arXiv:1905.12681v5 [cs.CV] 3 Apr 2020

What Makes Training Multi-modal Classification Networks Hard?

Weiyao Wang, Du Tran, Matt Feiszli
Facebook Al
{weiyaowang, trandu, mdf}@fb.com

Abstract

Consider end-to-end training of a multi-modal vs. a uni-
modal network on a task with multiple input modalities:
the multi-modal network receives more information, so it
should match or outperform its uni-modal counterpart. In
our experiments, however, we observe the opposite: the best
uni-modal network often outperforms the multi-modal net-
work. This observation is consistent across different combi-
nations of modalities and on different tasks and benchmarks
for video classification.

This paper identifies two main causes for this perfor-
mance drop: first, multi-modal networks are often prone
to overfitting due to their increased capacity. Second, dif-
ferent modalities overfit and generalize at different rates, so
training them jointly with a single optimization strategy is
sub-optimal. We address these two problems with a tech-
nique we call Gradient-Blending, which computes an op-
timal blending of modalities based on their overfitting be-
haviors. We demonstrate that Gradient Blending outper-
forms widely-used baselines for avoiding overfitting and
achieves state-of-the-art accuracy on various tasks includ-
ing human action recognition, ego-centric action recogni-
tion, and acoustic event detection.

1. Introduction

Consider a late-fusion multi-modal network, trained end-
to-end to solve a task. Uni-modal solutions are a strict sub-
set of the solutions available to the multi-modal network;
a well-optimized multi-modal model should, in theory, al-
ways outperform the best uni-modal model. However, we
show here that current techniques do not always achieve
this. In fact, what we observe is contrary to common sense:
the best uni-modal model often outperforms the joint model,
across different modalities (Table 1) and datasets (details in
section 3). Anecdotally, the performance drop with mul-
tiple input streams appears to be common and was noted
in [24, 3, 38, 44]. This (surprising) phenomenon warrants
investigation and solution.

Upon inspection, the problem appears to be overfitting:

Dataset | Multi-modal V@1 | BestUni V@1 | Drop
A +RGB 71.4 RGB 72.6 -1.2
L RGB+OF 713 RGB 72.6 -1.3
Kinetics

A +OF 58.3 OF 62.1 -3.8
RGB 72.6 -2.6

A+RGB+0OF 70.0

Table 1: Uni-modal networks consistently outperform multi-
modal networks. Best uni-modal networks vs late fusion multi-
modal networks on Kinetics using video top-1 validation accuracy.
Single stream modalities include video clips (RGB), Optical Flow
(OF), and Audio (A). Multi-modal networks use the same archi-
tectures as uni-modal, with late fusion by concatenation at the last
layer before prediction.

RGB
late-concat
pre-train
early-stop
dropout
mid-concat
SE-gate
NL-gate

kal 71.5 72 725 73
Top-1 Accuracy on Kinetics

Figure 1: Standard regularizers do not provide a good im-
provement over the best Uni-modal network. Best uni-modal
network (RGB) vs standard approaches on a multi-modal net-
work (RGB+Audio) on Kinetics. Various methods to avoid over-
fitting (orange: Pre-training, Early-stopping, and Dropout) do
not solve the issue. Different fusion architectures (red: Mid-
concatenation fusion, SE-gate, and NL-gate) also do not help.
Dropout and Mid-concatenation fusion approaches provide small
improvements (+0.3% and +0.2%), while other methods degrade
accuracy.

multi-modal networks have higher train accuracy and lower
validation accuracy. Late fusion audio-visual (A+RGB)
network has nearly two times the parameters of a visual net-
work, and one may suspect that the overfitting is caused by
the increased number of parameters.

There are two ways to approach this problem. First, one
can consider solutions such as dropout [43], pre-training, or
early stopping to reduce overfitting. On the other hand, one
may speculate that this is an architectural deficiency. We
experiment with mid-level fusion by concatenation [37] and
fusion by gating [31], trying both Squeeze-and-Excitation
(SE) [26] gates and Non-Local (NL) [51] gates.

Remarkably, none of these provide an effective solu-

tion. For each method, we record the best audio-visual
results on Kinetics in Figure 1. Pre-training fails to of-
fer improvements, and early stopping tends to under-fit the
RGB stream. Mid-concat and dropout provide only mod-
est improvements over RGB model. We note that dropout
and mid-concat (with 37% fewer parameters compared to
late-concat) make 1.5% and 1.4% improvements over late-
concat, confirming the overfitting problem with late-concat.
We refer to supplementary materials for details.

How do we reconcile these experiments with previous
multi-modal successes? Multi-modal networks have suc-
cessfully been trained jointly on tasks including sound
localization [59], image-audio alignment [5], and audio-
visual synchronization [37, 34]. However, these tasks can-
not be performed with a single modality, so there is no uni-
modal baseline and the performance drop found in this pa-
per does not apply. In other work, joint training is avoided
entirely by using pre-trained uni-modal features. Good ex-
amples include two-stream networks for video classifica-
tion [41, 49, 19, 12] and image+text classification [6, 31].
These methods do not train multiple modalities jointly, so
they are again not comparable, and their accuracy may
likely be sub-optimal due to independent training.

Our contributions in this paper include:

e We empirically demonstrate the significance of overfit-
ting in joint training of multi-modal networks, and we
identify two causes for the problem. We show the prob-
lem is architecture agnostic: different fusion techniques
can also suffer the same overfitting problem.

e We propose a metric to understand the problem quanti-
tatively: the overfitting-to-generalization ratio (OGR),
with both theoretical and empirical justification.

e We propose a new training scheme which minimizes
OGR via an optimal blend (in a sense we make precise
below) of multiple supervision signals. This Gradient-
Blending (G-Blend) method gives significant gains in
ablations and achieves state-of-the-art (SoTA) accuracy
on benchmarks including Kinetics, EPIC-Kitchen, and
AudioSet by combining audio and visual signals.

We note that G-Blend is task-agnostic, architecture-agnostic
and applicable to other scenarios (e.g. used in [39] to com-
bine point cloud with RGB for 3D object detection)

1.1. Related Work

Video classification. Video understanding has been one
of the most active research areas in computer vision re-
cently. There are two unique features with respect to videos:
temporal information and multi-modality. Previous works
have made significant progress in understanding tempo-
ral information [27, 45, 50, 40, 47, 55, 17]. However,
videos are also rich in multiple modalities: RGB frames,
motion vectors (optical flow), and audio. Previous works
that exploit the multi-modal natures primarily focus on

RGB+Optical Flow, with the creation of two-stream fusion
networks [41, 19, 18, 49, 12], typically using pre-trained
features and focusing on the fusion [27, 19] or aggregation
architectures [57]. In contrast, we focus on joint training of
the entire network. Instead of focusing on the architectural
problem, we study model optimization: how to jointly learn
and optimally blend multi-modal signals. With proper opti-
mization, we show audio is useful for video classification.
Multi-modal networks. Our work is related to previous re-
search on multi-modal networks [7] for classifications [41,

, 19,21, 12,6, 10, 31], which primarily uses pre-training
in contrast to our joint training. On the other hand, our work
is related to cross-modal tasks [54, 20, 42, 4, 58, 24, 9] and
cross-modal self-supervised learning [59, 5, 37, 34]. These
tasks either take one modality as input and make prediction
on the other modality (e.g. Visual-Q&A [4, 58, 24], im-
age captioning [9], sound localization [37, 59] in videos)
or uses cross-modality correspondences as self-supervision
(e.g. image-audio correspondence [5], video-audio syn-
chronization [34]). Instead, we try to address the problem
of joint training of multi-modal networks for classification.
Multi-task learning. Our proposed Gradient-Blending
training scheme is related to previous works in multi-task
learning in using auxiliary loss [33, 16, 30, 13]. These
methods either use uniform/manually tuned weights, or
learn the weights as parameters during training (no notion
of overfitting prior used), while our work re-calibrates su-
pervision signals using a prior OGR.

2. Multi-modal training via Gradient-Blending
2.1. Background

Uni-modal network. Given train set 7 = {X1._ ., %1..n}>
where X is the ¢-th training example and y; is its true label,
training on a single modality m (e.g. RGB frames, audio,
or optical flows) means minimizing an empirical loss:

L(C(pm(X)),y) (D

where ¢, is normally a deep network with parameter ©,,,
and C is a classifier, typically one or more fully-connected
(FC) layers with parameter ©.. For classification problems
considered here, £ is the cross entropy loss. Minimizing
Eq. 1 gives a solution ©}, and O}. Fig. 2a shows indepen-
dent training of two modalities m; and mso.

