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1Yonsei University 2École Polytechnique Fédérale de Lausanne (EPFL)
3Korea University 4Korea Institute of Science and Technology (KIST)

{sunghunjoung,incohjk,minsukim320,khsohn}@yonsei.ac.kr
seungryong kim@korea.ac.kr, {drjay,jhcho}@kist.re.kr

Abstract

Existing techniques to encode spatial invariance within
deep convolutional neural networks only model 2D trans-
formation fields. This does not account for the fact that
objects in a 2D space are a projection of 3D ones, and thus
they have limited ability to severe object viewpoint changes.
To overcome this limitation, we introduce a learnable mod-
ule, cylindrical convolutional networks (CCNs), that ex-
ploit cylindrical representation of a convolutional kernel
defined in the 3D space. CCNs extract a view-specific fea-
ture through a view-specific convolutional kernel to predict
object category scores at each viewpoint. With the view-
specific feature, we simultaneously determine objective cat-
egory and viewpoints using the proposed sinusoidal soft-
argmax module. Our experiments demonstrate the effec-
tiveness of the cylindrical convolutional networks on joint
object detection and viewpoint estimation.

1. Introduction
Recent significant success on visual recognition, such

as image classification [33], semantic segmentation [24],
object detection [12], and instance segmentation [13], has
been achieved by the advent of deep convolutional neural
networks (CNNs). Their capability of handling geometric
transformations mostly comes from the extensive data aug-
mentation and the large model capacity [19, 15, 31], having
limited ability to deal with severe geometric variations, e.g.,
object scale, viewpoints and part deformations. To realize
this, several modules have been proposed to explicitly han-
dle geometric deformations. Formally, they transform the
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Figure 1. Illustration of cylindrical convolutional networks
(CCNs) : Given a single image of objects, we apply a view-specific
convolutional kernel to extract the shape characteristic of object
from different viewpoints.

input data by modeling spatial transformation [16, 3, 20],
e.g., affine transformation, or by learning the offset of sam-
pling locations in the convolutional operators [42, 4]. How-
ever, all of these works only use a visible feature to han-
dle geometric deformation in the 2D space, while viewpoint
variations occur in the 3D space.

To solve the problems of viewpoint variations, joint
object detection and viewpoint estimation using CNNs
[36, 35, 26, 6] has recently attracted the interest. This in-
volves first estimating the location and category of objects
in an image, and then predicting the relative rigid trans-
formation between the camera coordinate in the 3D space
and each image coordinate in the 2D space. However, cat-
egory classification and viewpoint estimation problems are
inherently contradictory, since the former requires a view-
invariant feature representation while the latter requires a
view-specific feature representation. Therefore, incorporat-
ing viewpoint estimation networks to a conventional object
detector in a multi-task fashion does not help each other, as
demonstrated in several works [26, 7].

Recent studies on 3D object recognition have shown that
object viewpoint information can improve the recognition
performance. Typically, they first represent a 3D object
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with a set of 2D rendered images, extract the features of
each image from different viewpoints, and then aggregate
them for object category classification [34, 1, 37]. By us-
ing multiple features with a set of predefined viewpoints,
they effectively model shape deformations with respect to
the viewpoints. However, in real-world scenarios, they are
not applicable because we cannot access the invisible side
of an object without 3D model.

In this paper, we propose cylindrical convolutional net-
works (CCNs) for extracting view-specific features and us-
ing them to estimate object categories and viewpoints si-
multaneously, unlike conventional methods that share rep-
resentation of feature for both object category [30, 23, 21]
and viewpoint estimation [35, 26, 6]. As illustrated in Fig.
1, the key idea is to extract the view-specific feature condi-
tioned on the object viewpoint (i.e., azimuth) that encodes
structural information at each viewpoint as in 3D object
recognition methods [34, 1, 37]. In addition, we present
a new and differentiable argmax operator called sinusoidal
soft-argmax that can manage sinusoidal properties of the
viewpoint to predict continuous values from the discretized
viewpoint bins. We demonstrate the effectiveness of the
proposed cylindrical convolutional networks on joint object
detection and viewpoint estimation task, achieving large im-
provements on Pascal 3D+ [41] and KITTI [10] datasets.

