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Abstract

Deep neural networks with millions of parameters may
suffer from poor generalization due to overfitting. To miti-
gate the issue, we propose a new regularization method that
penalizes the predictive distribution between similar sam-
ples. In particular, we distill the predictive distribution be-
tween different samples of the same label during training.
This results in regularizing the dark knowledge (i.e., the
knowledge on wrong predictions) of a single network (i.e.,
a self-knowledge distillation) by forcing it to produce more
meaningful and consistent predictions in a class-wise man-
ner. Consequently, it mitigates overconfident predictions
and reduces intra-class variations. Our experimental re-
sults on various image classification tasks demonstrate that
the simple yet powerful method can significantly improve
not only the generalization ability but also the calibration
performance of modern convolutional neural networks.

1. Introduction
Deep neural networks (DNNs) have achieved state-of-

the-art performance on many computer vision tasks, e.g.,
image classification [19], generation [4], and segmentation
[18]. As the scale of training dataset increases, the size of
DNNs (i.e., the number of parameters) also scales up to han-
dle such a large dataset efficiently. However, networks with
millions of parameters may incur overfitting and suffer from
poor generalizations [36, 55]. To address the issue, many
regularization strategies have been investigated in the litera-
ture: early stopping [3], L1/L2-regularization [35], dropout
[42], batch normalization [40] and data augmentation [8].

Regularizing the predictive distribution of DNNs can be
effective because it contains the most succinct knowledge
of the model. On this line, several strategies such as label-
smoothing [32, 43], entropy maximization [13, 36], and
angular-margin based methods [5, 58] have been proposed
in the literature. They were also influential in solving re-
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Figure 1. (a) Illustration of class-wise self-knowledge distillation
(CS-KD). (b) Predictive distributions on misclassified samples.
We use PreAct ResNet-18 trained on CIFAR-100 dataset. For mis-
classified samples, softmax scores of the ground-truth class are in-
creased by training DNNs with class-wise regularization.

lated problems such as network calibration [16], novelty de-
tection [27], and exploration in reinforcement learning [17].
In this paper, we focus on developing a new output regular-
izer for deep models utilizing the concept of dark knowl-
edge [22], i.e., the knowledge on wrong predictions made
by DNNs. Its importance has been first evidenced by the
so-called knowledge distillation (KD) [22] and investigated
in many following works [1, 39, 41, 54].

While the related works [15, 21] use the knowledge
distillation to transfer the dark knowledge learned by a
teacher network to a student network, we regularize the
dark knowledge itself during training a single network, i.e.,
self-knowledge distillation [53, 57]. Specifically, we pro-
pose a new regularization technique, coined class-wise self-
knowledge distillation (CS-KD), that matches or distills the
predictive distribution of DNNs between different samples
of the same label as shown in Figure 1(a). One can ex-
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(a) Log-probabilities of predicted labels on misclassified samples
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(b) Log-probabilities of ground-truth labels on misclassified samples

Figure 2. Histogram of log-probabilities of (a) the predicted label, i.e., top-1 softmax score, and (b) the ground-truth label on misclassified
samples by networks trained by the cross-entropy (baseline) and CS-KD. The networks are trained on PreAct ResNet-18 for CIFAR-100.

pect that the proposed regularization method forces DNNs
to produce similar wrong predictions if samples are of the
same class, while the conventional cross-entropy loss does
not consider such consistency on the predictive distribu-
tions. Furthermore, it could achieve two desirable goals
simultaneously: preventing overconfident predictions and
reducing the intra-class variations. We remark that they
have been investigated in the literature via different meth-
ods, i.e., entropy regularization [13, 32, 36, 43] and margin-
based methods [5, 58], respectively, while we achieve both
using a single principle.

We demonstrate the effectiveness of our simple yet pow-
erful regularization method using deep convolutional neural
networks, such as ResNet [19] and DenseNet [23] trained
for image classification tasks on various datasets includ-
ing CIFAR-100 [26], TinyImageNet1, CUB-200-2011 [46],
Stanford Dogs [25], MIT67 [38], and ImageNet [10]. In our
experiments, the top-1 error rates of our method are consis-
tently lower than those of prior output regularization meth-
ods such as angular-margin based methods [5, 58] and en-
tropy regularization [13, 32, 36, 43]. In particular, the gain
tends to be larger in overall for the top-5 error rates and the
expected calibration errors [16], which confirms that our
method indeed makes predictive distributions more mean-
ingful. We also found the top-1 error rates of our method
are lower than those of the recent self-distillation methods
[53, 57] in overall. Moreover, we investigate variants of our
method by combining it with other types of regularization
methods for boosting performance, such as the Mixup regu-
larization [56] and the original KD method [22]. For exam-
ple, we improve the top-1 error rate of Mixup from 37.09%
to 30.71%, and that of KD from 39.32% to 34.47% using
the CUB-200-2011 dataset under ResNet-18 and ResNet-
10, respectively.

