33] (with 30,000+ pairs of stereo images
and dense disparity maps) for stereo matching. Stereo R-
CNN [27] uses ImageNet pre-trained ResNet-101 as back-
bone and has input images of resolution 600× 2000.

Differently, our model is trained from scratch only on
these 7K training data with input of resolution 384× 1248.
Also, Pseudo-LiDARs [47, 58] approaches apply two in-
dependent networks including several LiDAR-based detec-
tors, while ours is just one unified network.

DSGN without explicitly learning 2D boxes surpasses
those applying strong 2D detectors based on ResNet-101
[27] or DenseNet-121 [2]. It naturally achieves duplicate
removal by non-maximum suppression (NMS) in 3D space,
which coincides with the common belief that there is no
collision between regular objects.

More intriguingly, as shown in Table 1, DSGN even
achieves comparable performance on BEV detection and
better performance on 3D detection on KITTI easy regime
with MV3D [9] (with LiDAR input only) – a classic
LiDAR-based 3D object detector, for the first time. This
result demonstrates a promising future application at least
in the scenario of low-speed autonomous driving.

The above comparison manifests the effectiveness of 3D
geometric volume, which serves as a link between 2D im-
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Modality Method 3D Detection AP (%) BEV Detection AP (%) 2D Detection AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LiDAR MV3D (LiDAR) [9] 68.35 54.54 49.16 86.49 78.98 72.23 – – –

Mono

OFT-Net [40] 1.61 1.32 1.00 7.16 5.69 4.61 – – –
MonoGRNet [38] 9.61 5.74 4.25 18.19 11.17 8.73 88.65 77.94 63.31

M3D-RPN [2] 14.76 9.71 7.42 21.02 13.67 10.23 89.04 85.08 69.26
AM3D [32] 16.50 10.74 9.52 25.03 17.32 14.91 92.55 88.71 77.78

Stereo

3DOP [7] – – – – – – 93.04 88.64 79.10
Stereo R-CNN* [27] 47.58 30.23 23.72 61.92 41.31 33.42 93.98 85.98 71.25

PL: AVOD* [47] 54.53 34.05 28.25 67.30 45.00 38.40 85.40 67.79 58.50
PL++: P-RCNN* [58] 61.11 42.43 36.99 78.31 58.01 51.25 94.46 82.90 75.45

DSGN (Ours) 73.50 52.18 45.14 82.90 65.05 56.60 95.53 86.43 78.75

Table 1. Comparison of main results on KITTI test set (official KITTI leaderboard). The results are evaluated using new evaluation metric
on the KITTI leaderboard. Several methods undergoing old evaluation are not available on the leaderboard. PL/PL++* uses extra Scene
Flow dataset to pre-train the stereo matching network and Stereo R-CNN* uses ImageNet pre-trained model.

Modality Method 3D Detection AP (%) BEV Detection AP (%) 2D Detection AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LiDAR MV3D (LiDAR) [9] 71.29 56.60 55.30 86.18 77.32 76.33 88.41 87.76 79.90

Mono

OFT-Net [40] 4.07 3.27 3.29 11.06 8.79 8.91 – – –
MonoGRNet [38] 13.88 10.19 7.62 43.75 28.39 23.87 – 78.14 –

M3D-RPN [2] 20.27 17.06 15.21 25.94 21.18 17.90 90.24 83.67 67.69
AM3D [32] 32.23 21.09 17.26 43.75 28.39 23.87 – – –

Stereo

MLF [50] – 9.80 – – 19.54 – – – –
3DOP [7] 6.55 5.07 4.10 12.63 9.49 7.59 – – –

Triangulation [39] 18.15 14.26 13.72 29.22 21.88 18.83 – – –
Stereo R-CNN* [27] 54.1 36.7 31.1 68.5 48.3 41.5 98.73 88.48 71.26
PL: F-PointNet* [47] 59.4 39.8 33.5 72.8 51.8 33.5 – – –

PL: AVOD* [47] 61.9 45.3 39.0 74.9 56.8 49.0 – – –
PL++: AVOD* [58] 63.2 46.8 39.8 77.0 63.7 56.0 – – –
PL++: PIXOR* [58] – – – 79.7 61.1 54.5 – – –

PL++: P-RCNN* [58] 67.9 50.1 45.3 82.0 64.0 57.3 – – –
DSGN (Ours) 72.31 54.27 47.71 83.24 63.91 57.83 89.25 83.59 78.45

Table 2. Comparison of main results on KITTI val set. As described in Section 4, we use original KITTI evaluation metric here. PL/PL++*
uses extra Scene Flow dataset to pre-train the stereo matching network and Stereo R-CNN* uses ImageNet pre-trained model.

ages and 3D space by combining the depth information and
semantic feature.