2. Related Work

2D Geometric Invariance. Most conventional methods
for visual recognition using CNNs [33, 12, 24] provided
limited performance due to geometric variations. To deal
with geometric variations within CNNs, spatial transformer
networks (STNs) [16] offered a way to provide geomet-
ric invariance by warping features through a global trans-
formation. Lin and Lucey [20] proposed inverse composi-
tional STNs that replace the feature warping with transfor-
mation parameter propagation, but it has a limited capability
of handling local transformations. Therefore, several meth-
ods have been introduced by applying convolutional STNs
for each location [3], estimating locally-varying geometric
fields [42], and estimating spatial transformation in a recur-
sive manner [18]. Furthermore, to handle adaptive determi-
nation of scales or receptive field for visual recognition with
fine localization, Dai et al. [4] introduced two new modules,
namely, deformable convolution and deformable ROI pool-
ing that can model geometric transformation for each ob-
ject. As all of these techniques model geometric deforma-
tion in the projected 2D image only with visible appearance
feature, there is a lack of robustness to viewpoint variation,
and they still only rely on extensive data augmentation.

Joint Category and Viewpoint Estimation. Since view-
point of 3D object is a continuous quantity, a natural way to
estimate it is to setup a viewpoint regression problem. Wang

et al. [38] tried to directly regress viewpoint to manage the
periodic characteristic with a mean square loss. However,
the regression approach cannot represent the ambiguities
well that exist between different viewpoints of objects with
symmetries or near symmetries [26]. Thus, other works
[36, 35] divide the angles into non-overlapping bins and
solve the prediction of viewpoint as a classification prob-
lem, while relying on object localization using conventional
methods (i.e. Fast R-CNN [11]). Divon and Tal [6] further
proposed a unified framework that combines the task of ob-
ject localization, categorization, and viewpoint estimation.
However, all of these methods focus on accurate viewpoint
prediction, which does not play a role in improving object
detection performance [26].

Another main issue is a scarcity of real images with ac-
curate viewpoint annotation, due to the high cost of man-
ual annotation. Pascal 3D+ [41], the largest 3D image
dataset still is limited in scale compare to object classifica-
tion datasets (e.g. ImageNet [5]). Therefore, several meth-
ods [35, 38, 6] tried to solve this problem by rendering 3D
CAD models [2] into background images, but they are un-
realistic and do not match real image statistics, which can
lead to domain discrepancy.

3D Object Recognition. There have been several at-
tempts to recognize 3D shapes from a collection of their
rendered views on 2D images. Su et al. [34] first proposed
multi-view CNNs, which project a 3D object into multiple
views and extract view-specific features through CNNs to
use informative views by max-pooling. GIFT [1] also ex-
tracted view-specific features, but instead of pooling them,
it obtained the similarity between two 3D objects by view-
wise matching. Several methods to improve performance
have been proposed, by recurrently clustering the views into
multiple sets [37] or aggregating local features through bi-
linear pooling [43]. Kanezaki et al. [17] further proposed
RotationNet, which takes multi view images as an input and
jointly estimates object’s category and viewpoint. It treats
the viewpoint labels as latent variables, enabling usage of
only a partial set of multi-view images for both training and
testing.

3. Proposed Method

3.1. Problem Statement and Motivation

Given a single image of objects, our objective is to
jointly estimate object category and viewpoint to model
viewpoint variation of each object in the 2D space. Let
us denote Nc as the number of object classes, where the
class C is determined from each benchmark and Nv is de-
termined by the number of discretized viewpoint bins. In
particular, since the variation of elevation and tilt is small
on real-scenes [41], we focus on estimation of the azimuth.
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Figure 2. Intuition of cylindrical convolutional networks: (a) joint category and viewpoint estimation methods [26, 6] using single-view
image as an input, (b) 3D object recognition methods [34, 1] using multi-view image as an input, and (c) cylindrical convolutional networks,
which take the advantages of 3D object recognition methods by extracting view-specific features from single-view image as an input.