Multi-modal network. We train a late-fusion model on M
different modalities ({m;}¥). Each modality is processed
by a different deep network ¢,,, with parameter ©,,,, and
their features are fused and passed to a classifier C. For-
mally, training is done by minimizing the loss:

where & denotes a fusion operation (e.g. concatenation).
Fig. 2b shows an example of a joint training of two modal-
ities m; and mo. The multi-modal network in Eq. 2 is a

»Cmulti

— —
(@) (@) C)
L, L, Lt
a) b)

=\

|:| =TT :l
O e O
Wi L 1 Wil L multi - W, Lz

Q

Figure 2: Uni- vs. multi-modal joint training. a) Uni-modal training of two different modalities. b) Naive joint training of two modalities by late fusion.
¢) Joint training of two modalities with weighted blending of supervision signals. Different deep network encoders (white trapezoids) produce features (blue
or pink rectangles) which are concatenated and passed to a classifier (yellow rounded rectangles).

- LV = Validation Loss
L" = Train Loss

AG = LNM L}Q_

Loss

Onin = LN+n - LN+n
A0 = Oyin — Oy

Epoch

Figure 3: Overfitting-to-Generalization Ratio. Between any two
training checkpoints, we can measure the change in overfitting and
generalization. When 2—8 is small, the network is learning well
and not overfitting much.

super-set of the uni-model network in Eq. 1: for any so-
lution to Eq. 1 on any modality m;, one can construct an
equally-good solution to Eq. 2 by choosing parameters O,
that mute all modalities other than m;. In practice, this so-
lution is not found, and we next explain why.

2.2. Generalizing vs. Overfitting

Overfitting is typically understood as learning patterns
in a train set that do not generalize to the target distribution.
Given model parameters at epoch N, let L7 be the model’s
average loss over the fixed train set, and L}; be the “true”
loss w.r.t the hypothetical target distribution. (In what fol-
lows, £* is approximated by a held-out validation loss £Y.)
We define overfitting at epoch N as the gap between E%
and L3} (approximated by Oy in fig. 3). The quality of
training between two model checkpoints can be measured
by the change in overfitting and generalization (AO, AG in
fig. 3). Between checkpoints N and N + n, we can define
the overfitting-to-generalization-ratio (OG R):

_ ‘ON—HL - On

* *
‘CN ~ ~N+n

AON,n
AGN

OGR = ’ 3)

OGR between checkpoints measures the quality of
learned information (with cross-entropy loss, it is the ratio
of bits not generalizable to bits which do generalize). We
propose minimizing OG R during training. However, opti-
mizing OGR globally would be very expensive (e.g. vari-
ational methods over the whole optimization trajectory). In
addition, very underfit models, for example, may still score

quite well (difference of train loss and validation loss is very
small for underfitting models; in other words, O is small).

Therefore, we propose to solve an infinitesimal problem:
given several estimates of the gradient, blend them to mini-
mize an infinitesimal OGR?. We apply this blend to our op-
timization process (e.g. SGD with momentum). Each gra-
dient step now increases generalization error as little as pos-
sible per unit gain on the validation loss, minimizing over-
fitting. In a multi-modal setting, this means we combine
gradient estimates from multiple modalities and minimize
OGR? to ensure each gradient step now produces a gain no
worse than that of the single best modality. As we will see
in this paper, this L? problem admits a simple, closed-form
solution, is easy to implement, and works well in practice.

Consider a single parameter update step with estimate §
for the gradient. As the distance between two checkpoints
is small (in the neighborhood in which a gradient step is
guaranteed to decrease the train loss), we use the first-order
approximations: AG =~ (VL*,§) and AO ~ (VLT —
L*,§). Thus, OG R? for a single vector g is

“)

OGR! — <<ch VL g A>>

(VL*,9)
See supplementary materials for details on OGR.

2.3. Blending of Multiple Supervision Signals by
OGR Minimization

We can obtain multiple estimates of gradient by attach-
ing classifiers to each modality’s features and to the fused
features (see fig 2c). Per-modality gradient {g;}*_, are ob-
tained by back-propagating through each loss separately (so
per-modality gradients contain many zeros in other parts of
the network). Our next result allows us to blend them all
into a single vector with better generalization behavior.

Proposition 1 (Optimal Gradient Blend). Let {v;}}!

a set of estimates for VL* whose overfitting satisfies
E (VLT — VL o) (VLT = VL vj)] = 0 for j # k.
Given the constraint), wy, = 1 the optimal weights wy, €
R for the problem

w* = argminE
w

(VLT =YL S wpve))
((VL5 wewn))])

are given by

(6)

where 0} = E[(VLT —VL* vp)Y and Z =", (VL o)

20’2
is a normalizing constant.

Assumption E [(VLT — VL* v, (VLT — VL* v;)] =
0 will be false when two models’ overfitting is very cor-
related. However, if this is the case then very little can
be gained by blending their gradients. In informal exper-
iments we have indeed observed that these cross terms
are often small relative to the E [(VLT — VL v;)?].
This is likely due to complementary information across
modalities, and we speculate that this happens naturally as
joint training tries to learn complementary features across
neurons. Please see supplementary materials for proof of
Proposition 1, including formulas for the correlated case.

Proposition 1 may be compared with well-known re-
sults for blending multiple estimators; e.g. for the mean, a
minimum-variance estimator is obtained by blending uncor-
related estimators with weights inversely proportional to the
individual variances (see e.g. [1]). Proposition 1 is similar,
where variance is replaced by O? and weights are inversely
proportional to the individual O? (now with a numerator G).

2.4. Use of OGR and Gradient-Blending in practice

We adapt a multi-task architecture to construct an ap-
proximate solution to the optimization above (fig 2¢).

Optimal blending by loss re-weighting At each back-
propagation step, the per-modality gradient for m; is V.£;,
and the gradient from the fused loss is given by Eq. 2 (de-
note as VL 1). Taking the gradient of the blended loss

k+1
Lytend = Z wiL; @)
=1

thus produces the blended gradient Zf;l w;VL;. For ap-
propriate choices of w; this yields a convenient way to im-
plement gradient blending. Intuitively, loss reweighting re-
calibrates the learning schedule to balance the generaliza-
tion/overfitting rate of different modalities.

Measuring OGR in practice. In practice, V.L* is not
available. To measure OGR, we hold out a subset V of
the training set to approximate the true distribution (i.e.
LY ~ L*). We find it is equally effective to replace the
loss measure by an accuracy metric to compute G and O
and estimate optimal weights from Gradient-Blending. To
reduce computation costs, we note that weights estimation
can be done on a small subset of data, without perturbing
the weights too much (see supplementary materials).

Gradient-Blending algorithms take inputs of training
data T, validation set V, k input modalities {m;}*_, and a

joint head my1 (Fig. 2¢). In practice we can use a subset of
training set 7' to measure train loss/ accuracy. To compute
the Gradient-Blending weights when training from N for
n epochs, we provide a Gradient-Blending weight estima-
tion in Algorithm 1. We propose two versions of gradient-
blending:

1. Offline Gradient-Blending is a simple version of
gradient-blending. We compute weights only once,
and use a fixed set of weights to train entire epoch.
This is very easy to implement. See Algorithm 2.

2. Online Gradient-Blending is the full version. We
re-compute weights regularly (e.g. every n epochs —
called a super-epoch), and train the model with new
weights for a super-epoch. See Algorithm 3.

Empirically, offline performs remarkably well. We compare
the two in section 3, with online giving additional gains.

Algorithm 1: G-B Weight Estimation: GB_FEstimate

input: ©"V, Model checkpoint at epoch N
n, # of epochs
Result: A set of optimal weights with for £ + 1 losses.
for:=1,....k+1do
Initialize uni-modal/ naive multi-modal network
@ from corresponding parameters in ¢* ;
Train goqu% for n epochs on 7T, resulting model

N .
Omi™s

Compute amount of overfitting O'=0 N,n>
generalization G* = G\, according to Eq.3
using V and 7" for modality m;;

end

E+1 _ 1 G' .
1=1 ZO1',2)

Compute a set of loss {w;

Algorithm 2: Offline Gradient-Blending
input: gao, Initialized model
N, #of epochs
Result: Trained multi-head model o™
Compute per-modality weights
{w;}r_| = GB_Estimate(¢°, N) ;
Train ¢° with {w; }}_, for N epochs to get o™ ;

Algorithm 3: Online Gradient-Blending
input: ©¥, Initialized model
N, # of epochs
n, super-epoch length
fori=0,...,& —1de
Current epoch N; =i *n ;
Compute per-modality weights
{w;}*_, = GB_Estimate(¢™i, N; +n) ;
Train ¢™¢ with {w; }}_, for n epochs to Vit™ ;
end

3. Ablation Experiments
3.1. Experimental setup

Datasets. We use three video datasets for ablations: Kinet-
ics, mini-Sports, and mini-AudioSet. Kinetics is a standard
benchmark for action recognition with 260k videos [28] of
400 human action classes. We use the train split (240k)
for training and the validation split (20k) for testing. Mini-
Sports is a subset of Sports-1M [27], a large-scale clas-
sification dataset with 1.1M videos of 487 different fine-
grained sports. We uniformly sampled 240k videos from
train split and 20k videos from the test split. Mini-
AudioSet is a subset of AudioSet [22], a multi-label dataset
consisting of 2M videos labeled by 527 acoustic events. Au-
dioSet is very class-unbalanced, so we remove tiny classes
and subsample the rest (see supplementary). The balanced
mini-AudioSet has 418 classes with 243k videos.