Inference Time On a NVIDIA Tesla V100 GPU, the in-
ference time of DSGN for one image pair is 0.682s on av-
erage, where 2D feature extraction for left and right images
takes 0.113s, constructing the plane-sweep volume and 3D
geometric volume takes 0.285s, and 3D object detection on
3D geometric volume takes 0.284s. The computation bot-
tleneck of DSGN lies on 3D convolution layers.

4.3. Ablation Study

4.3.1 Ablation study of 3D Volume Construction

One of the main obstacles to construct an effective 3D geo-
metric representation is the appropriate way of learning 3D
geometry. We therefore investigate the effect of following
three key components to construct a 3D volume.

Input Data Monocular-based 3D volume only has the po-
tential to learn the correspondence between 2D and 3D fea-
ture, while stereo-based 3D volume can learn extra 2D fea-

ture correspondence for pixel-correspondence constraint.

Constructing 3D Volume One straightforward solution to
construct 3D volume is by directly projecting the image fea-
ture to 3D voxel grid [21, 40] (denoted as IMG→3DV). An-
other solution in Figure 3 transforms plane-sweep volume
or disparity-based cost volume to 3D volume, which pro-
vides a natural way to impose pixel-correspondence con-
straint along the projection ray in camera frustum (denoted
as IMG→(PS)CV→3DV).

Supervising Depth Supervised with or without the point
cloud data, the network learns the depth explicitly or im-
plicitly. One way is to supervise the voxel occupancy of 3D
grid by ground-truth point cloud using binary cross-entropy
loss. The second is to supervise depth on the plane-sweep
cost volume as explained in Section 3.3.

For fair comparison, the models IMG→3DV and
IMG→(PS)CV→3DV have the same parameters by adding
the same 3D hourglass module for the model IMG→3DV.
In addition, several important facts can be revealed from
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Input Transformation Supervision AP3D / APBEV / AP2D

Mono IMG→3DV × 6.22 / 11.98 / 58.23
3DV 13.66 / 19.92 / 65.89

Stereo

IMG→3DV × 11.03 / 15.17 / 57.30
3DV 42.57 / 54.55 / 81.86

IMG→CV→3DV CV 45.89 / 58.40 / 81.71

IMG→PSCV→3DV × 38.48 / 52.85 / 77.83
PSCV 54.27 / 63.91 / 83.59

Table 3. Ablation study of depth encoded approaches. “PSCV”
and “3DV” with “Supervision” header represent that the constraint
is imposed in (plane-sweep) cost volume and 3D volume, respec-
tively. The results are evaluated in moderate level.

Table 3 and are explained in the following.

Supervision of point cloud is important. The approaches
under the supervision of the LiDAR point cloud consis-
tently perform better than those without supervision, which
demonstrates the importance of 3D geometry for image-
based approaches.

Stereo-based approaches work much better than monocular
ones under supervision. The discrepancy between stereo
and monocular approaches indicates that direct learning of
3D geometry from semantic cues is a quite difficult prob-
lem. In contrast, image-based approaches without supervi-
sion make these two lines yield similar performance, which
indicates that supervision only by 3D bounding boxes is in-
sufficient for learning of 3D geometry.

Plane-sweep volume is a more suitable representation for
3D structure. Plane-sweep cost volume (54.27 AP) per-
forms better than disparity-based cost volume (45.89 AP).
It shows that balanced feature mapping is important during
the transformation to 3D volume.

Plane-sweep volume, as an intermediate encoder, more ef-
fectively contains depth information. The inconsistency be-
tween IMG→PSCV→3DV and IMG→3DV manifests that
plane-sweep volume as the intermediate representation can
effectively help learning of depth information. The observa-
tion explains that the soft arg-min operation encourages the
model to pick a single depth plane per pixel along the pro-
jection ray, which shares the same spirit as the assumption
that only one depth-value is true for each pixel. Another
reason can be that PSCV and 3DV have different matching
densities – PSCV intermediately imposes the dense pixel
correspondence over all image pixels. In contrast, only the
left-right pixel pairs through the voxel centers are matched
on 3DV.