Object categorization requires a view-agnostic represen-
tation of an input so as to recognize the object category
regardless of viewpoint variations. In contrast, viewpoint
estimation requires a representation that preserves shape
characteristic of the object in order to distinguish their
viewpoint. Conventional CNNs based methods [26, 6] ex-
tract a view-agnostic feature, followed by task-specific sub-
networks, i.e., object categorization and viewpoint estima-
tion, as shown in Fig. 2 (a). They, however, do not lever-
age the complementary characteristics of the two tasks, thus
showing a limited performance. Unlike these methods,
some methods on 3D object recognition have shown that
view-specific features for each viewpoint can encode struc-
tural information [34, 1], and thus they use these feature to
facilitate the object categorization task as shown in Fig. 2
(b). Since they require multi-view images of pre-defined
viewpoints, their applicability is limited to 3D object recog-
nition (i.e. ModelNet 40 [39]).

To extract the view-specific features from a single im-
age, we present cylindrical convolutional networks that ex-
ploit a cylindrical convolutionial kernel, where each subset
is a view-specific kernel to capture structural information at
each viewpoint. By utilizing view-specific feature followed
by object classifiers, we estimate an object category likeli-
hood at each viewpoint and select a viewpoint kernel that
predicts to maximize object categorization probability.

3.2. Cylindrical Convolutional Networks

Let us denote an intermediate CNN feature map of Re-
gion of Interest (ROI) [13] as x ∈ Rk×k×chi , with spatial
resolution k × k and chi channels. Conventional viewpoint
estimation methods [26, 6] apply a k×k view-agnostic con-
volutional kernel in order to preserve position sensitive in-
formation for extracting feature F ∈ Rcho , where cho is the
number of output channels. Since the structural informa-
tion of projected images varies with different viewpoints,
we aim to apply a view-specific convolutional kernel at a

predefined set of Nv viewpoints. The most straightforward
way for realizing this is to defineNv variants of k×k kernel.
This strategy, however, cannot consider structural similarity
between nearby viewpoints, and would be inefficient.

We instead model a cylindrical convolutional kernel with
weight parameters W cyl. ∈ Rk×Nv×chi×cho as illustrated
in Fig. 3. Each k × k kernel extracted along horizontal
axis on W cyl. in a sliding window fashion can be seen as a
view-specific kernel W v. We then obtain Nv variants of a
view-specific feature Fv ∈ Rcho as

Fv =
∑
p∈R

W v (p) · x (p) =
∑
p∈R

W cyl. (p + ov) · x (p),

(1)
where ov is an offset on cylindrical kernel W cyl. for each
viewpoint v. The position p varies within in the k × k win-
dow R. Different from view-specific features on Fig. 2 (b)
extracted from multi-view images, our view-specific fea-
ture benefit from structural similarity between nearby view-
points. Therefore, each view-specific kernel can be trained
to discriminate shape variation from different viewpoints.

3.3. Joint Category and Viewpoint Estimation

In this section, we propose a framework to jointly esti-
mate object category and viewpoint using the view-specific
features Fv . We design convolutional layers f (·) with pa-
rameters W cls to produce Nv × (Nc + 1) score map such
that Sv,c = f (Fv;W cls). Since each element of Sv,c repre-
sents the probability of object belong to each category c and
viewpoint v, the category and viewpoint can be predicted
by just finding the maximum score from Sv,c. However, it
is not differentiable along viewpoint distribution, and only
predicts discretized viewpoints. Instead, we propose sinu-
soidal soft-argmax function, enabling the network to pre-
dict continuous viewpoints with periodic properties. To ob-
tain the probability distribution, we normalize Sv,c across
the viewpoint axis with a softmax operation σ (·) such that



input feature map output feature map

𝑐𝑐𝑐𝑖𝑖

𝑘𝑘

−𝟏𝟏𝟏𝟏𝟎𝟎°

𝟏𝟏𝟏𝟏𝟎𝟎°

𝑐𝑐𝑐𝑜𝑜
cylindrical kernel

camera

conv

ROI image

𝟎𝟎°

𝟎𝟎°
−𝟒𝟒𝟒𝟒°−𝟗𝟗𝟗𝟗°

conv

score map

𝑁𝑁𝑐𝑐 category

Figure 3. Key idea of cylindrical convolutional networks. Input feature maps from fully convolutional networks are fed into the cylindrical
convolutional kernel to obtain Nv variants of view-specific feature. Then, each view-specific feature is used to identify its category
likelihood that object category classification and viewpoint estimation can be jointly estimated.

