
Active Learning for Open-set Annotation

Kun-Peng Ning
ningkp@nuaa.edu.cn

Xun Zhao
emmaxunzhao@gmail.com

Yu Li
yul@illinois.edu

Sheng-Jun Huang∗

huangsj@nuaa.edu.cn

Abstract

Existing active learning studies typically work in the
closed-set setting by assuming that all data examples to
be labeled are drawn from known classes. However, in real
annotation tasks, the unlabeled data usually contains a large
amount of examples from unknown classes, resulting in the
failure of most active learning methods. To tackle this open-
set annotation (OSA) problem, we propose a new active
learning framework called LfOSA, which boosts the classi-
fication performance with an effective sampling strategy to
precisely detect examples from known classes for annotation.
The LfOSA framework introduces an auxiliary network to
model the per-example max activation value (MAV) distribu-
tion with a Gaussian Mixture Model, which can dynamically
select the examples with highest probability from known
classes in the unlabeled set. Moreover, by reducing the tem-
perature T of the loss function, the detection model will be
further optimized by exploiting both known and unknown su-
pervision. The experimental results show that the proposed
method can significantly improve the selection quality of
known classes, and achieve higher classification accuracy
with lower annotation cost than state-of-the-art active learn-
ing methods. To the best of our knowledge, this is the first
work of active learning for open-set annotation.

1. Introduction

The remarkable success of deep learning is largely at-
tributed to the collection of large datasets with human an-
notated labels [12, 15]. Nevertheless, it is extremely ex-
pensive and time-consuming to label large scale data with
high-quality annotations [25, 28]. It is thus a significant
challenge to learn with limited labeled data.

Active learning (AL) is a primary approach to tackle this
problem. It iteratively selects the most useful examples
from the unlabeled data to query their labels from the oracle,
achieving competitive performance while reducing annota-
tion costs [10, 25, 27]. Existing AL methods typically work
in a closed-set setting where the labeled and unlabeled data
are both drawn from the same class distribution.

However, in some real world scenarios, the unlabeled data
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Figure 1. The illustration of open-set annotation (OSA) problem.
The unlabeled open-set contains K known classes (color images
with border) and L unknown classes (gray-scale images without
border). The goal is to find and annotate the examples from known
classes for training the classifier.

are usually uncontrolled and large amounts of data examples
are from unknown classes. Figure 1 shows an example to
train a new model for sports image classification for image-
sharing social platform where the database contains trillions
of images from unconstrained categories uploaded by the
users. A large number of images in the unlabeled open-pool
are actually from irrelevant classes (e.g. cats and pianos etc.).
These images are usually useless for learning the sports clas-
sifier, so that it will be a waste of annotation budget to select
them to label. On the other hand, existing closed-set AL sys-
tem cannot precisely distinguish these irrelevant images from
unknown classes but tends to choose them for annotation as
they contain more uncertainty or information. Therefore an
effective and practical AL system in the real-world open-set
case is highly desired which can 1) precisely distinguish
the examples of unwanted classes and 2) meanwhile query
the most useful cases from the wanted classes to train the
classifier.

In this paper, we formulate this problem as an open-set
annotation (OSA) task. As shown in Figure 1, the unla-
beled set contains K known classes and L unknown classes,
where L>K. The goal is to precisely filter out examples
from unknown classes, while actively select a query set that
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contains examples from known classes as pure as possi-
ble. To overcome this challenge, we propose a new active
learning framework called LfOSA (Learning from Open-Set
Annotation), which includes two networks for detection and
classification respectively. Specifically, the detector models
the per-example max activation value (MAV) distribution
with a Gaussian Mixture Model [20] to dynamically divide
the unlabeled open-set into known and unknown set, then
examples from the known set with larger certainty will be
selected to construct a query set for annotation. After label-
ing, the classification model will be updated with the new
examples from known classes. Meanwhile, as the query set
will inevitably include a few invalid examples from unknown
classes, these invalid examples will be utilized as negative
training examples to update the detector, such that the de-
tector can maintain a higher recall to identify known-class
examples from the unlabeled open-set. Moreover, by reduc-
ing the temperature T of the cross-entropy (CE) loss, the
distinguishability of the detector is further enhanced.

Experiments are conducted on multiple datasets with dif-
ferent mismatch ratios of known and unknown classes. The
experimental results demonstrate that the proposed approach
can significantly improve the selection quality of known
classes, and achieve higher classification accuracy with lower
annotation cost than state-of-the-art active learning methods.

The major contributions can be summarized as follows:

• We formalize a new problem of open-set annotation
(OSA) for real-world large-scale annotation tasks. It
raises a practical challenge on how to maintain a higher
recall to find the examples of known classes from a
large unlabeled open-set for target model training.

• We propose a new active learning framework LfOSA to
address the OSA problem. It iteratively trains two net-
works, one for distinguishing the known and unknown
classes, while the other one for classification of target
task. To the best of our knowledge, this is the first work
on active learning for open-set annotation.