We remark that the idea of using a consistency reg-
ularizer like ours has been investigated in the literature
[2, 7, 24, 31, 37, 44, 53]. While most prior methods pro-
posed to regularize the output distributions of original and

1https://tiny-imagenet.herokuapp.com/

perturbed inputs to be similar, our method forces the consis-
tency between different samples having the same class. To
the best of our knowledge, no work is known to study such
a class-wise regularization. We believe that the proposed
method may be influential to enjoy a broader usage in other
applications, e.g., face recognition [11, 58], and image re-
trieval [45].

Algorithm 1 Class-wise self-knowledge distillation
Initialize parameters θ.
while θ has not converged do

Sample a batch (x, y) from the training dataset.
Sample another batch x′ randomly, which has the

same label y from the training dataset.
Update parameters θ by computing the gradients of

the proposed loss function LCS-KD(x,x
′, y; θ, T ) in (1).

end while

2. Class-wise self-knowledge distillation
In this section, we introduce a new regularization tech-

nique named class-wise self-knowledge distillation (CS-
KD). Throughout this paper, we focus on fully-supervised
classification tasks and denote x ∈ X as input and y ∈ Y =
{1, ..., C} as its ground-truth label. Suppose that a softmax
classifier is used to model a posterior predictive distribution,
i.e., given the input x, the predictive distribution is:

P (y|x; θ, T ) = exp (fy (x; θ) / T )∑C
i=1 exp (fi (x; θ) / T )

,

where fi denotes the logit of DNNs for class i which are
parameterized by θ, and T > 0 is the temperature scaling
parameter.

2.1. Class-wise regularization

We consider matching the predictive distributions on
samples of the same class, which distills their dark knowl-
edge from the model itself. To this end, we propose a class-
wise regularization loss that enforces consistent predictive
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distributions in the same class. Formally, given an input
x and another randomly sampled input x′ having the same
label y, it is defined as follows:

Lcls (x,x′; θ, T ) := KL
(
P (y|x′; θ̃, T )

∥∥P (y|x; θ, T )) ,
where KL denotes the Kullback-Leibler (KL) divergence,
and θ̃ is a fixed copy of the parameters θ. As suggested by
Miyato et al. [31], the gradient is not propagated through
θ̃ to avoid the model collapse issue. Similar to the origi-
nal knowledge distillation method (KD; [22]), the proposed
loss Lcls matches two predictions. While the original KD
matches predictions of a single sample from two networks,
we make predictions of different samples from a single net-
work, i.e., self-knowledge distillation. Namely, the total
training loss LCS-KD is defined as follows:

LCS-KD(x,x
′, y; θ, T ) := LCE(x, y; θ)

+ λcls · T 2 · Lcls(x,x′; θ, T ), (1)

where LCE is the standard cross-entropy loss, and λcls > 0
is a loss weight for the class-wise regularization. Note that
we multiply the square of the temperature T 2 by following
the original KD [22]. The full training procedure with the
proposed loss LCS-KD is summarized in Algorithm 1.

2.2. Effects of class-wise regularization

The proposed CS-KD is arguably the simplest way to
achieve two goals, preventing overconfident predictions and
reducing the intra-class variations, via a single mechanism.
To avoid overconfident predictions, it utilizes the model-
prediction of other samples as the soft-label. It is more
‘realistic’ than the label-smoothing method [32, 43], which
generates ‘artificial’ soft-labels. Besides, ours directly min-
imizes the distance between two logits within the same
class, and it would reduce intra-class variations.

We also examined whether the proposed method forces
DNNs to produce meaningful predictions. To this end, we
investigate prediction values in softmax scores, i.e., P (y|x),
from PreAct ResNet-18 [20] trained on the CIFAR-100
dataset [26] using the standard cross-entropy loss and the
proposed CS-KD loss. Specifically, we analyze the predic-
tions of two concrete misclassified samples in the CIFAR-
100 dataset. As shown in Figure 1(b), CS-KD not only re-
laxes the overconfident predictions but also enhances the
prediction values of classes correlated to the ground-truth
class. This implies that CS-KD induces meaningful pre-
dictions by forcing DNNs to produce similar predictions
on similar inputs. To evaluate the prediction quality, we
also report log-probabilities of the softmax scores on the
predicted class and ground-truth class on samples that are
commonly misclassified by both the cross-entropy and our
method. As shown in Figure 2(a), our method produces less

confident predictions on misclassified samples compared to
the cross-entropy method. Interestingly, our method in-
creases ground-truth scores for misclassified samples, as
reported in Figure 2(b). In our experiments, we found that
the classification accuracy and calibration effects can be im-
proved by forcing DNNs to produce such meaningful pre-
dictions (see Section 3.2 and 3.4).