P v,c = σ (Sv,c). In the following, we describe how we
estimate object categories and viewpoints.

Category Classification. We compute the final category
classification score using a weighted sum of category like-
lihood for each viewpoint, Sv,c, with viewpoint probability
distribution, P v,c, as follows:

Sc =

Nv∑
v=1

Sv,c · P v,c, (2)

where Sc represents an final classification score along cate-
gory c. Since the category classification is essentially view-
point invariant, the gradient from Sc will emphasize correct
viewpoint’s probability, while suppressing others as atten-
tion mechanism [16]. It enables the back-propagation of
supervisory signal along Nv viewpoints.

Viewpoint Estimation. Perhaps the most straightforward
way to estimate a viewpoint within CCNs is to choose
the best performing view-specific feature from predefined
viewpoints to identify object category. In order to predict
the continuous viewpoint with periodic properties, we fur-
ther introduce a sinusoidal soft-argmax, enabling regression
from P v,c as shown in Fig. 4.

Specifically, we make use of two representative indices,
sin (iv) and cos (iv), extracted by applying sinusoidal func-
tion to each viewpoint bin iv (i.e. 0°, 15°, forNv = 24). We
then take sum of each representative index with its probabil-
ity, followed by atan2 function to predict object viewpoint
for each class c as follows:

θc = atan2

(
Nv∑
v=1

P v,c sin (iv) ,

Nv∑
v=1

P v,c cos (iv)

)
, (3)

which takes advantage of classification-based approaches
[36, 35] to estimate posterior probabilities, enabling better

training of deep networks, while considering the periodic
characteristic of viewpoints as regression-based approaches
[38]. The final viewpoint estimation selects θc with corre-
sponding class c through category classification (2).

Bounding Box Regression. To estimate fine-detailed lo-
cation, we apply additional convolutional layers for bound-
ing box regression with W reg to produce Nv × Nc × 4
bounding box offsets, denoted as tv,c = f (Fv;W reg).
Each set of 4 values encodes bounding box transformation
parameters [12] from initial location for one of theNv×Nc
sets. This leads to use different sets of boxes for each cate-
gory and viewpoint bin, which can be shown as an extended
version of class-specific bounding box regression [11, 30].

Loss Functions. Our total loss function defined on each
feature is the summation of classification loss Lcls, bound-
ing box regression loss Lreg, and viewpoint estimation loss
Lview as follows:

L = Lcls (c, ĉ)+[ĉ ≥ 1]{Lreg(tv,c, t̂)+[θ̂ 6= ∅]Lview(θc, θ̂)},
(4)

using ground-truth object category ĉ, bounding box regres-
sion target t̂ and viewpoint θ̂. Iverson bracket indicator
function [·] evaluates to 1 when it is true and 0 otherwise.
For background, ĉ = 0, there is no ground-truth bounding
box and viewpoint, hence Lreg and Lview are ignored. We
train the viewpoint loss Lview in a semi-supervised man-
ner, using the sets with ground-truth viewpoint (θ̂ 6= ∅) for
supervised learning. For the datasets without viewpoint an-
notation (θ̂ = ∅), Lview is ignored and viewpoint estimation
task is trained in an unsupervised manner. We use cross-
entropy for Lcls, and smooth L1 for both Lreg and Lview,
following conventional works [11, 30].