• The experimental results validate that the proposed ap-
proach can significantly improve the selection precision
and recall, while achieving higher classification accu-
racy with lower annotation cost than state-of-the-art
active learning methods.

2. Related Work
Active learning. Active learning as a large-scale anno-

tation tool has achieved a great success for learning with
limited labeled data [8, 19]. It reduces the labeling cost
by selecting the most useful examples to query their la-
bels. Most researches focus on designing effective sampling
strategies to make sure that the selected examples can im-
prove the model performance most [3]. During the past

decades, many criteria have been proposed for selecting ex-
amples [3,5,9,16,18,21,26,31]. Among of these approaches,
some of them prefer to select the most informative examples
to reduce the model uncertainty [16, 26, 31], while some oth-
ers prefer to select the most representative examples to match
the data distribution [5, 21]. Moreover, some studies try to
combine informativeness and representativeness to achieve
better performance [9, 11]. These standard active learning
methods are usually based on the closed-set assumption that
the unlabeled data are drawn from known classes, which
leads to failure on the open-set annotation (OSA) task.

Open-set recognition. Open-set recognition (OSR) at-
tempts to address the classification setting where infer-
ence can face examples from unseen classes during train-
ing [13, 22, 23]. Its goal is to learn an open-set classifier
with a mechanism to reject such unknown examples [6].
A representative approach called OpenMax has achieved
remarkable results on the OSR problem, which employs
deep neural networks to OSR by combining Extreme Value
Theory with neural networks [1]. Another follow-up work
proposed G-OpenMax by adopting GAN [2, 7] for generat-
ing examples which are highly similar to training examples
yet do not belong any of the training classes [4]. However,
these OSR methods usually fail on the OSA problem for the
following two essential differences between both. First, the
training process of OSR has abundant labeled data and is
based on the closed-set assumption, while the OSA problem
has limited labeled data and its unlabeled data are open set.
Second, the OSR focuses on rejecting unknown examples
in testing phase after training, while the OSA aims to find
more known examples from the unlabeled open-set for target
model optimizing in training phase.

3. The Proposed Approach

In this section, we first formalize the open-set annotation
(OSA) problem, and then introduce the proposed LfOSA
approach in detail.

3.1. The OSA Problem Setting

In the OSA problems, we consider a large-scale annota-
tion scenario with a limited labeled set DL and a huge num-
ber of unlabeled open-set DU , where DL = {(xLi , yLi )}n

L

i=1

and DU = {xUj }n
U

j=1. Let DU = Xkno ∪ Xunk and
Xkno ∩Xunk = ∅, where Xkno and Xunk denote the exam-
ples from known and unknown classes respectively. Each
labeled example xLi belongs to one of K known classes
Y = {yk}Kk=1, while an unlabeled example xUj may belong
to an unknown class not belonging to Y . Let Xquery de-
notes the query set during each iteration, which consists of
unknown query set Xquery

unk and known query set Xquery
kno ,

i.e., Xquery = Xquery
kno ∪Xquery

unk . The goal is to selectively
construct the query set that contains known examples as
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Figure 2. The framework of LfOSA. It includes two networks for detection and classification. The detector attempts to construct a query set
for annotation by GMM modeling. After labeling, two networks will be updated for next iteration.

many as possible.
Active learning (AL) iteratively selects the most useful

examples from the unlabeled dataset to query their labels
from the oracle [25]. After annotating the newly selected
data, the model can be updated to achieve better performance.
Specifically, in the i-th iteration, we train a classifier fθC
with parameters θC on labeled set DL. Then, a batch of b
examples Xquery are selected with a specific criterion based
on the current trained model. After querying their labels, ki
known examples Xquery

kno are annotated and the labeled set is
updated to DL = DL ∪Xquery

kno , while li examples Xquery
unk

with unknown classes are added to the invalid set DI , where
b = ki + li. Thus, the recall and precision of known classes
in the i-th selection can be defined as follow,

recalli =

∑i
j=0 k

i

nkno
(1)

precisioni =
ki

ki + li
(2)

where nkno denotes the number of examples from known
classes in the unlabeled set. recalli calculates how many
known examples are queried after i queries, and precisioni
denotes the proportion of the target examples in the i-th
query. Obviously, if we maintain a high precision and re-
call to accurately select known examples, the trained target
classifier will be more effective.

As discussed in the Introduction, most of the traditional
AL methods are less effective in OSA problem, because
their selection strategies tend to select open-set (unknown)
examples with larger uncertainty. These examples from un-
known classes are useless for training the target model, and
thus traditional AL methods will probably fail with serious
waste of the annotation budget. Fortunately, we should be
aware that although these examples are useless for the tar-
get model, they could be exploited to improve the detector
model for filtering out unknown classes from the open-set

data. Moreover, we find that the activation (penultimate)
layer of network has strong ability to distinguish unknown
classes based on the observation that the maximum activation
value (MAV) of open set examples are often far awary from
the average MAV of closed set examples. By decoupling
detection and classification, we propose to exploit examples
of both known and unknown classes to train a detector with
strong distinguishability and train a classifier for the target
task.