3. Experiments

3.1. Experimental setup

Datasets. To demonstrate our method under general situa-
tions of data diversity, we consider various image classifi-
cation tasks, including conventional classification and fine-
grained classification tasks.2 Specifically, we use CIFAR-
100 [26] and TinyImageNet3 datasets for conventional clas-
sification tasks, and CUB-200-2011 [46], Stanford Dogs
[25], and MIT67 [38] datasets for fine-grained classifica-
tion tasks. The fine-grained image classification tasks have
visually similar classes and consist of fewer training sam-
ples per class compared to conventional classification tasks.
ImageNet [10] is used for a large-scale classification task.

Network architecture. We consider two state-of-the-art
convolutional neural network architectures: ResNet [19]
and DenseNet [23]. We use standard ResNet-18 with 64
filters and DenseNet-121 with a growth rate of 32 for image
size 224× 224. For CIFAR-100 and TinyImageNet, we use
PreAct ResNet-18 [20], which modifies the first convolu-
tional layer4 with kernel size 3× 3, strides 1 and padding 1,
instead of the kernel size 7× 7, strides 2 and padding 3, for
image size 32×32 by following [56]. We use DenseNet-BC
structure [23], and the first convolution layer of the network
is also modified in the same way as in PreAct ResNet-18 for
image size 32× 32.

Hyper-parameters. All networks are trained from scratch
and optimized by stochastic gradient descent (SGD) with
momentum 0.9, weight decay 0.0001, and an initial learn-
ing rate of 0.1. The learning rate is divided by 10 after
epochs 100 and 150 for all datasets, and total epochs are
200. We set batch size as 128 for conventional, and 32
for fine-grained classification tasks. We use the standard
data augmentation technique for ImageNet [10], i.e., flip-
ping and random cropping. For our method, the tempera-
ture T is chosen from {1, 4}, and the loss weight λcls is
chosen from {1, 2, 3, 4}. The optimal parameters are cho-
sen to minimize the top-1 error rates on the validation set.
More detailed ablation studies on the hyper-parameters T
and λcls are provided in the supplementary material.

2Code is available at https://github.com/alinlab/cs-kd.
3https://tiny-imagenet.herokuapp.com/
4We used a reference implementation: https://github.com/

kuangliu/pytorch-cifar.
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Model Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

ResNet-18

Cross-entropy 24.71±0.24 43.53±0.19 46.00±1.43 36.29±0.32 44.75±0.80

AdaCos 23.71±0.36 42.61±0.20 35.47±0.07 32.66±0.34 42.66±0.43

Virtual-softmax 23.01±0.42 42.41±0.20 35.03±0.51 31.48±0.16 42.86±0.71

Maximum-entropy 22.72±0.29 41.77±0.13 39.86±1.11 32.41±0.20 43.36±1.62

Label-smoothing 22.69±0.28 43.09±0.34 42.99±0.99 35.30±0.66 44.40±0.71

CS-KD (ours) 21.99±0.13 (-11.0%) 41.62±0.38 (- 4.4%) 33.28±0.99 (-27.7%) 30.85±0.28 (-15.0%) 40.45±0.45 (- 9.6%)

DeseNet-121

Cross-entropy 22.23±0.04 39.22±0.27 42.30±0.44 33.39±0.17 41.79±0.19

AdaCos 22.17±0.24 38.76±0.23 30.84±0.38 27.87±0.65 40.25±0.68

Virtual-softmax 23.66±0.10 41.58±1.58 33.85±0.75 30.55±0.72 43.66±0.30

Maximum-entropy 22.87±0.45 38.39±0.33 37.51±0.71 29.52±0.74 43.48±1.30

Label-smoothing 21.88±0.45 38.75±0.18 40.63±0.24 31.39±0.46 42.24±1.23

CS-KD (ours) 21.69±0.49 (- 2.4%) 37.96±0.09 (- 3.2%) 30.83±0.39 (-27.1%) 27.81±0.13 (-16.7%) 40.02±0.91 (- 4.2%)

Table 1. Top-1 error rates (%) on various image classification tasks and model architectures. We report the mean and standard deviation
over three runs with different random seeds. Values in parentheses indicate relative error rate reductions from the cross-entropy, and the
best results are indicated in bold.

Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Cross-entropy 24.71±0.24 43.53±0.19 46.00±1.43 36.29±0.32 44.75±0.80

DDGSD 23.85±1.57 41.48±0.12 41.17±1.28 31.53±0.54 41.17±2.46

BYOT 23.81±0.11 44.02±0.57 40.76±0.39 34.02±0.14 44.88±0.46

CS-KD (ours) 21.99±0.13 (-11.0%) 41.62±0.38 (- 4.4%) 33.28±0.99 (-27.7%) 30.85±0.28 (-15.0%) 40.45±0.45 (- 9.6%)

Table 2. Top-1 error rates (%) of ResNet-18 with self-distillation methods on various image classification tasks. We report the mean
and standard deviation over three runs with different random seeds. Values in parentheses indicate relative error rate reductions from the
cross-entropy, and the best results are indicated in bold. The self-distillation methods are re-implemented under our code-base.