3.4. Implementation and Training Details

For cylindrical kernel W cyl., we apply additional con-
straint to preserve a reflectinoal symmetry of 3D ob-
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Figure 4. Illustration of sinusoidal soft-argmax: for probability
distribution of discretized viewpoint bins, sinusoidal soft-argmax
enables to regress periodic viewpoint signal, while conventional
soft-argmax cannot be applied.

jects. We first divide the parameters into four groups
as front, rear, left-side, and right-side, and make the pa-
rameters of left-side and the right-side to be reflective
using horizontal flip operation h (·) such that W cyl. =
[W side,W front, h (W side) ,W rear], where parameters of
each groups are concatenated horizontally. We set the spa-
tial resolution of W front and W back as k × 1, and W side as
k × (Nv − 2) /2. Therefore, W cyl. can preserve horizontal
reflectional symmetry and saves the network memory.

In order to make W cyl. defined on a 3D space to be im-
plemented in a 2D space, periodicity along the azimuth has
to be preserved. Therefore, we horizontally pad k × bk/2c
of parameters from the left end to the right side using flip
operation, and vice versa, where b·c denotes floor function
that outputs the greatest integer less than or equal to input.
It allows W cyl. to be used as periodic parameters.

We adopt two stage object detection framework, Faster
R-CNN [30] that first processes the whole image by stan-
dard fully convolutional networks [15, 21], followed by
Region Proposal Network (RPN) [30] to produce a set of
bounding boxes. We then use ROI Align [13] layer to ex-
tract fixed size feature x for each Region of Interest (ROI).

In both training and inference, images are resized so that
the shorter side is 800 pixels, using anchors of 5 scales and
3 aspect ratios with FPN, and 3 scales and 3 aspect ratios
without FPN are utilized. 2k and 1k region proposals are
generated using non-maximum suppression threshold of 0.7
at both training and inference respectively. We trained on 2
GPUs with 4 images per GPU (effective mini batch size of
8). The backbones of all models are pretrained on ImageNet
classification [5], and additional parameters are randomly
initialized using He initialization [14]. The learning rate is
initialized to 0.02 with FPN, 0.002 without FPN, and decays
by a factor of 10 at the 9th and 11th epochs. All models are
trained for 12 epochs using SGD with a weight decay of
0.0001 and momentum of 0.9, respectively.

Method Cateogory Viewpoint
Nv CCNs top-1 top-3 Accπ/6 Mederr
24 0.91 0.97 0.56 23.5
18 X 0.95 0.99 0.63 17.3
24 X 0.95 0.99 0.66 15.5
30 X 0.94 0.98 0.63 17.7

Table 1. Joint object category and viewpoint estimation perfor-
mance with ground truth box on Pascal 3D+ dataset [41].

4. Experiments
4.1. Experimental Settings

Our experiments are mainly based on maskrcnn-
benchmark [25] using PyTorch [27]. We use the standard
configuration of Faster R-CNN [30] based on ResNet-101
[15] as a backbone. We implement two kinds of network,
with and without using FPN [21]. For the network with-
out using FPN, we remove the last pooling layer to preserve
spatial information of each ROI feature. We set k = 7 fol-
lowing conventional works, and set Nv = 24 unless stated
otherwise. The choice of other hyper-parameters keeps the
same with the default settings in [25].

We evaluate our joint object detection and viewpoint
estimation framework on the Pascal 3D+ [41] and KITTI
dataset [10]. The Pascal 3D+ dataset [41] consists of images
from Pascal VOC 2012 [8] and images of subset from Ima-
geNet [5] for 12 different categories that are annotated with
its viewpoint. Note that the bottle category is omitted, since
it is often symmetric across different azimuth [41]. On the
other hand, the KITTI dataset [10] consists of 7,481 train-
ing images and 7,518 test images that are annotated with its
observation angle and 2D location. For KITTI dataset, we
focused our experiment on the Car object category.