From above comparison of volume construction, we ob-
serve that the three key facts affect the performance of com-
putation pipelines. The understanding and recognition of
how to construct a suitable 3D volume is still at the very
early stage. More study is expected to reach comprehensive
understanding of the volume construction from the multi-

Networks Targets Depth Error (meters) AP3D / APBEV / AP2DMean Median
PSMNet-PSV* Depth 0.5337 0.1093 —-

DSGN 0.5279 0.1055 —-
PSMNet-PSV* Both 0.5606 0.1157 46.41 / 57.57 / 80.67

DSGN 0.5586 0.1104 54.27 / 63.91 / 83.59

Table 4. Influence on depth estimation, evaluated on KITTI val
images. PSMNet-PSV* is a variant of PSMNet [4], which uses
one 3D hourglass module instead of three of them for refinement
considering limited memory space and takes the plane-sweep ap-
proach to construct cost volume.

view images.

4.3.2 Influence on Stereo Matching

We conduct experiments for investigating the influence of
depth estimation, which is evaluated on KITTI val set fol-
lowing [47]. The average and median value of absolute
depth estimation errors within the pre-defined range of
[zmin, zmax] is shown in Table 4. A natural baseline for
our approach is PSMNet-PSV* modified from PSMNet [4]
whose 2D feature extractor takes 0.041s while ours takes
0.113s.

Trained with depth estimation branch only, DSGN per-
forms slightly better than PSMNet-PSV* with the same
training pipeline in depth estimation. For joint training of
both tasks, both approaches suffer from larger and similar
depth error (0.5586 meter for DSGN vs. 0.5606 meter for
PSMNet-PSV*). Differently, DSGN outperforms the alter-
natives by 7.86 AP on 3D object detection and 6.34 AP on
BEV detection. The comparison indicates that our 2D net-
work extracts better high-level semantic features for object
detection.

5. Conclusion
We have presented a new 3D object detector on binocular

images. It shows that an end-to-end stereo-based 3D object
detection is feasible and effective. Our unified network en-
codes 3D geometry via transforming the plane-sweep vol-
ume to a 3D geometric one. Thus, it is able to learn high-
quality geometric structure features for 3D objects on the
3D volume. The joint training lets the network learn both
pixel- and high-level features for the important tasks of
stereo correspondence and 3D object detection.

Without bells and whistles, our one-stage approach out-
performs other image-based approaches and even achieves
comparable performance with a few LiDAR-based ap-
proaches on 3D object detection. The ablation study investi-
gates several key components for training 3D volume in Ta-
ble 3. Although the improvement is clear and explained, our
understanding of how the 3D volume transformation works
will be further explored in our future work.
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A. Appendix

A.1. More Experiments

Correlation between stereo (depth) and 3D object detec-
tion accuracy. Following KITTI stereo metric, we con-
sider a pixel as being correctly estimated if its depth error
is less than an outlier thresh. The percentage of non-outlier
pixels inside the object box is deemed as depth estimation
precision.

With several outlier threshes (0.1, 0.3, 0.5, 1.0, 2.0 me-
ters), scatter plots of stereo and detection precision are
drawn. We observed that when outlier thresh is 0.3 meter,
the strongest linear correlation is yielded.

Outlier thresh > 2m > 1m > 0.5m > 0.3m > 0.1m
PCC 0.249 0.353 0.438 0.450 0.417

Table 5. Pearson’s correlation coefficients (PCC) for a set of out-
lier threshes between depth estimation precision and detection ac-
curacy. Outlier thresh= 0.3m yields the strongest linear correla-
tion.

Figure 4 shows the scatter plots with the outlier thresh
0.3m and 0.1m. Quite a few predictions get over 0.7 de-
tected precision within a certain range of depth estimation
error. This reveals that the end-to-end network gives rise to
its ability to detect 3D objects even with a larger depth es-
timation error. The following 3D detector enables compen-
sation for the stereo depth estimation error by 3D location
regression with back-propagation.
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Figure 4. BEV Detection precision versus depth precision for all
predicted boxes for Car on KITTI val set. Only TPs with IoU>
0.01 and score > 0.1 are shown.