Baselines. We compare our method with prior regular-
ization methods such as the state-of-the-art angular-margin
based methods [5, 58], entropy regularization [13, 32, 36,
43] and self-distillation methods [53, 57]. They also regu-
larize predictive distributions like ours.

• AdaCos [58].5 AdaCos dynamically scales the cosine
similarities between training samples and correspond-
ing class center vectors to maximize angular-margin.
• Virtual-softmax [5]. Virtual-softmax injects an addi-

tional virtual class to maximize angular-margin.
• Maximum-entropy [13, 36]. Maximum-entropy is a

typical entropy regularization, which maximizes the
entropy of the predictive distribution.
• Label-smoothing [32, 43]. Label-smoothing uses soft

labels that are a weighted average of the one-hot labels
and the uniform distribution.
• DDGSD [53]. Data-distortion guided self-distillation

(DDGSD) is one of the consistency regularization
techniques, which forces the consistent outputs across
different augmented versions of the data.
• BYOT [57]. Be Your Own Teacher (BYOT) transfers

the knowledge in the deeper portion of the networks
into the shallow ones.

Evaluation metric. For evaluation, we measure the follow-
ing metrics:

5We used a reference implementation: https://github.com/
4uiiurz1/pytorch-adacos

• Top-1 / 5 error rate. The top-k error rate is the frac-
tion of test samples for which the correct label is not
in the top-k confidences. We measure top-1 and top-5
error rates to evaluate the generalization performances.

• Expected Calibration Error (ECE). ECE [16, 33]
approximates the difference in expectation between
confidence and accuracy. It is calculated by partition-
ing predictions into M equally-spaced bins and taking
a weighted average of bins’ difference of confidence
and accuracy, i.e., ECE =

∑M
m=1

|Bm|
n |acc(Bm) −

conf(Bm)|, where n is the number of samples, Bm is
the set of samples whose confidence falls into them-th
interval, and acc(Bm), conf(Bm) are the accuracy and
the average confidence of Bm, respectively. We mea-
sure ECE with 20 bins to evaluate whether the model
represents the true correctness likelihood.
• Recall at k (R@k). Recall at k is the percentage of

test samples that have at least one from the same class
in k nearest neighbors on the feature space. To mea-
sure the distance between two samples, we use L2-
distance between their pooled features of the penul-
timate layer. We compare the recall at k = 1 scores to
evaluate intra-class variations of learned features.

3.2. Classification accuracy

Comparison with output regularization methods. We
measure the top-1 error rates of the proposed method (de-
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Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Cross-entropy 24.71±0.24 43.53±0.19 46.00±1.43 36.29±0.32 44.75±0.80

CS-KD (ours) 21.99±0.13 41.62±0.38 33.28±0.99 30.85±0.28 40.45±0.45

Mixup 21.67±0.34 41.57±0.38 37.09±0.27 32.54±0.04 41.67±1.05

Mixup + CS-KD (ours) 20.40±0.31 40.71±0.32 30.71±0.64 29.93±0.14 39.65±0.85

Table 3. Top-1 error rates (%) of ResNet-18 with Mixup regularization on various image classification tasks. We report the mean and
standard deviation over three runs with different random seeds, and the best results are indicated in bold.

Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Cross-entropy 26.72±0.33 46.61±0.22 48.36±0.61 38.96±0.40 44.75±0.62

CS-KD (ours) 25.80±0.10 44.67±0.12 39.12±0.09 34.07±0.46 41.54±0.67

KD 25.84±0.07 43.31±0.11 39.32±0.65 34.23±0.42 41.47±0.79

KD + CS-KD (ours) 25.58±0.16 42.82±0.33 34.47±0.17 32.59±0.50 40.27±0.78

Table 4. Top-1 error rates (%) of ResNet-10 (student) with knowledge distillation (KD) on various image classification tasks. Teacher
networks are pre-trained on DenseNet-121 by CS-KD. We report the mean and standard deviation over three runs with different random
seeds, and the best results are indicated in bold.

noted by CS-KD) by comparing with Virtual-softmax, Ada-
Cos, Maximum-entropy, and Label-smoothing on various
image classification tasks. Table 1 shows that CS-KD out-
performs other baselines consistently. In particular, CS-KD
improves the top-1 error rate of the cross-entropy loss from
46.00% to 33.28% under the CUB-200-2011 dataset. We
also observe that the top-1 error rates of other baselines
are often worse than the cross-entropy loss, e.g., Virtual-
softmax, Maximum-entropy, and Label-smoothing under
MIT67 and DenseNet). As shown in Table 6, top-5 error
rates of CS-KD outperform other regularization methods,
as it encourages meaningful predictions. In particular, CS-
KD improves the top-5 error rate of the cross-entropy loss
from 6.91% to 5.69% under the CIFAR-100 dataset, while
the top-5 error rates of AdaCos is even worse than the cross-
entropy loss. These results imply that our method induces
better predictive distributions than other baseline methods.