Pascal 3D+ dataset. In this experiment, we trained our
network using the training set of Pascal 3D+ [41] (training
set of Pascal VOC 2012 [8] and ImageNet [5]) for super-
vised learning only, denoted as CCNs, and semi-supervised
learning with additional subset of trainval35k with overlap-
ping classes of COCO dataset [22], denoted as CCNs*. The
evaluation is done on the val set of Pascal 3D+ [41] using
Average Precision (AP) metric [8] and Average Viewpoint
Precision (AVP) [41], where we focus on AVP24 metric.
Furthermore, we also evaluate our CCNs using minival split
of COCO dataset [22] using COCO-style Average Precision
(AP) @ [0.5 : 0.95] and Average Recall (AR) metric [22] on
objects of small, medium, and large sizes.

KITTI dataset. In this experiment, we followed train/val
setting of Xiang et al. [40], which guarantees that im-
ages from the training and validation set are from different
videos. For evaluation using KITTI dataset [10], we use
Average Precision (AP) metric with 70% overlap threshold
(AP@IOU0.7), and Average Orientation Similarity (AOS)



Figure 5. Visualization of learned deep feature through Grad-CAM [32]: (from top to bottom) inputs, attention maps trained without CCNs,
and with CCNs. Note that red color indicates attentive regions and blue color indicates suppressed regions.

[10]. Results are evaluated based on three levels of diffi-
culty: Easy, Moderate, and Hard, which are defined accord-
ing to the minimum bounding box height, occlusion, and
truncation grade.

4.2. Ablation Study

Analysis of the CCNs components. We analyzed our
CCNs with the ablation evaluations with respect to vari-
ous setting of Nv and the effectiveness of the proposed
view-specific convolutional kernel. In order to evaluate per-
formance independent of factors such as mis-localization,
we tackle the problem of joint category classification and
viewpoint estimation with ground-truth bounding box us-
ing ResNet-101 [15]. For a fair comparison, a k × k
view-agnostic convolutional kernels are implemented for
joint object category classification and viewpoint estima-
tion, which outputs Nc × Nv score map following con-
ventional work [6]. In order to compare the viewpoint es-
timation accurately, we applied sinusoidal soft-argmax to
regress the continuous viewpoint. We evaluated the top-1
and top-3 error rates for object category classification per-
formance, and use median error (MedErr) and Accπ/6 for
viewpoint estimation performance [36].

As shown in Table 1, CCNs have shown better perfor-
mance in both object category classification and viewpoint
estimation compared to the conventional method using
view-agnostic kernel. The result shows that view-specific
kernel effectively leverage the complementary characteris-
tics of the two tasks. Since the result with Nv = 24 has
shown the best performance in both category classification
and viewpoint estimation, we set Nv = 24 for remaining
experiments. Note that the number of parameters in cylin-
drical kernel is k×{(Nv − 2)/2 + 2}×chi = 7×13×chi,
while the baseline uses k×k×chi = 7×7×chi. The num-

ber of additional parameters is marginal (∼ 0.01%) com-
pared to the total number of network parameters, while per-
formance is significantly improved.

Network visualization. For the qualitative analysis, we
applied the Grad-CAM [32] to visualize attention maps
based on gradients from output category predictions. We
compared the visualization results of CCNs with view-
specific kernel and baseline with view-agnostic kernel. In
Fig. 5, the attention map of the CCNs covers the overall
regions in target object, while conventional category classi-
fier tends to focus on the discriminative part of an object.
From the observations, we conjecture that the view-specific
convolutional kernel leads the network to capture the shape
characteristic of object viewpoint.

4.3. Results

Pascal 3D+ dataset. In the following, we evaluated our
CCNs and CCNs* in comparison to the state-of-the-art
methods. Object detection methods are compared such as
DPM [9], RCNN [12], Faster R-CNN [30] with ResNet-101
[15] and FPN [21]. Joint object detection and viewpoint
estimation methods are also compared, including hand-
crafted modules such as VDPM [41], DPM-VOC+VP [28],
methods using off-the-shelf 2D object detectors for view-
point estimation such as Su et al. [35], Tulsani and Malik
[36], Massa et al. [26], and unified methods such as Poirson
et al. [29], Divon and Tal [6].