Input preprocessing & augmentation. We consider three
modalities: RGB, optical flow and audio. For RGB and
flow, we use input clips of 16x224x224 as input. We fol-
low [46] for visual pre-processing and augmentation. For
audio, we use log-Mel with 100 temporal frames by 40 Mel
filters. Audio and visual are temporally aligned.

Backbone architecture. We use ResNet3D [47] as our vi-
sual backbone for RGB and flow and ResNet [25] as our
audio model, both with 50 layers. For fusion, we use a two-
FC-layer network on concatenated features from visual and
audio backbones, followed by one prediction layer.
Training and testing. We train our models with
synchronous distributed SGD on GPU clusters using
Caffe2 [11], with setup as [47]. We hold out a small por-
tion of training data for weight estimate (8% for Kinetics
and mini-Sports, 13% for mini-AudioSet). The final video
prediction is made by using center crops of 10 uniformly-
sampled clips and averaging the 10 predictions.

3.2. Overfitting Problems in Naive Joint Training

We first compare naive audio-RGB joint training with
unimodal audio-only and RGB-only training. Fig. 4 plots
the training curves on Kinetics (left) and mini-Sports
(right). On both datasets, the audio model overfits the most
and video overfits least. The naive joint audio-RGB model
has lower training error and higher validation error com-
pared with the video-only model; i.e. naive audio-RGB
joint training increases overfitting, explaining the accuracy
drop compared to video alone.

We extend the analysis and confirm severe overfitting
on other multi-modal problems. We consider all 4 pos-
sible combinations of the three modalities (audio, RGB,
and optical flow). In every case, the validation accuracy of
naive joint training is significantly worse than the best sin-
gle stream model (Table 1), and training accuracy is almost
always higher (see supplementary materials).

Method Clip | V@1 | V@5
Naive Training | 61.8 | 71.7 | 89.6
RGB Only 63.5 | 72.6 | 90.1
Offline G-Blend | 65.9 | 74.7 91.5
Online G-Blend | 66.9 | 75.8 | 91.9

Table 2: Both offline and online Gradient-Blending outperform Naive
late fusion and RGB only. Offline G-Blend is lightly less accurate com-
pared with the online version, but much simpler to implement.

3.3. Gradient-Blending is an effective regularizer

In this ablation, we first compare the performance of on-

line and offline versions of G-Blend. Then we show that
G-Blend works with different types of optimizers, includ-
ing ones with adaptive learning rates. Next, we show G-
Blend improves the performance on different multi-modal
problems (different combinations of modalities), different
model architectures and different tasks.
Online G-Blend Works. We begin with the complete ver-
sion of G-Blend, online G-Blend. We use an initial super-
epoch size of 10 (for warmup), and a super-epoch size
of 5 thereafter. On Kinetics with RGB-audio setting, on-
line Gradient-Blending surpasses both uni-modal and naive
multi-modal baselines, by 3.2% and 4.1% respectively. The
weights for online are in fig. 5a. In general, weights tend
to be stable at first with slightly more focused on visual,;
then we see a transition at epoch 15 where the model does
“pre-training” on visual trunk; at epoch 20 A/V trunk got all
weights to sync the learning from visual trunk. After that,
weights gradually stabilize again with a strong focus on vi-
sual learning. We believe that, in general, patterns learned
by neural network are different at different stage of training
(e.g.[36]), thus the overfitting / generalization behavior also
changes during training; this leads to different weights at
different stages of the training.

Moreover, we observe that G-Blend always outperforms
naive training in the online setting (Fig. 5b). With the same
initialization (model snapshots at epoch 0,10,15,...,40), we
compare the performance of G-Blend model and naive
training after a super-epoch (at epoch 10,15,20,...,45), and
G-Blend models always outperform naive training. This
shows that G-Blend always provides more generalizable
training information, empirically proving proposition 1.
Additionally, it shows the relevance of minimizing OG R, as
using weights that minimize OGR improves performance
of the model. For fair comparison, we fix the main trunk
and finetune the classifier for both Naive A/V and G-Blend
as we want to evaluate the quality of their backbones. At
epoch 25, the gain is small since G-Blend puts almost all
weights on A/V head, making it virtually indistinguishable
from naive training for that super-epoch.

Offline G-Blend Also Works. Although online G-Blend
gives significant gains and addresses overfitting well, it is
more complicated to implement, and somewhat slower due

Kinetics Learning Curve

—— A-Train
—A-Val

— = V-Train
—V-Val

— — AV-Train|
—AV-val

o 5 10 15 30 3

Epoch

Mini-Sports Learning Curve

03
o 5 10 15 By 3 W

Epoch

Figure 4: Severe overfitting of naive audio-video models on Kinetics and mini-Sports. The learning curves (error-rate) of audio model (A), video model
(V), and the naive joint audio-video (AV) model on Kinetics (left) and mini-Sports (right). Solid lines plot validation error while dashed lines show train
error. The audio-video model overfits more than visual model and is inferior to the video-only model on validation loss.

Online G-Blend Weights

0.8

0.75

Top-1 Accuracy
)
2
&

Online G-Blend: Per-Step Comparison

+ Naive AV
+ G-Blend H

Optimizer | Method Clip | V@1 | V@5
Visual 60.0 | 689 | 884

AdaGrad | Naive AV | 56.4 | 65.2 86.5
G-Blend | 62.1 | 71.3 | 89.8

Visual 60.1 | 693 | 88.7

Adam Naive AV | 579 | 66.4 | 86.8
G-Blend | 63.0 | 72.1 | 90.5

0 5 10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45
Epoch Epoch

(@) (b)

Figure 5: Online G-Blend. (a) Online G-Blend weights for each head.
(b) Online G-Blend outperforms naive training on each super-epoch.
For each super-epoch (5 epochs), we use the same snapshot of the model
learned by G-Blend, and compare the performance of the models trained
by G-Blend and naive at the next 5 epochs. G-Blend always outperforms
naive training. This proves that G-Blend always learn more generalize
information at a per-step level.

to the extra weight computations. As we will now see, Of-
fline G-Blend can be easily adopted and works remarkably
well in practice. On the same audio-RGB setting on Kinet-
ics, offline G-Blend also outperforms uni-modal baseline
and naive joint training by a large margin, 2.1% and 3.0%
respectively (Table 2), and is only slightly worse than online
(-1.1%). Based on such observation, we opt to use offline G-
Blend in the rest of the ablations, demonstrating its perfor-
mance across different scenarios. We speculate the online
version will be particularly useful for some cases not cov-
ered here, for example a fast-learning low-capacity model
(perhaps using some frozen pre-trained features), paired
with a high-capacity model trained from scratch.

Adaptive Optimizers. Section 2.2 introduced G-Blend in
an infinitesimal setting: blending different gradient estima-
tion at a single optimization step and assumes same learning
rate for each gradient estimator. This is true for many pop-
ular SGD-based algorithms, such as SGD with Momentum.
However, the assumption may not be rigorous with adaptive
optimization methods that dynamically adjust learning rate
for each parameter, such as Adam [32] and AdaGrad [15].
We empirically show that offline Gradient-Blending (Algo-
rithm 2) also works with different optimizers. Since SGD
gives the best accuracy among the three optimizers, we opt
to use SGD for all of our other experiments.

Different Modalities. On Kinetics, we study all combi-
nations of three modalities: RGB, optical flow, and audio.

Table 3: G-Blend on different optimizers. We compare G-Blend with
Visual only and Naive AV on two additional optimizers: AdaGrad, and
Adam. G-Blend consistently outperforms Visual-Only and Naive AV base-
lines on all three optimizers.

Table 4 presents comparison of our method with naive joint
training and best single stream model. We observe signif-
icant gains of G-Blend compared to both baselines on all
multi-modal problems. It is worth noting that G-Blend is
generic enough to work for more than two modalities.

Different Architectures. We conduct experiments on mid-
fusion strategy [37], which suffers less overfitting and out-
performs visual baseline (Figure 1). On audio-visual set-
ting, Gradient-Blending gives 0.8% improvement (top-1
from 72.8% to 73.6%). On a different fusion architecture
with Low-Rank Multi-Modal Fusion (LMF) [35], Gradient-
Blending gives 4.2% improvement (top-1 from 69.3% to
73.5%). This suggests Gradiend-Blending can be adopted
to other fusion strategies besides late-fusion and other fu-
sion architectures besides concatenation.