Comparison with self-distillation methods. We also com-
pare our method with recent proposed self-distillation tech-
niques such as DDGSD [53] and BYOT [57]. As shown in
Table 2, CS-KD shows better top-1 error rates on ResNet-
18 in overall. For example, CS-KD shows the top-1 er-

Model Method Top-1 (1-crop)

ResNet-50 Cross-entropy 24.0
CS-KD (ours) 23.6

ResNet-101 Cross-entropy 22.4
CS-KD (ours) 22.0

ResNeXt-101-32x4d Cross-entropy 21.6
CS-KD (ours) 21.2

Table 5. Top-1 error rates (%) on ImageNet dataset with various
model architectures trained for 90 epochs with batch size 256. The
best results are indicated in bold.

ror rate of 33.28% on the CUB-200-2011 dataset, while
DDGSD and BYOT have 41.17% and 40.76%, respectively.
All tested self-distillation methods utilize regularization ef-
fects of knowledge distillation. The superiority of CS-KD
could be explained by its unique effect of reducing intra-
class variations.

Evaluation on large-scale datasets. To verify the scala-
bility of our method, we have evaluated our method on the
ImageNet dataset with various model architecture such as
ResNet-50, ResNet-101, and ResNeXt-101-32x4d [52]. As
reported in Table 5, our method improves 0.4% of the top-
1 error rates across all the tested architectures consistently.
The 0.4% improvement is comparable to, e.g., adding 51
more layers on ResNet-101 (i.e., ResNet-152) [19].

Compatibility with other regularization methods. We
investigate orthogonal usage with other types of regular-
ization methods such as Mixup [56] and knowledge distil-
lation (KD) [22]. Mixup utilizes convex combinations of
input pairs and corresponding label pairs for training. We
combine our method with Mixup regularization by apply-
ing the class-wise regularization loss Lcls to mixed inputs
and mixed labels, instead of standard inputs and labels. Ta-
ble 3 shows the effectiveness of our method combined with
Mixup regularization. Interestingly, this simple idea sig-
nificantly improves the performances of fine-grained clas-
sification tasks. In particular, our method improves the
top-1 error rate of Mixup regularization from 37.09% to
30.71%, where the top-1 error rate of the cross-entropy loss
is 46.00% under ResNet-18 on the CUB-200-2011 dataset.

KD regularizes predictive distributions of student net-
work to learn the dark knowledge of a teacher network. We
combine our method with KD to learn dark knowledge from
the teacher and itself simultaneously. Table 4 shows that
our method achieves a similar performance of KD, although
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(a) Cross-entropy (b) Virtual-softmax (c) AdaCos (d) CS-KD (ours)

Figure 3. Visualization of various feature embeddings on the penultimate layer using t-SNE on PreAct ResNet-18 for CIFAR-100. The
proposed method (d) shows the smallest intra-class variation that leads to the best top-1 error rate.
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Figure 4. Experimental results of ResNet-18 on the mixed dataset. The hierarchical classification accuracy (%) of each model trained by
(a) the cross-entropy and (b) our method. One can observe that the model trained by CS-KD is less confusing classes across different
domains. (c) Top-1 error rates (%) of fine-grained label classification.

ours does not use additional teacher networks. Besides,
combining our method with KD further improves the top-1
error rate of our method from 39.32% to 34.47%, where the
top-1 error rate of the cross-entropy loss is 48.36% under
ResNet-10 trained on the CUB-200-2011 dataset. These re-
sults show the wide applicability of our method, compatible
to use with other regularization methods.

3.3. Ablation study

Feature embedding analysis. One can expect that the
intra-class variations can be reduced by forcing DNNs to
produce meaningful predictions. To verify this, we an-
alyze the feature embedding of the penultimate layer of
ResNet-18 trained on CIFAR-100 dataset by t-SNE [30] vi-
sualization method. As shown in Figure 3, the intra-class
variations are significantly decreased by our method (Fig-
ure 3(d)) compared to other baselines, including Virtual-
softmax (Figure 3(b)) and AdaCos (Figure 3(c)), which are
designed to reduce intra-class variations. We also provide
quantitative results on the metric Recall at 1 (R@1), which
has appeared in Section 3.1. We remark that the larger value
of R@1 implies small intra-class variations on the feature
embedding [50]. As shown in Table 6, R@1 values can be
significantly improved when ResNet-18 is trained by our
method. In particular, R@1 of CS-KD is 47.15% under
the TinyImageNet dataset, while R@1 of Adacos, Virtual-
softamx, and the cross-entropy loss are 44.66%, 44.69%,
and 30.59%, respectively.