As shown in Table 2 and Table 3, our CCNs* with FPN
[21] outperformed conventional methods in terms of both
object detection (mAP) and joint object detection and view-
point estimation (mAVP) on Pascal 3D+ dataset [41]. It is
noticeable that conventional methods for joint object detec-
tion and viewpoint estimation actually lowered the classi-
fication performance at [26], while ours improved the per-



Method aero bike boat bus car chair dtable mbike sofa train tv mAP
DPM [9] 42.2 49.6 6.0 54.1 38.3 15.0 9.0 33.1 18.9 36.4 33.2 29.6

VDPM [41] 42.2 44.4 6.0 53.7 36.3 12.6 11.1 35.5 17.0 32.6 33.6 29.5
DPM-VOC+VP [28] 36.0 45.9 5.3 53.9 42.1 8.0 5.4 34.8 11.0 28.2 27.3 27.1

RCNN [12] 72.4 68.7 34.0 73.0 62.3 33.0 35.2 70.7 49.6 70.1 57.2 56.9
Massa et al. [26] 77.1 70.4 51.0 77.4 63.0 24.7 44.6 76.9 51.9 76.2 64.6 61.6

Poirson et al. [29] 76.6 67.7 42.7 76.1 59.7 15.5 51.7 73.6 50.6 77.7 60.7 59.3
Faster R-CNN w/ [15] 79.8 78.6 64.4 79.6 75.9 48.2 51.9 80.5 49.8 77.9 79.2 69.6
Faster R-CNN w/ [21] 82.7 78.3 71.8 78.7 76.0 50.8 53.3 83.3 50.7 82.6 77.2 71.4

CCNs w/ [15] 82.5 79.2 64.4 80.3 76.7 49.4 50.9 81.4 48.2 79.5 78.9 70.2
CCNs* w/ [15] 82.9 81.4 63.7 86.6 79.7 43.6 51.7 81.6 52.5 81.0 82.1 71.5
CCNs w/ [21] 82.6 80.6 69.3 84.9 78.8 50.9 50.7 83.4 50.3 82.2 80.0 72.2
CCNs* w/ [21] 83.7 82.8 71.4 88.1 81.2 46.3 51.1 85.9 52.7 83.8 84.0 73.7

Table 2. Comparison of object detection on Pascal 3D+ dataset [41]. Average Precision (AP) @IOU 0.5 is evaluated.

Method aero bike boat bus car chair dtable mbike sofa train tv mAVP24
VDPM [41] 8.0 14.3 0.3 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1

DPM-VOC+VP [28] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6
Su et al. [35] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8

Tulsani & Malik [36] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
Massa et al. [26] 43.2 39.4 16.8 61.0 44.2 13.5 29.4 37.5 33.5 46.6 32.5 36.1

Poirson et al. [29] 33.4 29.4 9.2 54.7 35.7 5.5 23.0 30.3 27.6 44.1 34.3 28.8
Divon & Tal [6] 46.6 41.1 23.9 72.6 53.5 22.5 42.6 42.0 44.2 54.6 44.8 44.4
CCNs w/ [15] 39.0 45.9 22.6 74.5 54.7 19.6 38.9 44.2 41.5 55.3 46.8 43.9

CCNs* w/ [15] 39.4 47.0 23.2 76.6 55.5 20.3 39.5 44.5 41.8 56.1 45.5 44.5
CCNs w/ [21] 45.1 47.4 23.1 77.8 55.2 19.9 39.6 45.3 43.4 58.0 47.8 45.7

CCNs* w/ [21] 46.1 48.8 24.2 78.0 55.9 20.9 41.0 45.3 43.7 59.5 49.0 46.6

Table 3. Comparison of joint object detection and viewpoint estimation on Pascal 3D+ dataset [41]. Average Precision with 24 discretized
viewpoint bins (AVP24) is evaluated, where true positive stands with correct bounding box localization and viewpoint estimation.
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Figure 6. Qualitative examples of joint object detection and viewpoint estimation on Pascal3D+ dataset [41]. The bar below each image
indicates the viewpoint prediction, in green, and the ground-truth in black.

formance compared to the original Faster R-CNN [30, 21].
Furthermore, our semi-supervised learning scheme using
real datasets [22] shows performance improvement, indi-
cating that (2) enables the supervisory signal for viewpoint

estimation. Note that other viewpoint estimation methods
used synthetic images with ground-truth viewpoint annota-
tion [35, 26, 6] or keypoint annotation [36]. In Fig. 6, we
show the examples of our joint object detection and view-
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Figure 7. Qualitative examples of joint object detection and viewpoint estimation on KITTI dataset [10]. The bar below each image
indicates the viewpoint prediction of corresponding object in green.