Relationship between distance and detection accuracy.
Figure 5 illustrates, as distance increases, all detection ac-
curacy indicators have a shrinking tendency. The average
accuracy maintains 80%+ within 25 meters. In all indica-
tors, 3D AP decreases the fastest, followed by BEV AP and
last 2D AP. This observation suggests that the 3D detection
accuracy is determined by the BEV location precision be-
yond 20 meters.
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Figure 5. Detection accuracy versus distance. We separate the
range [0, 40] (meters) into 8 intervals, each with 5 meters. All
evaluations are conducted within each interval.

Influence of different features for 3D geometry. We dis-
cuss the efficiency of different geometric representations
for volumetric structure. Most depth prediction approaches
[13, 22, 4, 15] apply the strategy of “depth classification”
(such as cost volume) instead of “depth regression”. Thus,
we have several choices for encoding the depth information
of cost volume into a 3D volume. The intuitive one is to use
a 3D voxel occupancy (denoted by “Occupancy”). An ad-
vanced version is by keeping the probability of voxel occu-
pancy (denoted by “Probability”). They both have explicit
meaning for 3D geometry and can be easily visualized. An-
other one is by using the last feature map for cost volume
as geometric embedding for 3D volume (denoted by “Last
Features”).

Voxel Features AP3D / APBEV / AP2D
Occupancy 37.86 / 50.64 / 70.79
Probability 43.24 / 54.87 / 74.93

Last Features 54.27 / 63.91 / 83.59

Table 6. Ablation study on 3D geometric representation. “Occu-
pancy” indicates only using binary feature for 3D volume. It is 1
for voxel of minimum cost along the projection ray and is 0 other-
wise. “Probability” denotes keeping the probability of voxel occu-
pancy instead of quantizing it to 0 or 1. “Last Features” represents
transforming the last features of cost volume to 3D volume.

Table 6 reveals the performance gap between “Occu-
pancy” / “Probability”. “Last Features” indicates the latent
feature embedding (64D) that enables the network to extract
more 3D latent geometric information and even semantic
cues than the explicit voxel occupancy. It aids learning of
3D structure.

Technical details We explore several technical details
used in DSGN and discuss their importance in the pipeline
in Table 7. Joint optimization of bounding box regression
improves accuracy (+4.80 AP) than the separable optimiza-
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JOINT IMG ATT Depth HG Flip AP3D/APBEV/AP2D
40.71 / 53.71 / 76.11

X 45.51 / 56.65 / 78.31
X X 44.79 / 56.24 / 81.58
X X X 46.52 / 57.44 / 82.41
X X 45.79 / 56.89 / 78.49
X X X X 51.73 / 61.74 / 83.6
X X X X X 54.27 / 63.91 / 83.59

Table 7. Ablation study evaluated in moderate level. “JOINT”
indicates using joint optimization instead of separable optimiza-
tion for bounding boxes regression. “IMG” denotes concatenat-
ing the mapped left image feature to 3DGV for retrieving more
2D semantics. “ATT (Attention)” represents concatenating the
mapped image feature weighted by the corresponding depth prob-
ability. “Depth” indicates warping the final matching cost vol-
ume to 3DGV. “HG (Hourglass)” represents applying an hourglass
module in 3DGV. “Flip” means using random horizontal flipping
augmentation.

tion. The intermediate 3D volume representation enables
the network to naturally retrieve image feature for more
2D semantic cues. However, 3DGV cannot directly benefit
from the concatenation of mapped 32D image features and
warped predicted cost volume. Instead, the image feature
weighted by the depth probability achieves +1.01 AP gain.
Further, Involving more computation by an extra hourglass
module on 3D object detector and flip augmentation, DSGN
finally achieves 54.27 AP on 3D object detection.

Pedestrian and Cyclist detection. The main challenges
for detecting Pedestrian and Cyclist are the limited data
(about only 1/3 of images are annotated) and the difficulty
to estimate their poses in an image even for human. As a re-
sult, most image-based approaches yield poor performance
or are not validated on Pedestrian and Cyclist. Since the
evaluation metric is changed on the official KITTI leader-
board, We only report the available results from original
papers and the KITTI leaderboard.

Experimental results in Table 8 shows that our approach
achieves better results on Pedestrian but worse ones on Cy-
clist compared with PL: F-PointNet. We note that PL:
F-PointNet used Scene Flow dataset [33] to pre-train the
stereo matching network. Besides, PL: F-PointNet achieves
the best result on Pedestrian and the model PL: AVOD
works best on Car and Cyclist. Table 9 shows the submitted
results on the official KITTI leaderboard.