Hierarchical image classification. By producing more se-
mantic predictions, i.e., increasing the correlation between
similar classes in predictions, we expect the trained clas-
sifier can capture a hierarchical (or clustering) structure of

label space. To verify this, we evaluate the proposed method
on a mixed dataset with 387 fine-grained labels and three hi-
erarchy labels, i.e., bird (CUB-200-2011; 200 labels), dog
(Stanford Dogs; 120 labels), and indoor (MIT67; 67 labels).
Specifically, we randomly choose 30 samples per each fine-
grained label for training, and original test datasets are used
for the test. For evaluation, we train ResNet-18 to classify
the fine-grained labels and measure a hierarchical classifi-
cation accuracy by predicting a hierarchy label (bird, dog,
or indoor) as that of predicted fine-grained label.

First, we extract the hierarchical structure as confusion
matrices, where each element indicates the hierarchical im-
age classification accuracy. As shown in Figure 4(a) and
4(b), our method captures the hierarchical structure of the
mixed dataset almost perfectly, i.e., showing the identity
confusion matrix. In particular, our method enhances the
hierarchical image classification accuracy significantly up
to 99.3% in the bird hierarchy (CUB-200-2011). More-
over, as shown in Figure 4(c), our method also improves
the top-1 error rates of fine-grained label classification sig-
nificantly. Interestingly, the error rate of CUB-200-2011 is
even lower than the errors reported in Table 1. This is be-
cause the model learns additional information by utilizing
the dark knowledge of more labels.

3.4. Calibration effects

In this section, we also evaluate the calibration effects
of the proposed regularization method. Specifically, we
provide reliability diagrams [9, 34], which plot the ex-
pected sample accuracy as a function of confidence of Pre-
Act ResNet-18 for the CIFAR-100 dataset in Figure 5. We
remark that the plotted identity function (dashed diagonal)
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Measurement Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Top-5 ↓

Cross-entropy 6.91±0.09 22.21±0.29 22.30±0.68 11.80±0.27 19.25±0.53

AdaCos 9.99±0.20 22.24±0.11 15.24±0.66 11.02±0.22 19.05±2.33

Virtual-softmax 8.54±0.11 24.15±0.17 13.16±0.20 8.64±0.21 19.10±0.20

Maximum-entropy 7.29±0.12 21.53±0.50 19.80±1.21 10.90±0.31 20.47±0.90

Label-smoothing 7.18±0.08 20.74±0.31 22.40±0.85 13.41±0.40 19.53±0.75

CS-KD (ours) 5.69±0.03 19.21±0.04 13.07±0.26 8.55±0.07 17.46±0.38

CS-KD-E (ours) 5.93±0.06 19.12±0.34 13.74±0.91 8.57±0.13 18.21±0.45

ECE ↓

Cross-entropy 15.45±0.33 14.08±0.76 18.39±0.76 15.05±0.35 17.99±0.72

AdaCos 73.76±0.35 55.09±0.41 63.39±0.06 65.38±0.33 54.00±0.52

Virtual-softmax 8.02±0.55 4.60±0.67 11.68±0.66 7.91±0.38 11.21±1.00

Maximum-entropy 56.41±0.36 42.68±0.31 50.52±1.20 51.53±0.28 42.41±1.74

Label-smoothing 13.20±0.60 2.67±0.48 15.70±0.81 11.60±0.40 8.79±2.47

CS-KD (ours) 5.17±0.40 7.26±0.93 15.44±0.92 10.46±1.08 15.56±0.29

CS-KD-E (ours) 4.69±0.56 3.79±0.35 8.75±0.49 4.70±0.18 8.06±1.90

R@1 ↑

Cross-entropy 61.38±0.64 30.59±0.42 33.92±1.70 47.51±1.02 31.42±1.00

AdaCos 67.95±0.42 44.66±0.52 54.86±0.24 58.37±0.43 42.39±1.91

Virtual-softmax 68.35±0.48 44.69±0.58 55.56±0.74 59.71±0.56 44.20±0.90

Maximum-entropy 71.51±0.29 39.18±0.79 48.66±2.10 60.05±0.45 38.06±3.32

Label-smoothing 71.44±0.03 34.79±0.67 41.59±0.94 54.48±0.68 35.15±1.54

CS-KD (ours) 71.15±0.15 47.15±0.40 59.06±0.38 62.67±0.07 46.74±1.48

CS-KD-E (ours) 70.57±0.57 45.52±0.35 58.44±1.09 62.03±0.30 44.82±1.22

Table 6. Top-5 error, ECE, and Recall at 1 (R@1) rates (%) of ResNet-18 on various image classification tasks. We denote our method
combined with the sample-wise regularization by CS-KD-E. The arrow on the right side of the evaluation metric indicates ascending or
descending order of the value. We reported the mean and standard deviation over three runs with different random seeds, and the best
results are indicated in bold.
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Figure 5. Reliability diagrams [9, 34] show accuracy as a function of confidence, for PreAct ResNet-18 trained on CIFAR-100 using
(a) Cross-entropy, (b) Virtual-softmax, (c) AdaCos, (d) Maximum-entropy, and (e) Label-smoothing. All methods are compared with our
proposed method, CS-KD. Perfect calibration [16] is plotted by dashed diagonals (Optimal) for all.

implies perfect calibration [16], and our method is the clos-
est one among the baselines, as shown in Figure 5. More-
over, we evaluate our method by ECE [16, 33], which is
a quantitative metric of calibration, in Table 6. The re-
sults demonstrate that our method outperforms the cross-
entropy loss consistently. In particular, CS-KD enhances
ECE of the cross-entropy from 15.45% to 5.17% under the
CIFAR-100 dataset, while AdaCos and Maximum-entropy
are significantly worse than the cross-entropy with 73.76%
and 56.41%, respectively.