Metric Network CCNs All S M L

AP

ResNet
[15]

34.3 15.5 28.9 47.3
X 36.6 17.5 30.2 49.6

FPN
[21]

40.7 22.1 36.2 52.1
X 41.8 24.2 38.8 52.9

AR

ResNet
[15]

47.2 21.6 42.9 63.6
X 49.6 22.7 44.1 66.0

FPN
[21]

54.1 32.6 51.3 66.5
X 56.3 33.9 53.1 68.3

Table 4. Comparison of object detection on subset of COCO
dataset [22]. The COCO-style Average Precision (AP) @IOU∈
[0.5, 0.95] and Average Recall (AR) are evaluated on objects of
small (S), medium (M), and large (L) sizes.

Metric Methods Easy Moderate Hard

AP
Faster-RCNN [30] 82.97 77.83 66.25

w/o CCNs 81.74 76.23 64.19
CCNs 86.17 80.19 67.14

AOS
Faster-RCNN [30] - - -

w/o CCNs 79.46 72.92 59.63
CCNs 85.01 79.13 63.56

Table 5. Comparison of joint object detection and viewpoint esti-
mation on val set of KITTI dataset [10] for cars. Average Precision
(AP) @IOU 0.7 is evaluated for object detection, and Average Ori-
entation Similarity (AOS) for viewpoint estimation.

point estimation on Pascal 3D+ dataset [10].
Table 4 validates the effect of CCNs on the standard ob-

ject detection dataset. Compared to the baseline without us-
ing CCNs, object detection performance (AP) has increased
by applying view-specific convolutional kernel. Further-
more, the localization performance (AR) has also increased,
indicating that our view-specific convolutional kernel can
effectively encode structural information of input objects.

KITTI dataset. We further evaluated our CCNs in KITTI
object detection benchmark [10]. Since the other methods
aim to find 3D bounding boxes from monocular image, we

conducted the experiment to validate the effectiveness of
CCNs. As shown in Table 5, our CCNs have shown better
results compare to original Faster-RCNN [30] by adapting
view-specific convolutional kernel. On the other hand, joint
training of object detection and viewpoint estimation with-
out using CCNs actually lowered the object detection per-
formance. This results share the same properties as previous
studies [26, 7], indicating that proper modeling of geomet-
ric relationship is to be determined. In Fig. 7, we show the
examples of our joint object detection and viewpoint esti-
mation on KITTI dataset [10].

4.4. Discussion

Estimating the viewpoint of deformable categories is an
open problem. We thus experimented our cylindrical convo-
lutional networks for visual recognition on rigid categories
only [41]. However, our key idea using view-specific con-
volutional kernel can be generalized with suitable modeling
of deformable transformation (e.g., deformable convolution
[4]) at the kernel space. We believe that the modeling pose
or keypoint of non-rigid categories (e.g., human pose es-
timation) with our CCNs can be alternative to the current
limitation, and leave it as future work.

5. Conclusion

We have introduced cylindrical convolutional networks
(CCNs) for joint object detection and viewpoint estimation.
The key idea is to exploit view-specific convolutional ker-
nels, sampled from a cylindrical convolutional kernel in a
sliding window fashion, to predict an object category like-
lihood at each viewpoint. With this likelihood, we simul-
taneously estimate object category and viewpoint using the
proposed sinusoidal soft-argmax module, resulting state-of-
the-art performance on the task of joint object detection and
viewpoint estimation. In the future, we aim to extend view-
specific convolutional kernel into non-rigid categories.
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