A.2. More Implementation Details

Network Architecture. We show the full network archi-
tecture in Table 10, including the networks for 2D feature
extraction, constructing plane-sweep volume and 3D geo-
metric volume, stereo matching and 3D object detection.

Implementation Details of 3D Object Detector. Given
the feature map F on bird’s eye view, we put four anchors
of different orientation angles (0, π/2, π, 3π/2) on all loca-
tions ofF . The box sizes of pre-defined anchors used for re-
spectively Car, Pedestrian, Cyclist are (hA = 1.56, wA =
1.6, lA = 3.9), (hA = 1.73, wA = 0.6, lA = 0.8), and
(hA = 1.73, wA = 0.6, lA = 1.76).

The horizontal coordinate (xA, zA) of each anchor lies
on the center of each grid in bird’s eye view and its center
along the vertical direction locates on yA = 0.825 for Car
and yA = 0.74 for Pedestrian and Cyclist. We set γ = 1 for
Car and γ = 5 for Pedestrian and Cyclist for balancing the
positive and negative samples. The classification head of
3D object detector is initialized following RetinaNet [31].
NMS with IoU threshold 0.6 is applied to filter out the pre-
dicted boxes on bird’s eye view.

Implementation Details of Differentiable Warping from
PSV to 3DGV. Let U ∈ RHI×WI×DI×C be the last
feature map of PSV, where C is the channel size of fea-
tures. We first construct a pre-defined 3D volume ∈
RHV ×WV ×DV ×3 to store the center coordinate (x, y, z) of
each voxel in 3D space (Section 4.1). Then we get the pro-
jected pixel coordinate (u, v) by multiplying the projection
matrix. z is directly concatenated to pixel coordinate to get
(u, v, z) in camera frustum space.

As a result, we get a coordinate volume
∈ RHV ×WV ×DV ×3, which stores the mapped coordinates
in camera frustum space. By trilinear interpolation, we
fetch the corresponding feature of U at the projected coor-
dinates to construct the 3D volume V ∈ RHV ×WV ×DV ×C ,
i.e., 3D geometric volume. We ignore the projected coor-
dinates outside the image by setting these voxel features
to 0. In backward operations, the gradient is passed and
computed using the same coordinate volume.

A.3. Future Work

More further studies on stereo-based 3D object detection
are recommended here.
The Gap with state-of-the-art LiDAR-based ap-
proaches. Although our approach achieves comparable
performance with some LiDAR-based approaches on 3D
object detection, there remains a large gap with state-of-
the-art LiDAR-based approaches [55, 41, 10, 52]. Besides,
an obvious problem is the accuracy gap on bird’s eye view
(BEV) detection. As shown in the table of main results,
there is almost 12 AP gap on the moderate and hard level
in BEV detection.

One possible solution is high-resolution stereo matching
[53], which can help obtain more accurate depth informa-
tion to increase the robustness for highly occluded, trun-
cated and far objects.
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Modality Method 3D Detection AP (%) BEV Detection AP (%) 2D Detection AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Pedestrian
Mono M3D-RPN [2] – 11.09 – – 11.53 – – – –

Stereo PL: F-PointNet* [47] 33.8 27.4 24.0 41.3 34.9 30.1 – – –
DSGN (ours) 40.16 33.85 29.43 47.92 41.15 36.08 59.06 54.00 49.65

Cyclist
Mono M3D-RPN [2] – 2.81 – – 3.61 – – – –

Stereo PL: F-PointNet* [47] 41.3 25.2 24.9 47.6 29.9 27.0 – – –
DSGN (ours) 37.87 24.27 23.15 41.86 25.98 24.87 49.38 33.97 32.40

Table 8. Comparison of results for Pedestrian and Cyclist on KITTI val set. PL: F-PointNet* uses extra Scene Flow dataset to pretrain the
stereo matching network.