As a natural extension of CS-KD, we also consider
combining our method with an existing consistency loss
[2, 7, 31, 37, 44], which regularizes the output distributions

of a given sample and its augmented one. Specifically, for
a given training sample x and another sample x′ having the
same label, the combined regularization loss LCS-KD-E is de-
fined as follows:

LCS-KD-E(x,x
′, y; θ, T ) := LCS-KD(xaug,x

′
aug, y; θ, T )

+ λE · T 2·KL
(
P (y|x; θ̃, T )

∥∥P (y|xaug; θ, T )
)
,

where xaug is an augmented sample that is generated by the
data augmentation technique6, and λE > 0 is the loss weight
for balancing. The corresponding results are reported in

6We use standard data augmentation techniques (i.e., flipping and ran-
dom sized cropping) for all tested methods in this paper.
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Table 6, denoted by CS-KD-E. We found that CS-KD-E
significantly enhances the calibration performance of CS-
KD, and also outperforms the baseline methods over top-1
and top-5 error rates consistently. In particular, CS-KD-E
enhances ECE of CS-KD from 5.17% to 4.69% under the
CIFAR-100 dataset. We think that investigating the effect of
such combined regularization could be an interesting direc-
tion to explore in the future, e.g., utilizing other augmenta-
tion methods such as cutout [12] and auto-augmentation [8].

4. Related work

Regularization techniques. Numerous techniques have
been introduced to prevent overfitting of neural networks,
including early stopping [3], L1/L2-regularization [35],
dropout [42], and batch normalization [40]. Alternatively,
regularization methods for the predictive distribution also
have been explored: Szegedy et al. [43] proposed label-
smoothing, which is a mixture of the ground-truth and the
uniform distribution, and Zhang et al. [56] proposed a data
augmentation method called Mixup, which linearly inter-
polates a random pair of training samples and correspond-
ing labels. Müller et al. [32] investigated a method called
Label-smoothing and empirically showed that it improves
not only generalization but also model calibration in various
tasks, such as image classification and machine translation.
Similarly, Pereyra et al. [36] proposed penalizing low en-
tropy predictive distribution, which improved exploration in
reinforcement learning and supervised learning. Moreover,
several works [2, 7, 37, 44] investigated consistency reg-
ularizers between the predictive distributions of corrupted
samples and original samples for semi-supervised learning.
We remark that our method enjoys orthogonal usages with
the prior methods, i.e., our method can be combined with
the prior methods to further improve the generalization per-
formance.

Knowledge distillation. Knowledge distillation [22] is an
effective learning method to transfer the knowledge from a
powerful teacher model to a student. This pioneering work
showed that one can use softmax with temperature scal-
ing to match soft targets for transferring dark knowledge,
which contains the information of non-target labels. There
are numerous follow-up studies to distill knowledge in the
aforementioned teacher-student framework. Recently, some
of the self-distillation approaches [53, 57], which distill
knowledge itself, are proposed. Data-distortion guided self-
distillation method [53] transfers knowledge between dif-
ferent augmented versions of the same training data. Be
Your Own Teacher [57], on the other hand, utilizes ensem-
bling predictions from multiple branches to improve its per-
formance. We remark that our method and these knowl-
edge distillation methods have a similar component, i.e.,
using a soft target distribution, but ours only reduces intra-

class variations. We also remark that the joint usage of our
method and the prior knowledge distillation methods is also
possible.

Margin-based softmax losses. There have been recent ef-
forts toward boosting the recognition performances via en-
larging inter-class margins and reducing intra-class varia-
tion. Several approaches utilized metric-based methods that
measure similarities between features using Euclidean dis-
tances, such as triplet [48] and contrastive loss [6]. To
make the model extract discriminative features, center loss
[49] and range loss [51] were proposed to minimize dis-
tances between samples belong to the same class. Re-
cently, angular-margin based losses were proposed for fur-
ther improvement. L-softmax [29] and A-softmax [28]
combined angular-margin constraints with softmax loss to
encourage the model to generate more discriminative fea-
tures. CosFace [47], AM-softmax [14], and ArcFace [11]
introduced angular-margins for a similar purpose, by re-
formulating softmax loss. Different from L-Softmax and
A-Softmax, Virtual-softmax [5] encourages a large margin
among classes via injecting additional virtual negative class.