Different Tasks/Benchmarks. We pick the problem of
joint audio-RGB model training, and go deeper to compare
Gradient-Blending with other regularization methods on
different tasks and benchmarks: action recognition (Kinet-
ics), sport classification (mini-Sports), and acoustic event
detection (mini-AudioSet). We include three baselines:
adding dropout at concatenation layer [43], pre-training sin-
gle stream backbones then finetuning the fusion model, and
blending the supervision signals with equal weights (which
is equivalent to naive training with two auxiliary losses).
Auxiliary losses are popularly used in multi-task learning,
and we extend it as a baseline for multi-modal training.

As presented in Table 5, Gradient-Blending outperforms
all baselines by significant margins on both Kinetics and
mini-Sports. On mini-AudioSet, G-Blend improves all
baselines on mAP, and is slightly worse on mAUC com-

Modal RGB + A RGB + OF OF + A RGB +OF + A
Weights | [RGB,AJoin]=[0.630,0.014,0.356] | [RGB,OFJoin]=[0.309,0.4950.196] | [OF.A Join]=[0.827,0.011,0.162] | [RGB,OF.A Join]=[0.33,0.53,0.01,0.13]
Metric Clip Vel V@5 Clip Vel V@5 Clip V@l V@5 Clip Vel V@5

Uni 63.5 72.6 90.1 63.5 72.6 90.1 49.2 62.1 82.6 63.5 72.6 90.1
Naive 61.8 71.4 89.3 62.2 71.3 89.6 46.2 58.3 79.9 61.0 70.0 88.7
G-Blend 65.9 74.7 91.5 64.3 73.1 90.8 54.4 66.3 86.0 66.1 74.9 91.8

Table 4: Gradient-Blending (G-Blend) works on different multi-modal problems. Comparison between G-Blend with naive late fusion and single best
modality on Kinetics. On all 4 combinations of different modalities, G-Blend outperforms both naive late fusion network and best uni-modal network by
large margins, and it also works for cases with more than two modalities. G-Blend results are averaged over three runs with different initialization. Variances

are small and are provided in supplementary

pared to auxiliary loss baseline. The reason is that the
weights learned by Gradient-Blending are very similar to
equal weights. The failures of auxiliary loss on Kinetics and
mini-Sports demonstrates that the weights used in G-Blend
are indeed important. We note that for mini-AudioSet, even
though the naively trained multi-modal baseline is better
than uni-modal baseline, Gradient-Blending still improves
by finding more generalized information. We also experi-
ment with other less obvious multi-task techniques such as
treating the weights as learnable parameters [30]. However,
this approach converges to a similar result as naive joint
training. This happens because it lacks of overfitting prior,
and thus the learnable weights were biased towards the head
that has the lowest training loss which is audio-RGB.

Top 10 Improved Class Accuracy Top 10 Dropped Class Accuracy
1.0

0.8
0.8

0.4
0.2
0.0
k=1
@

1
|
|
°
>

Accuracy

o o o o

5 & & o
whisting G

laughing

salsa dancing [N

playing keyboard |-

ciapping

texting [l

ding
ycle
ruck
ding
ken

2 5

2 35

blowing nose [N

cleaning floor [l

finger snapping
picking fruit

bookbit

cooking egg
riding uni

surfing water

G-Blend
Video
O Audio

°
@
£
=]
E
a

unloading
skateboal

dancing gangnam style
cooking ch

cooking on campfire

Figure 6: Top-Bottom 10 classes based on improvement of G-Blend to
RGB model. The improved classes are indeed audio-relevant, while those
have performance drop are not very audio semantically-related.

Fig. 6 presents top and bottom 10 classes on Kinet-
ics where G-Blend makes the most and least improve-
ments compared with RGB-only. We observe that im-
proved classes usually have a strong audio-correlation, such
as clapping and laughing. For texting, although audio-only
has nearly 0 accuracy, when combined with RGB using G-
Blend, there are still significant improvements. On bottom-
10 classes, we indeed find that audio does not seem to be
very semantically relevant (e.g. unloading truck). See sup-
plementary materials for more qualitative analysis.

4. Comparison with State-of-the-Art

In this section, we train our multi-modal networks
with deeper backbone architectures using offline Gradient-
Blending and compare them with state-of-the-art methods

on Kinetics, EPIC-Kitchen [14], and AudioSet. EPIC-
Kitchen is a multi-class egocentric dataset with 28K train-
ing videos associated with 352 noun and 125 verb classes.
For ablations, following [8], we construct a validation set of
unseen kitchen environments. G-Blend is trained with RGB
and audio input. For Kinetics and EPIC-Kitchen, we use ip-
CSN [46] for visual backbone with 32 frames and ResNet
for audio backbone, both with 152 layers. For AudioSet,
we use R(2+1)D for visual [47] with 16 frames and ResNet
for audio, both with 101 layers. We use the same training
setup in section 3. For EPIC-Kitchen, we follow the same
audio feature extractions as [29]; the visual backbone is pre-
trained on IG-65M [23]. We use the same evaluation setup
as section 3 for AudioSet and EPIC-Kitchen. For Kinetics,
we follow the 30-crop evaluation setup as [51]. Our main
purposes in these experiments are: 1) to confirm the bene-
fit of Gradient-Blending on high-capacity models; and 2) to
compare G-Blend with state-of-the-art methods on different
large-scale benchmarks.

Results. Table 6 presents results of G-Blend and com-
pares them with current state-of-the-art methods on Kinet-
ics. First, G-Blend provides an 1.3% improvement over
RGB model (the best uni-modal network) with the same
backbone architecture ip-CSN-152 [46] when both models
are trained from scratch. This confirms that the benefits
of G-Blend still hold with high capacity model. Second,
G-Blend outperforms state-of-the-arts multi-modal base-
line Shift-Attention Network [10] by 1.4% while using less
modalities (not using optical flow) and no pre-training. It is
on-par with SlowFast [17] while being 2x faster. G-Blend,
when fine-tuned from Sports-1M on visual and AudioSet on
audio, outperforms SlowFast Network and SlowFast aug-
mented by Non-Local [51] by 1.5% and 0.6% respectively,
while being 2x faster than both. Using weakly-supervised
pre-training by IG-65M [23] on visual, G-Blend gives un-
paralleled 83.3% top-1 accuracy and 96.0% top-5 accuracy.

We also note that there are many competitive methods re-
porting results on Kinetics, due to the space limit, we select
only a few representative methods for comparison includ-
ing Shift-Attention [10], SlowFast [17], and ip-CSN [46].
Shift-Attention and SlowFast are the methods with the best
published accuracy using multi-modal and uni-modal input,
respectively. ip-CSN is used as the visual backbone of G-

Dataset Kinetics mini-Sports mini-AudioSet
Weights [RGB,A,Join]=[0.63,0.01,0.36] [RGB, A,Join]=[0.65,0.06,0.29] [RGB, A,Join]=[0.38,0.24,0.38]
Method Clip Vel vV@s Clip Vel V@5 mAP mAUC
Audio only 139 19.7 33.6 14.7 22.1 35.6 29.1 90.4
RGB only 63.5 72.6 90.1 48.5 62.7 84.8 22.1 86.1
Pre-Training 61.9 71.7 89.6 483 61.3 84.9 374 91.7
Naive 61.8 71.7 89.3 47.1 60.2 83.3 36.5 922
Dropout 63.8 72.9 90.6 474 61.4 84.3 36.7 92.3
Auxiliary Loss 60.5 70.8 88.6 48.9 62.1 84.0 37.7 92.3
G-Blend 65.9 74.7 91.5 49.7 62.8 85.5 37.8 92.2

Table 5: G-Blend outperforms all baseline methods on different benchmarks and tasks. Comparison of G-blend with different regularization baselines
as well as uni-modal networks on Kinetics, mini-Sports, and mini-AudioSet. G-Blend consistently outperforms other methods, except for being comparable

with using auxiliary loss on mini-AudioSet due to the similarity of learned weights of G-Blend and equal weights.