Modality Method 3D Detection AP (%) BEV Detection AP (%) 2D Detection AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Pedestrian
Mono M3D-RPN [2] 4.92 3.48 2.94 5.56 4.05 3.29 56.64 41.46 37.31

Stereo RT3DStereo [24] 3.28 2.45 2.35 4.72 3.65 3.00 41.12 29.30 25.25
DSGN (ours) 20.53 15.55 14.15 26.61 20.75 18.86 49.28 39.93 38.13

Cyclist
Mono M3D-RPN [2] 0.94 0.65 0.47 1.25 0.81 0.78 61.54 41.54 35.23

Stereo RT3DStereo [24] 5.29 3.37 2.57 7.03 4.10 3.88 19.58 12.96 11.47
DSGN (ours) 27.76 18.17 16.21 31.23 21.04 18.93 49.10 35.15 31.41

Table 9. Comparison of results for Pedestrian and Cyclist on KITTI test set (official KITTI Leaderboard).

3D Volume Construction. Table 3 shows basic compar-
ison of volume construction in DSGN. We expect a more
in-depth analysis of the volume construction from multi-
view or binocular images, which serves as an essential com-
ponent design for 3D object understanding. Besides, the
effectiveness of 3D volume construction methods still re-
quires more investigation since it needs to balance and pro-
vide both depth information and semantic information.
Computation Bottleneck. The computation bottleneck
of DSGN locates on the computation of 3D convolutions
for computing cost volume. Recent stereo matching work
[57, 48] focused on accelerating the computation of cost
volume. Another significant aspect of constructing cost vol-
ume is that current cost volume [22, 4] is designed for re-
gressing disparity but not depth. Further research might ex-
plore more efficient feature encoding for the plane-sweep
cost volume.
Network Architecture Design. There is a trade-off be-
tween stereo matching network and 3D detection network
for balancing the feature extraction of pixel- and high-level
features, which can be conducted by recent popular Net-
work Architecture Search (NAS).
Application on Low-speed Scenario. Our approach
shows comparable performance with the LiDAR-based ap-
proach on 3D and BEV detection in the close range in the
KITTI easy set. Most importantly, it is affordable even with
one strong GPU Tesla V100 ($11,458 (USD)) compared
with the price of a 64-beam LiDAR $75,000 [58]. It is a
promising application of image-based autonomous driving

system for low-speed scenarios.

A.4. Qualitative Results

We provide a video demo 1 for visualization of our ap-
proach, which shows both the detected 3D boxes on front
view and bird’s eye view. The ground-truth LiDAR point
cloud is shown on bird’s eye view. The detection results
are obtained by DSGN trained on KITTI training split only.
The unit of the depth map is meter.

Some noise observed in the predicted depth map is
mainly caused by the implementation details. (1) Noise in
the near and far part: 3D volumes are constructed in [2,
40.4] (meters). (2) Noise and large white zone in the higher
region (>3m): The stereo branch is trained with a sparse GT
depth map (64 lines around [-1,3 (meters) along the gravi-
tational z-axis, captured by a 64-ray LiDAR).
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Layers Kernel Size Chl Output Size

Image Feature Extractor

Input Image 3 𝐻I ×𝑊I

conv1_x 3 × 3 × 3 64 𝐻I/2×𝑊I/2

conv2_x 3 × 3 × 3 32 𝐻I/2×𝑊I/2

conv3_x 3 × 3 × 6 64 𝐻I/4×𝑊I/4

conv4_x 3 × 3 × 12 128 𝐻I/4×𝑊I/4

conv5_x 3 × 3 × 4 (dila=2) 192 𝐻I/4×𝑊I/4

conv5_4 → SPP Module

branch_1
64 × 64 𝑎𝑣𝑔𝑝𝑜𝑜𝑙

3 × 3
bilinear interpolation

32 𝐻I/4×𝑊I/4

branch_2
32 × 32 𝑎𝑣𝑔𝑝𝑜𝑜𝑙

3 × 3
bilinear interpolation

32 𝐻I/4×𝑊I/4

branch_3
16 × 16 𝑎𝑣𝑔𝑝𝑜𝑜𝑙

3 × 3
bilinear interpolation

32 𝐻I/4×𝑊I/4

branch_4
8 × 8 𝑎𝑣𝑔𝑝𝑜𝑜𝑙

3 × 3
bilinear interpolation

32 𝐻I/4×𝑊I/4

Fusion of shadow and deep layers

concat [conv3_6, conv4_12, 

conv5_4, branch1~4]
512 𝐻I/4×𝑊I/4

fusion_1 3 × 3 256 𝐻I/4×𝑊I/4

fusion_2 3 × 3 32 𝐻I/4×𝑊I/4

(fusion_2 (left), fusion_2 (right))