5. Conclusion

In this paper, we discover a simple regularization method
to enhance the generalization performance of deep neural
networks. We propose the regularization term, which penal-
izes the predictive distribution between different samples of
the same label by minimizing the Kullback-Leibler diver-
gence. We remark that our idea regularizes the dark knowl-
edge (i.e., the knowledge on wrong predictions) itself and
encourages the model to produce more meaningful predic-
tions. Moreover, we demonstrate that our proposed method
can be useful for the generalization and calibration of neural
networks. We think that the proposed regularization tech-
nique would enjoy a broader range of applications, such
as exploration in deep reinforcement learning [17], transfer
learning [1], face verification [11], and detection of out-of-
distribution samples [27].
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Supplementary Material:
Regularizing Class-wise Predictions via Self-knowledge Distillation

A. Effects of hyper-parameters
To examine the effect of main hyper-parameters T and λcls, we additionally test the hyper-parameters across an array of

T ∈ {0.1, 0.5, 1, 4, 10, 20} and λcls ∈ {0.1, 0.5, 1, 2, 3, 4, 10, 20} on PreAct ResNet-18 using the CIFAR-100 dataset. The
results are presented in Table 7. Except for the hyper-parameters under consideration, we keep all settings the same as in
Section 3.1. Overall, we found our method is fairly robust on T and λcls, except for some extreme cases, such as the small
value of T ≤ 0.5, and the large value of λcls ≥ 10.

T
λcls 0.1 0.5 1 2 3 4 10 20

0.1 25.16 24.03 23.91 24.38 24.05 24.21 24.39 27.61
0.5 24.14 24.05 24.15 23.49 23.78 23.23 23.90 25.96
1 24.15 23.32 22.80 22.26 22.87 23.18 24.35 25.58
4 22.87 22.03 21.66 22.45 22.68 22.81 32.25 35.45

10 22.68 22.36 21.98 22.04 21.95 31.76 31.80 37.50
20 22.96 22.39 22.03 22.37 22.00 22.39 30.23 24.05

Table 7. Top-1 error rates (%) of PreAct ResNet-18 on CIFAR-100 dataset over various hyper-parameters T and λcls. The best results are
indicated in bold.

B. Qualitative analysis of CS-KD
To examine the effect of our method, we investigate prediction values in softmax scores, i.e., P (y|x), from PreAct ResNet-

18 trained by the standard cross-entropy loss and our method for TinyImageNet dataset. We report commonly misclassified
samples by both the cross-entropy and our method in Figure 6, and softmax scores of the samples show our method not only
moderates the overconfident predictions, but also enhances the prediction values of classes correlated to the ground-truth
class.
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Figure 6. Predictive distributions on misclassified samples. We use PreAct ResNet-18 trained on TinyImageNet dataset. For misclassified
samples, softmax scores of the ground-truth class are increased by training DNNs with class-wise regularization.

Moreover, we additionally compare our method with the cross-entropy method by plotting log-probabilities of the softmax
scores on commonly misclassified samples for TinyImageNet, CUB-200-2011, Stanford Dogs, and MIT67 datasets. The
corresponding results are reported in Figures 7, 8, 9, and 10. Log-probabilities of the softmax scores on the predicted class
show how overconfident the predictions are, and our method produces less confident predictions on the misclassified samples
compared to the cross-entropy method for overall datasets. On the other hand, log-probabilities of the softmax scores on the
ground-truth class show relations between the predictions and the ground-truth class, and our method increases the ground-
truth scores for overall datasets. These results imply that our method induces meaningful predictions that are more related to
the ground-truth class than the cross-entropy method.
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(a) Log-probabilities of predicted labels on misclassified samples
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Figure 7. Histogram of log-probabilities of (a) the predicted label, i.e., top-1 softmax score, and (b) the ground-truth label on misclassified
samples by networks trained by the cross-entropy (baseline) and CS-KD. The networks are trained on PreAct ResNet-18 for TinyImageNet.
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(a) Log-probabilities of predicted labels on misclassified samples
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Figure 8. Histogram of log-probabilities of (a) the predicted label, i.e., top-1 softmax score, and (b) the ground-truth label on misclassified
samples by networks trained by the cross-entropy (baseline) and CS-KD. The networks are trained on ResNet-18 for CUB-200-2011.
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(a) Log-probabilities of predicted labels on misclassified samples
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Figure 9. Histogram of log-probabilities of (a) the predicted label, i.e., top-1 softmax score, and (b) the ground-truth label on misclassified
samples by networks trained by the cross-entropy (baseline) and CS-KD. The networks are trained on ResNet-18 for Stanford Dogs.
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(a) Log-probabilities of predicted labels on misclassified samples
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Figure 10. Histogram of log-probabilities of (a) the predicted label, i.e., top-1 softmax score, and (b) the ground-truth label on misclassified
samples by networks trained by the cross-entropy (baseline) and CS-KD. The networks are trained on ResNet-18 for MIT67.
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