Backbone Pre-train | V@1 | V@5 | GFLOPs
Shift-Attn Net [10] | ImageNet | 77.7 93.2 NA
SlowFast [17] None 78.9 93.5 213x30
SlowFast+NL [17] None 79.8 93.9 234 %30
ip-CSN-152 [46] None 77.8 92.8 108.8x30
G-Blend(ours) None 79.1 93.9 110.1x30
ip-CSN-152 [46] | SportslIM | 79.2 93.8 | 108.8x30
G-Blend(ours) SportsIM | 80.4 94.8 110.1x30
ip-CSN-152 [46] 1G-65M 82.5 95.3 108.8x30
G-Blend(ours) 1G-65M 83.3 96.0 110.1x30

Table 6: Comparison with state-of-the-art methods on Kinetics. G-
Blend used audio and RGB as input modalities; for pre-trained models on
SportsIM and IG-65M, G-Blend initializes audio network by pre-training
on AudioSet. G-Blend outperforms current state-of-the-art multi-modal
method (Shift-Attention Network) despite the fact that it uses fewer modal-
ities (G-Blend does not use Optical Flow). G-Blend also gives a good im-
provement over RGB model (the best uni-modal network) when using the
same backbone, and it achieves the state-of-the-arts.

Method mAP | mAUC
Multi-level Attn. [56] | 0.360 0.970
TAL-Net [53] 0.362 | 0.965
Audio:R2D-101 0.324 | 0.961
Visual:R(2+1)D-101 | 0.188 | 0.918
Naive A/V:101 0.402 | 0.973
G-Blend (ours):101 0.418 | 0.975

Table 7: Comparison with state-of-the-art methods on AudioSet. G-
Blend outperforms the state-of-the-art methods by a large margin.

Blend thus serves as a direct baseline.

Table 7 presents G-Blend results on AudioSet. Since Au-
dioSet is very large (2M), we use mini-AudioSet to estimate
weights. G-Blend outperforms two state-of-the-art Multi-
level Attention Network[56] and TAL-Net[53] by 5.8% and
5.5 % on mAP respectively, although the first one uses
strong features (pre-trained on YouTubel0OM) and the sec-
ond uses 100 clips per video, while G-Blend uses only 10.

Table 8 presents G-Blend results and compare with pub-
lished SoTA results and leaderboard on the EPIC-Kitchens
Action Recognition challenge. On validation set, G-Blend
outperforms naive A/V baseline on noun, verb and action; it
is on par with visual baseline on noun and outperforms vi-
sual baseline on verb and action. Currently, G-Blend ranks
the 2nd place on unseen kitchen in the challenge and 4th

method noun verb action
vel [ves | vel [ves | Vel [vaes
Validation Set
Visual:ip-CSN-152 [46] 364 | 589 | 56.6 | 84.1 | 249 | 425
Naive A/V:152 348 | 56.7 | 57.4 | 833 | 237 | 41.2
G-Blend(ours) 36.1 58.5 59.2 84.5 25.6 43.5
Test Unseen Kitchen (S2)

Leaderboard [2] 38.1 63.8 60.0 82.0 274 45.2
Baidu-UTS [52] 341 | 624 | 59.7 | 82.7 | 25.1 | 46.0
TBN Single [29] 279 | 538 | 527 | 799 | 19.1 36.5
TBN Ensemble [29] 304 | 557 | 545 | 81.2 | 21.0 | 394
Visual:ip-CSN-152 35.8 59.6 56.2 80.9 25.1 41.2
G-Blend(ours) 36.7 | 60.3 58.3 81.3 26.6 | 43.6

Test Seen Kitchen (S1)
Baidu-UTS(leaderboard) | 52.3 76.7 69.8 91.0 41.4 63.6
TBN Single 46.0 | 71.3 | 64.8 | 90.7 | 348 | 56.7
TBN Ensemble 479 | 72.8 | 66.1 91.2 | 36.7 | 58.6
Visual:ip-CSN-152 451 | 684 | 645 | 88.1 | 344 | 52.7
G-Blend(ours) 48.5 | 714 | 66.7 | 889 | 37.1 | 56.2

Table 8: Comparison with state-of-the-art methods on EPIC-Kitchen.
G-Blend achieves 2nd place on seen kitchen challenge and 4th place on un-
seen, despite using fewer modalities, fewer backbones, and single model in
contrast to model ensembles compared to published results on leaderboard.

place on seen kitchen. Comparing to published results, G-
Blend uses less modalities (not using optical flow as TBN
Ensemble [29]), less backbones (Baidu-UTS [52] uses three
3D-CNNs plus two detection models), and a single model
(TBN Ensemble [29] uses ensemble of five models).

5. Discussion

In uni-modal networks, diagnosing and correcting over-
fitting typically involves manual inspection of learning
curves. Here we have shown that for multi-modal networks
it is essential to measure and correct overfitting in a princi-
pled way, and we put forth a useful and practical measure of
overfitting. Our proposed method, Gradient-Blending, uses
this measure to obtain significant improvements over base-
lines, and either outperforms or is comparable with state-
of-the-art methods on multiple tasks and benchmarks. The
method potentially applies broadly to end-to-end training
of ensemble models, and we look forward to extending G-
Blend to other fields where calibrating multiple losses is
needed, such as multi-task.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

Combining correlated unbiased estimators of
the mean of a normal distribution. https:
//projecteuclid.org/download/pdf_1/
euclid.lnms/1196285392. 4

Epic-kitchens action recognition. https:
//competitions.codalab.org/
competitions/20115. Accessed: 2019-11-
13. 8

H. Alamri, V. Cartillier, A. Das, J. Wang, A. Cherian,
I. Essa, D. B. amd Tim K. Marks, C. Hori, P. Ander-
son, S. Lee, and D. Parikh. Audio-visual scene-aware
dialog. In CVPR, 2019. 1

S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. L. Zitnick, and D. Parikh. VQA: Visual Question
Answering. In ICCV, 2015. 2

R. Arandjelovi and A. Zisserman. Look, listen and
learn. In ICCV, 2017. 2

J. Arevalo, T. Solorio, M. M. y Gmez, and F. A. Gon-
zlez. Gated multimodal units for information fusion.
In ICLR Workshop, 2017. 2

T. Baltruvsaitis, C. Ahuja, and L.-P. Morency. Mul-
timodal machine learning: A survey and taxonomy.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41:423-443, 2018. 2

F. Baradel, N. Neverova, C. Wolf, J. Mille, and
G. Mori. Object level visual reasoning in videos. In
ECCV,2018. 7

R. Bernardi, R. Cakici, D. Elliott, A. Erdem, E. Er-
dem, N. Ikizler-Cinbis, F. Keller, A. Muscat, and
B. Plank. Automatic description generation from im-
ages: A survey of models, datasets, and evaluation
measures. J. Artif. Int. Res., 55(1):409-442, Jan. 2016.
2

Y. Bian, C. Gan, X. Liu, F. Li, X. Long, Y. Li,
H. Qi, J. Zhou, S. Wen, and Y. Lin. Revisiting the
effectiveness of off-the-shelf temporal modeling ap-
proaches for large-scale video classification. CoRR,
abs/1708.03805, 2017. 2,7, 8

Caffe2-Team. Caffe2: A new lightweight, modular,
and scalable deep learning framework. https://
caffe2.ai/. 5

J. Carreira and A. Zisserman. Quo vadis, action recog-
nition? a new model and the kinetics dataset. In
CVPR, 2017. 2

Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabi-
novich. Gradnorm: Gradient normalization for adap-
tive loss balancing in deep multitask networks. In
ICML, 2018. 2

[14]

[22]

[23]

[24]

[25]

[26]

[27]

D. Damen, H. Doughty, G. M. Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro,
T. Perrett, W. Price, and M. Wray. Scaling egocentric
vision: The epic-kitchens dataset. In ECCV, 2018. 7

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-
dient methods for online learning and stochastic opti-
mization. J. Mach. Learn. Res., 12:2121-2159, July
2011. 6

D. Eigen and R. Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale
convolutional architecture. ICCV, 2015. 2

C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slow-
fast networks for video recognition. In /ICCV, 2019. 2,
7,8

C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spa-
tiotemporal residual networks for video action recog-
nition. In NIPS, 2016. 2

C. Feichtenhofer, A. Pinz, and A. Zisserman. Con-
volutional two-stream network fusion for video action
recognition. In CVPR, 2016. 2

A. Frome, G. S. Corrado, J. Shlens, S. Bengio,
J. Dean, M. A. Ranzato, and T. Mikolov. Devise: A
deep visual-semantic embedding model. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, NIPS 26, pages 2121-2129.
Curran Associates, Inc., 2013. 2

A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Dar-
rell, and M. Rohrbach. Multimodal compact bilin-
ear pooling for visual question answering and visual
grounding. In EMNLP, 2016. 2

J. F. Gemmeke, D. P. W. Ellis, D. Freedman,
A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and
M. Ritter. Audio set: An ontology and human-labeled
dataset for audio events. In Proc. IEEE ICASSP 2017,
New Orleans, LA, 2017. 5

D. Ghadiyaram, M. Feiszli, D. Tran, X. Yan, H. Wang,
and D. K. Mahajan. Large-scale weakly-supervised
pre-training for video action recognition. In CVPR,
2019. 7