→ Constructing Plane-Sweep Volume

Plane-Sweep Volume 64 𝐻I/4× 𝑊I/4 × 𝐷I/4

PS_conv1_x 3 × 3 × 3 × 2 64 𝐻I/4× 𝑊I/4 × 𝐷I/4

PS_conv2_x
3 × 3 × 3 × 2

add PS conv1_2
64 𝐻I/4× 𝑊I/4 × 𝐷I/4

PS_stack_1x 3 × 3 × 3 × 2 128 𝐻I/8× 𝑊I/8 × 𝐷I/8

PS_stack_2x 3 × 3 × 3 × 2 128 𝐻I/16 ×𝑊I/16 × 𝐷I/16

PS_stack_3
deconv 3 × 3 × 3
add PS_stack_12

128 𝐻I/8× 𝑊I/8 × 𝐷I/8

PS_stack_4
deconv 3 × 3 × 3
add PS_conv2_2

64 𝐻I/4× 𝑊I/4 × 𝐷I/4

PS_stack_4 → Stereo Matching

Depth conv_1 3 × 3 × 3 64 𝐻I/4× 𝑊I/4 × 𝐷I/4

Depth conv_2 3 × 3 × 3 1 𝐻I/4× 𝑊I/4 × 𝐷I/4

Upsample 𝑡𝑟𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 1 𝐻I ×𝑊I × 𝐷I

𝒔𝒐𝒇𝒕 𝒂𝒓𝒈𝒎𝒊𝒏 function 1 𝐻I ×𝑊I

PS_stack_4 → 3D Geometric Volume

3D Geometric Volume 64 𝐻𝑉 ×𝑊𝑉 × 𝐷𝑉

3DG_conv 3 × 3 × 3 64 𝐻𝑉 ×𝑊𝑉 × 𝐷𝑉

3DG_

stack_1x
3 × 3 × 3 × 2 128 𝐻V/2× 𝑊V/2× 𝐷V/2

3DG_ 

stack_2x
3 × 3 × 3 × 2 128 𝐻V/4× 𝑊V/4× 𝐷V/4

3DG_ stack_3
deconv 3 × 3 × 3

add 3DG_stack_12
128 𝐻V/2× 𝑊V/2× 𝐷V/2

3DG_ stack_4
deconv 3 × 3 × 3
add 3DG_conv

64 𝐻V ×𝑊V × 𝐷V

3DG_stack_4→3D Geometric Volume on BEV

4 × 1 × 1 𝑎𝑣𝑔𝑝𝑜𝑜𝑙
and reshape to bev

64 ×
𝐻𝑉/4

𝑊𝑉 × 𝐷𝑉

3DGVbev_

conv_x
3 × 3 × 2 128 𝑊𝑉 × 𝐷𝑉

3DGVbev_conv_2 → Classification 

cls_conv_x 3 × 3 × 4 128 𝑊𝑉 × 𝐷𝑉

bbox_cls 3 × 3 4 × 3 𝑊𝑉 × 𝐷𝑉

3DGVbev_conv_2 → Regression

reg_conv_x 3 × 3 × 4 128 𝑊𝑉 × 𝐷𝑉

bbox_cls 3 × 3 10 × 3 𝑊𝑉 × 𝐷𝑉

reg_conv_4 → Centerness

bbox_centern

ess
3 × 3 4 𝑊𝑉 × 𝐷𝑉

Shared weights
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3D Hourglass

2D Hourglass

(b) Constructing PSV and 3DGV(a) 2D Feature Extraction

SPP Module

SPP Module
𝐻𝐼

4
,
𝑊𝐼

4
,
𝐷𝐼

4
, 64

𝐻𝐼

4
,
𝑊𝐼

4
,
𝐷𝐼

4
, 64

32−d

32-d

𝐻𝑉 ,𝑊𝑉 , 𝐷𝑉 , 64

Plane-
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Volume

3D 
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y
Volume

32−d

𝐻𝑉 ,𝑊𝑉 , 𝐷𝑉 , 64

𝑊𝑉 , 𝐷𝑉 , 128

Plane-
Sweep
Volume

Conv3Ds

Conv3Ds

Conv3Ds

Bird’s Eye 
View

Table 10. Full network architecture of DSGN. The color of the
table highlights different components.
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