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the V in VQA matter: Elevating
the role of image understanding in Visual Question
Answering. In CVPR, 2017. 1,2

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016. 5

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation
networks. In CVPR, 2018. 1, 14

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei. Large-scale video classifica-

tion with convolutional neural networks. In CVPR,
2014. 2,5

https://projecteuclid.org/download/pdf_1/euclid.lnms/1196285392
https://projecteuclid.org/download/pdf_1/euclid.lnms/1196285392
https://projecteuclid.org/download/pdf_1/euclid.lnms/1196285392
https://competitions.codalab.org/competitions/20115
https://competitions.codalab.org/competitions/20115
https://competitions.codalab.org/competitions/20115
https://caffe2.ai/
https://caffe2.ai/

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

W. Kay, J. Carreira, K. Simonyan, B. Zhang,
C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green,
T. Back, P. Natsev, M. Suleyman, and A. Zisser-
man. The kinetics human action video dataset. CoRR,
abs/1705.06950, 2017. 5

E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen.
Epic-fusion: Audio-visual temporal binding for ego-
centric action recognition. In ICCV, 2019. 7, 8

A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning
using uncertainty to weigh losses for scene geometry
and semantics. In CVPR, 2018. 2,7

D. Kiela, E. Grave, A. Joulin, and T. Mikolov. Effi-
cient large-scale multi-modal classification. In AAAI,
2018. 1,2

D. Kingma and J. Ba. Adam: A method for stochastic
optimization. International Conference on Learning
Representations, 12 2014. 6

I. Kokkinos. Ubernet: Training a ‘universal’ con-
volutional neural network for low-, mid-, and high-
level vision using diverse datasets and limited mem-
ory. CVPR, 2017. 2

B. Korbar, D. Tran, and L. Torresani. Coopera-
tive learning of audio and video models from self-
supervised synchronization. In NeurIPS, 2018. 2

Z. Liu, Y. Shen, V. Lakshminarasimhan, P. Liang,
A. Zadeh, and L.-P. Morency. Efficient low-rank mul-
timodal fusion with modality-specific factors. pages
2247-2256, 01 2018. 6

P. Nakkiran, G. Kaplun, D. Kalimeris, T. Yang, B. L.
Edelman, F. Zhang, and B. Barak. Sgd on neural net-
works learns functions of increasing complexity. In
NeurlPS, 2019. 5

A. Owens and A. A. Efros. Audio-visual scene analy-
sis with self-supervised multisensory features. In The
European Conference on Computer Vision (ECCV),
September 2018. 1, 2, 6, 14

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and
B. Durme. Hypothesis only baselines in natural lan-
guage inference. pages 180-191, 01 2018. 1

C. R. Qi, X. Chen, O. Litany, and L. J. Guibas.
Imvotenet: Boosting 3d object detection in point
clouds with image votes. In CVPR, 2020. 2

Z.Qiu, T. Yao, , and T. Mei. Learning spatio-temporal
representation with pseudo-3d residual networks. In
ICCV,2017. 2

K. Simonyan and A. Zisserman. Two-stream convo-
lutional networks for action recognition in videos. In
NIPS, 2014. 2

R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng.
Zero-shot learning through cross-modal transfer. In

Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 1,
NIPS’13, pages 935-943, USA, 2013. Curran Asso-
ciates Inc. 2

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to pre-
vent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929-1958, Jan. 2014. 1, 6

J. Thomason, D. Gordan, and Y. Bisk. Shifting the
baseline: Single modality performance on visual nav-
igation & qa. In NAACL, 11 2018. 1

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri. Learning spatiotemporal features with 3d
convolutional networks. In ICCV, 2015. 2

D. Tran, H. Wang, L. Torresani, and M. Feiszli.
Video classification with channel-separated convolu-
tional networks. In ICCV, 2019. 5,7, 8

D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
M. Paluri. A closer look at spatiotemporal convolu-
tions for action recognition. In CVPR, 2018. 2, 5,7

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. 2017. 15

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang,
and L. V. Gool. Temporal segment networks: Towards
good practices for deep action recognition. In ECCV,
2016. 2

X. Wang, A. Farhadi, and A. Gupta. Actions ~ trans-
formations. In CVPR, 2016. 2

X. Wang, R. Girshick, A. Gupta, and K. He. Non-local
neural networks. In CVPR, 2018. 1,7, 15

X. Wang, Y. Wu, L. Zhu, and Y. Yang. Baidu-uts sub-
mission to the epic-kitchens action recognition chal-
lenge 2019. arXiv preprint arXiv:1906.09383, 2019.
8

Y. Wang, J. Li, and F. Metze. A comparison of five
multiple instance learning pooling functions for sound
event detection with weak labeling. arXiv preprint
arXiv:1810.09050, 2018. 8

J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling
up to large vocabulary image annotation. In Proceed-
ings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence - Volume Volume Three,
IJCAT’ 11, pages 2764-2770. AAAI Press, 2011. 2

S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Re-
thinking spatiotemporal feature learning for video un-
derstanding. In ECCV, 2018. 2

C. Yu, K. S. Barsim, Q. Kong, and B. Yang.
Multi-level attention model for weakly supervised au-

dio classification. arXiv preprint arXiv:1803.02353,
2018. 8

[57] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, 07
0. Vinyals, R. Monga, and G. Toderici. Beyond short 0s
snippets: Deep networks for video classification. In

Proceedings of the IEEE conference on computer vi- § 04 —& Audio-Weight
sion and pattern recognition, pages 4694-4702, 2015. Sos| = e
2 g 0.2

[58] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and 01
D. Parikh. Yin and Yang: Balancing and answering S ——
binary visual questions. In CVPR, 2016. 2 T peremageotDataUsed

[59] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, - 7. Weisht Estimati Subsets of Data. We used 1 subset
. igure 7: Weight Estimations on Subsets of Data. We used a small subse!
J. McDermott, and A. Torralba. The sound of plXGlS. of Kinetics dataset to estimate the weights. The weights are quite robust as

In ECCV, 2018. 2 we decrease the volume of dataset. This suggests feasibility to use subsets
to reduce the costs for Gradient-Blending.

A. Estimating Weights on Subsets of Data

We show that weight estimations by Gradient-Blending
is robust on small subsets of data. We sampled 25%, 50%
and 75% of Kinetics dataset and use these subsets as train
sets in Alg. 2 in main paper. As shown in Fig. 7, the es-
timated weights are stable on small subsets of data. This
suggests that the computational cost of the algorithm can be
reduced by using a small subset of data for weight estima-
tion.

B. Understanding OGR

Overfitting is typically understood as learning patterns
in a training set that do not generalize to the target dis-
tribution. We quantify this as follows. Given model pa-
rameters ©Y), where N indicates the training epoch, let
L7 (©M)) be the model’s average loss over the fixed train-
ing set, and £*(©(™)) be the “true” loss w.r.t the hypothet-
ical target distribution. (In practice, £* is approximated by
the test and validation losses.) For either loss, the quantity
L(0) — £(6™M)) is a measure of the information gained
during training. We define overfitting as the gap between
the gain on the training set and the target distribution:

O = (£7(O) = £7(8N)) — (£*(0) - £*(8™))

and generalization to be the amount we learn (from training)
about the target distribution:

Gy = L£5(00) — £x(eM)

The overfitting-to-generalization ratio is a measure of infor-
mation quality for the training process of /N epochs:

(£7(©)—T(©M)))—(£*(©)—L*(0"))

OGR - E*(@(o))iﬁ*(@(lv)) (8)

We can also define the amount of overfitting and gener-
alization for an intermediate step from epoch /N to epoch

N + n, where

AONn = (Onin — On)
and

AGN» = (GNin — GN)

Together, this gives OG R between any two checkpoints:

OGR = (

However, it does not make sense to optimize this as-is.
Very underfit models, for example, may still score quite
well (difference of train loss and validation loss is very
small for underfitting models). What does make sense, how-
ever, is to solve an infinitesimal problem: given several esti-
mates of the gradient, blend them to minimize an infinites-
imal OGR (or equivalently OGR?). We can then apply
this blend to our optimization process by stochastic gradi-
ents (eg. SGD with momentum). In a multi-modal setting,
this means we can combine gradient estimates from multi-
ple modalities and minimize OGR to ensure each gradient
step now produces a gain no worse than that of the single
best modality.

Consider this in an infinitesimal setting (or a single pa-
rameter update step). Given parameter O, the full-batch
gradient with respect to the training set is VL7 (0), and
the groundtruth gradient is V.L*(©). We decompose VL7
into the true gradient and a remainder:

VLT (©) = VL (O) +e)

In particular, ¢ = VL7 (©) — VL*(O) is exactly the in-
finitesimal overfitting. Given an estimate § with learning
rate 77, we can measure its contribution to the losses via Tay-
lor’s theorem:

£7(©+ng) ~ L7(0) +n(VL)

L5(O +ng) ~ LY(O) +n(VL, g)

which implies ¢’s contribution to overfitting is given by

(VLT —VL* §). If we train for N steps with gradients

{g:}&Y, and n; is the learning rate at i-th step, the final OGR
can be aggregated as:

St m{VLT (09) — VL (09), gi)

o m{VLH(O0), gi)

and OG R? for a single vector g; is

OGRz‘ (10)

2

(VLT (09) - VL*(01)), 4)
(VLH(0), 4) (v

Next we will compute the optimal blend to minimize single-
step OGR?.

OGR? = <

C. Proof of Proposition 1

Proof of Proposition 1. Without loss of generality, we
solve the problem with a different normalization:

(VLY wgor) =1 12)
k

(Note that one can pass between normalizations simply by
uniformly rescaling the weights.) With this constraint, the
problem simplifies to:

w* = argmin E[((VLT — VL, Zwkvk»z} (13)
w k

We first compute the expectation:

E[(VLT = VLY wyvp))’]
k

= E[(Z W <V£T — V£*7 ’Uk>)2]
k

=E> wpwj (VLT = VL v) (VLT — VL, v))]
k,j
=> wpw; E (VLT — VL o) (VLT = VL ;)]
k.j
=> wio} (14)
k

where 07 = E[(VLT — VL*,v;)?] and the cross terms
vanish by assumption.

We apply Lagrange multipliers on our objective function
(14) and constraint (12):

L= wiop—\ <Z wip (VL vg) — 1) (15)
k k

The partials with respect to wy, are given by

oL

Doy = 2wpor — MVL* vg) (16)

Setting the partials to zero, we obtain the weights:

<V£*, Uk>

= A
Wk 20,%

a7

The only remaining task is obtaining the normalizing con-
stant. Applying the constraint gives:

o * o <V‘C*avk>2
1—;wk<V£ ’”"'“AgW (18)
In other words,

A= —r> 19)

1 (VL vg)?

Setting Z = 1/ we obtain wj; = =—=-5"~. Dividing

k
by the sum of the weights yields the original normalization.
O

Note: if we relax the assumption that E[(VL7 —
VL v (VLT —VL* v;)] = 0 for k # 3, the proof pro-
ceeds similarly, although from (14) it becomes more conve-
nient to proceed in matrix notation. Define a matrix X with
entries given by

Sk = E(VLT — VL v (VLT — VL ;)]

Then one finds that
* 1 —1 *
wi=7 ij S5 (VL vg)

1 —1 * 2
7 = 5;% (VL vg)
5J

D. Variances of G-Blend Runs

The variances of the performances on the datasets used
by the paper are typically small, and previous works pro-
vide results on a single run. To verify that G-Blend results
are reproducible, we conducted multiple runs for G-Blend
results in Table 3 of the main paper. We found that the vari-
ance is consistent across different modalities for G-Blend
results (Table 9).

E. Sub-sampling and Balancing Multi-label
Dataset

For a single-label dataset, one can subsample and bal-
ance at a per-class level such that each class may have the
same volume of data. Unlike single-label dataset, classes in
multi-label dataset can be correlated. As a result, sampling
a single data may add volume for more than one class. This
makes the naive per-class subsampling approach difficult.

To uniformly sub-sample and balance AudioSet to get
mini-AudioSet, we propose the following algorithm:

F. Details on Model Architectures
F.1. Late Fusion By Concatenation

In late fusion by concatenation strategy, we concatenate
the output features from each individual network (i.e. k
modalities’ 1-D vectors with n dimensions). If needed, we
add dropout after the feature concatenations.

The fusion network is composed of two FC layers, with
each followed by an ReLU layer, and a linear classifier. The
first FC maps kn dimensions to n dimensions, and the sec-
ond one maps n to n. The classifier maps n to ¢, where c is
the number of classes.

As sanity check, we experimented using less or more
FC layers on Kinetics:

Algorithm 4: Sub-sampling and Balancing Multi-label
Dataset
Data: Original Multi-Class Dataset D, Minimum
Class Threshold M, Target Class Volume N
Result: Balanced Sub-sampled Multi-label Dataset D’
Initialize empty dataset D’ ;
Remove labels from D such that label volume is less
than M;
Randomly shuffle entries in D;

for Data Entry d € D do
Choose class c of d such that the volume of ¢ is the

smallest in D’ ;
Let the volume of cbe V. in D ;
Let the volume of cbe V, in D’ ;
Generate random number 7 to be an integer
between 0 and V, — V" ;
if - < N — V. then
| Selectdto D’ ;
else
‘ Skip d and continue ;
end

end

e 0 FC. We only add a classifier that maps kn dimen-
sions to ¢ dimensions.

e 1 FC. We add one FC layer that maps kn dimensions
to n dimension, followed by an ReLU layer and classi-
fier to map n dimension to ¢ dimensions.

e 4 FC. We add one FC layer that maps kn dimensions
to n dimension, followed by an ReLU layer. Then we
add 3 FC-ReLU pairs that preserve the dimensions.
Then we add an a classifier to map n dimension to ¢
dimensions.

We noticed that the results of all these approaches are
sub-optimal. We speculate that less layers may fail to fully
learn the relations of the features, while deeper fusion net-
work overfits more.

F.2. Mid Fusion By concatenation

Inspired by [37], we also concatenate the features from
each stream at an early stage rather than late fusion. The
problem with mid fusion is that features from individual
streams can have different dimensions. For example, au-
dio features are 2-D (time-frequency) while visual features
are 3-D (time-height-width).

We propose three ways to match the dimension, depend-
ing on the output dimension of the concatenated features:

e 1-D Concat. We downsample the audio features to
1-D by average pooling on the frequency dimension.
We downsample the visual features to 1-D by average
pooling over the two spatial dimensions.

RGB + A RGB + OF OF + A RGB + OF + A
Clip V@l V@5 Clip V@l V@5 Clip V@l V@5 Clip V@l V@5
65.940.1 | 747402 | 91.5+0.1 | 64.3+0.1 | 73.1+£0.0 | 90.840.1 | 54.440.6 | 66.3+0.5 | 86.0+0.6 | 66.1+0.4 | 749402 | 91.840.2

Table 9: Last row of Table 3 in main papers with variance. Results are averaged over three runs with random initialization, and =+ indicates variances.

e 2-D Concat. We keep the audio features the same and
match the visual features to audio features. We down-
sample the visual features to 1-D by average pooling
over the two spatial dimensions. Then we tile the 1-D
visual features on frequency dimension to make 2-D
visual features.

e 3-D Concat. We keep the visual features fixed and
match the audio features to visual features. We down-
sample the audio features to 1-D by average pooling
over the frequency dimension. Then we tile the 1-D
visual features on two spatial dimensions to make 3-D
features.

The temporal dimension may also be mismatched be-
tween the streams: audio stream is usually longer than vi-
sual streams. We add convolution layers with stride of 2
to downsample audio stream if we are performing 2-D con-
cat. Otherwise, we upsample visual stream by replicating
features on the temporal dimension.

There are five blocks in the backbones of our ablation
experiments (section 4), and we fuse the features using all
three strategies after block 2, block 3, and block 4. Due
to memory issue, fusion using 3-D concat after block 2 is
unfeasible. On Kinetics, we found 3-D concat after block
3 works the best, and it’s reported in Fig. 1 in the main
paper. In addition, we found 2-D concat works the best
on AudioSet and uses less GFLOPs than 3-D concat. We
speculate that the method for dimension matching is task-
dependent.

F.3. SE Gate

Squeeze-and-Excitement network introduced in [26] ap-
plies a self-gating mechanism to produce a collection of
per-channel weights. Similar strategies can be applied in
a multi-modal network to take inputs from one stream and
produce channel weights for the other stream.

Specifically, we perform global average pooling on one
stream and use the same architectures in [26] to produce a
set of weights for the other channel. Then we scale the chan-
nels of the other stream using the weights learned. We either
do a ResNet-style skip connection to add the new features
or directly replace the features with the scaled features. The
gate can be applied from one direction to another, or on both
directions. The gate can also be added at different levels for
multiple times. We found that on Kinetics, it works the best
when applied after block 3 and on both directions.

We note that we can also first concatenate the features

Vany THWxC1
N

softmax @TFXCl/Z

THW XTF
THWxC1/2 C1/2xTF
[o:1xix1 | [geixaxa | [giixax1i |
L Vi TxHXWxC1 A:TXFx2C1
Query Key Value

Figure 8: NL-Gate Implementation. Figure of the imple-
mentation of NL-Gate on visual stream. Visual features are
the Query. The 2D Mid-Concatenation of visual and audio
features is the Key and Value.

and use features from both streams to learn the per-channel
weights. The results are similar to learning the weights with
a single stream.

F.4. NL Gate

Although lightweight, SE-gate fails to offer any spatial-
temporal or frequency-temporal level attention. One alter-
native way is to apply an attention-based gate. We are in-
spired by the Query-Key-Value formulation of gates in [48].
For example, if we are gating from audio stream to visual
stream, then visual stream is Query and audio stream is Key
and Value. The output has the same spatial-temporal dimen-
sion as Query.

Specifically, we use Non-Local gate in [51] as the imple-
mentation for Query-Key-Value attention mechanism. De-
tails of the design are illustrated in fig. 8. Similar to SE-gate,
NL-Gate can be added with multiple directions and at mul-
tiple positions. We found that it works the best when added
after block 4, with a 2-D concat of audio and RGB features
as Key-Value and visual features as Query to gate the visual
stream.

Dataset Modality Validation V@1 | Train V@1
A 19.7 85.9
RGB 72.6 90.0
OF 62.1 75.1
Kinetics A +RGB 71.4 95.6
RGB + OF 71.3 91.9
A + OF 58.3 83.2
A +RGB + OF 70.0 96.5
mini A 22.1 56.1
RGB 62.7 77.6
Sport
A +RGB 60.2 84.2

Table 10: Multi-modal networks have lower validation
accuracy but higher train accuracy. Table of Top-1 accu-
racy of single stream models and naive late fusion models.
Single stream modalities include RGB, Optical Flow (OF),
and Audio Signal (A). Its higher train accuracy and lower
validation accuracy signal severe overfitting.

G. Additional Ablation Results
G.1. A strong oracle baseline

In section 3.3, we presented the results on Gradient-
Blending as an effective regularizer to train multi-modal
networks. Here, we consider an additional strong baseline
for the Kinetics, audio-RGB case.

Suppose we have an oracle to choose the best modal-
ity (from audio, RGB and naive A/V) for each class. For
example, for “whistling” video, the oracle chooses naive
A/V model as it performs the best among the three on
“whistling” in validation set. With this oracle, Top-1 video
accuracy is 74.1%, or 0.6% lower than the offline G-Blend
result.

G.2. Training Accuracy

In section 3.2, we introduced the overfitting problem
of joint training of multi-modal networks. Here we in-
clude both validation accuracy and train accuracy of the
multi-modal problems (Table 10). We demonstrate that in
all cases, the multi-modal networks are performing worse
than their single best counterparts, while almost all of their
train accuracy are higher (with the sole exception of OF+A,
whose train accuracy is similar to audio network’s train ac-
curacy).

G.3. Early Stopping

In early stopping, we experimented with three different
stopping schedules: using 25%, 50% and 75% of iterations
per epoch. We found that although overfitting becomes less
of a problem, the model tends to under-fit. In practice, we
still found that the 75% iterations scheduling works the best
among the three, though it’s performance is worse than full
training schedule that suffers from overfitting. We summa-
rize their learning curves in fig. 9.

Early Stopping Learning Curve

— — 250k-Train
04— 250k-Val
||~ — 500k-Train
——500k-Val
o02f 750k-Train
750k-Val
I

Epoch

Figure 9: Early stopping avoids overfitting but tends to
under-fit. Learning curves for three early stopping sched-
ules we experiment. When we train the model with less
number of iterations, the model does not overfit, but the
undesirable performance indicates an under-fitting problem
instead.

G.4. Additional Qualitative Analysis

In section 3.3 we presented the qualitative analysis of
G-Blend’s performance compared with RGB model perfor-
mance (fig.6). We expand the analysis and provide more
details in this section.

We first expand the analysis to compare the top-20 and
bottom-20 improved classes of G-Blend versus RGB model
(fig. 10). This is a direct extension of fig.6. It further con-
firms that classes that dropped are indeed not very seman-
tically relevant in audio, and in many of those classes, the
audio model’s performance is almost 0.

We further extends the analysis to compare naively
trained audio-visual model with RGB-only model (fig. 11).
We note that the improvement for top-20 classes is smaller
than that of G-B and for bot-20 classes the drop is mroe
significant. Moreover, we note that in some bot-20 classes
like snorkeling or feeding bird, where the sound of breath-
ing and birds is indeed relevant, naively trained A/V model
is not performing well. For these classes, audio model
achieves decent performance. We further note that interest-
ingly, for laughing, although naive A/V model outperforms
RGB model, it is worse than audio-only model. And only
with G-Blend, it benefits from both visual and audio signals,
performing better than both.

Finally, we compare the top-20 and bot-20 classes where
G-Blend has the most improvement/ drop with naively
trained A/V model. We note that the gains in improved
classes are much larger than the decrease in dropped classes.

Top 20 Dropped Class Accuracy

1.00

0.75

18UIqeD BuIp|ing

Buneys ao1

syouq Buike|

Bunuejdage)

ebok

Jrey BuiAp

Ileq aspoiaxa ue yum Buisioiexe
Buissiy

Buibepueq

Noeq Buixem

udo1yd BuI00d
Buipreogayeys

ona Buipeojun

a19Aa1un Buipu

Buipuicpioog g’
1nyy Buppord

Jarem Buins

BBa Bujood

aaydwed uo Hupjood

pays Buipjing

0.50

N G-Blend
O Audio

B Video

0.25
0.00

Top 20 Dropped Class Accuracy

0.8
0.6

wue Buisioiaxs
soeq Buipuag
Jayem Buipns

seb puidwnd
yampues e buppew
aed bunes

Jrey Buiysniq

10 Buysnd

©a) Bupew
Buiquuifo %001
Buij@aymued
Buiaxious

spJiq Buipasy
196inqg Bunes
auydwes uo Bupjood
Ireqiavseq Bupunp
Jreyagaym Buysnd
a1 e Buipu

amoq buiuado
pays Buipjing

0.4

0.2
0.0

Bunxay
sanea| Buimo|q
Buiwwnip e
euasesew Buiouep
sapj002 Bunjeq
Buiddep

B Guyus

1 to RGB model. The improvement tends to be smaller than that

io-visual

Top 20 Dropped Class Accuracy

AN

N G-Blend

—®_ Audio

ebok
spJed Buiynys

sjoys Bunjuup
Bupory dosp
Aqeq Buikies

Ireq Buimoiyy
J193q Bupjulp
wue Buiyolens
J8uIged Bulpjing
Buixogreaq
Bunue|dagey
aj9ko1un Buipu
Bupuigiooq
ona Buipeojun
Buinbagueq

an moq Buiky
ua301yd BuI00d

0.75
0.50
0.25
0.00

(Buiwreb jou) Jajj0nuod ajowal Buisn

Buiquin sonseuwAB

llegaseq Buimolyy 1o Buiyores

)
2
<
z

® Video

I model. We note that the gain is much more significant than

io-visual

Top 20 Improved Class Accuracy

I (1egaseq Buimoiy Jo Buiyored
I oy buikerd
IS Guifeids
S 5! moq Buiky
I preoqfey Buikerd
S 6u15ne
I 16 Gueid
I ursous
I oded buiddu
I Guinsiym
I Guixoqieaq
DS Gu0uep esies
I 1As weubBueb Buiouep

Top 20 Improved Class Accuracy
Top 20 Improved Class Accuracy

N Naive AV

—®_ Audio

s Video

sadidBeq Buike|d Bulj@aymiues
esaid buiddeim J1aded s10ss19s 201
Jsaded Buiddu yaimpues e buppew
Jeynb Buiked Jadedsmau Buipeas
dnys Buiddeus Jebuly
1aplodal Buikeid J186anq Bunes
soa1) Buiwwiy Bupjuup

uojsajreyd burouep wie Buisiolexa
Buixoqreaq oopey e Bumeh
Buneigajed i e Buipu
Bunxay Buiysiy 291

asou Buimolq

Jooyy Buiueajo

Buiddejo Bop Buiuren
pleoqAay buike|d saa1) Buiwiy
Burouep espes Jo0}) Buiues|d
Buiybne| reqiaseq Buunp
Buipsiym 100y} Buideams
Buiddeus JaBuly ©a) Bunjew

91f1s weubueb Bupuep amoq Buuado

® © ¥ N Q9 © © ¥ o 9 @ © it N o
s © o o o s o o o o =) s o o S
Aoeinooy Aoeinooy Aoeinooy

Figure 10: Top-Bottom 20 classes based on improvement of G-Blend to RGB model. The improved classes are indeed audio-relevant, while those have

performance drop are not very audio semantically-related.
of G-B counterpart and the drop is more significant. More interesting, in some classes, the naively trained A/V model performs worse than audio signal.

Figure 11: Top-Bottom 20 classes based on improvement of naively trained aud

Figure 12: Top-Bottom 20 classes based on improvement of G-Blend to Naive aud

drop.