3.2. Algorithm Detail

The framework of LfOSA is demonstrated in Figure 2,
which mainly composed of three components: detector train-
ing, active sampling and classifier training. Specifically,
we first train a network for detecting unknown examples
by exploiting both known and unknown supervision while
using a low-temperature mechanism. Then, by modeling
per-example max activation value (MAV) distribution with a
Gaussian Mixture Model (GMM), the most certain known
examples can be actively selected for annotation. Finally, the
classification model will be updated with the new examples
from known classes. In the following part of this section, we
will introduce these three components in detail.

Detector training. In addition to classifying K known
classes, the detector has been extended with an additional
(K + 1)-th output to predict unknown class. For a given
example x from labeled or invalid set, we encode its label
c with onehot p, i.e., the value of pc is set to 1 and the
others to 0. Then, we train the detector with the following
cross-entropy loss:

LD(x, c) = −
K+1∑
c=1

pc ∗ log(qTc ) (3)

where

qTc =
exp(ac/T )∑
j exp(aj/T )

.
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where ac is the c-th activation value of the last fully-
connected layer, T is a temperature, which is set with a
lower value (T = 0.5) to produce a sharper probability dis-
tribution qTc over classes. Obviously, by minimizing the loss
function, examples of known classes will have larger activa-
tion values on the first K dimensions and smaller activation
values on the (K + 1)-th dimension, while examples of un-
known classes have the opposite phenomenon. Moreover,
we find that the distinguishability of the activation layer can
be further enhanced by reducing the temperature T of the
loss function. A brief analysis is as follows:

∂LD
∂ac

=
1

T
(qTc − pc) =

1

T
(

exp(ac/T )∑
j exp(aj/T )

− pc). (4)

When we reduce the temperature (T ↓) of the loss function
LR, the probability distribution qTc will be more sharper,
thus we have:

T ↓⇒ 1

T
↑, exp(ac/T )∑

j exp(aj/T )
− pc ↑⇒

∂LD
∂ac

↑ .

As ∂LR

∂ac
becomes larger, the examples of known and un-

known classes will be more distinguishable for the activation
value ac.

Active sampling. As mentioned earlier, the goal of OSA
task is to precisely select as many known-class examples
as possible from the unlabeled open-set. After training the
detector as shown above, we find that the activation (penulti-
mate) layer of network has the ability to distinguish unknown
examples, that is, the maximum activation value (MAV) of
unknown-class examples are often significantly different
from the average MAV of known-class examples. Formally,
for each unlabeled example xi with predicted class c, its
maximum activation value mavci can be defined as follow:

mavci = max
c
aic (5)

All unlabeled examples will be classified into K + 1 classes
according to the prediction of the current detector. We can
select the examples predicted as the first K known classes
for the next process while filtering out the examples pre-
dicted as “unknown”. Then, for each known class c, we
fit a two-component GMM to mavc using the Expectation-
Maximization algorithm, where mavc is a set of activation
values with prediction class c.

Wc = GMM(mavc, θD), (6)

whereWc is the probabilities of class c. For each unlabeled
example xi from class c, its known probability wi ∈ Wc is
the posterior probability p(g|mavi), where g is the Gaussian
component with larger mean (larger activation value). Then
we merge and sort the probabilities of all categories,

W = sort(W1 ∪W2 ∪ ... ∪WK). (7)

Algorithm 1 The LfOSA algorithm

1: Input:
2: Current detector fθD and classifier fθC
3: Current labeled set DL and invalid set DI

4: Query batch size b and temperature T
5: Process:
6: # Recognizer training
7: Update θD by minimizing LD in Eq. 3 from DL and
DI

8: # Examples sampling
9: Inference mavci from detector θD for each unlabeled

example xi as Eq. 5
10: while c = 1, 2, ...,K do
11: # Collect the MAV set for each prediction class c
12: mavc = {mavci |fθD (xi) = c,∀xi ∈ DU}
13: # Obtain known probability by GMM
14: Wc = GMM(mavc, θD)
15: end
16: # Merge and sort the probability sets of all classes
17: W = sort(W1 ∪W1 ∪ ... ∪WK)
18: # Obtain the query set
19: Xquery = {(xi, wi)|wi ≥ τ,∀(xi, wi) ∈ (DU ,W)}

20: # Ask for annotation from Oracle
21: Query their labels and obtain Xquery

kno and Xquery
unk

22: # Update labeled and invalid sets
23: DL = DL ∪Xquery

kno , DI = DI ∪Xquery
unk

24: # Classifier training
25: Update θC by minimizing LC in Eq. 9 from DL

26: Output: θD, θC , DL and DI for next iteration.

Next, we select the first b examples with highest probability
as the query set to ask for annotation. In other words, we
can obtain the query set Xquery by setting a threshold τ on
wi, where τ is equal to the b-th largest known probability:

Xquery = {(xi, wi)|wi ≥ τ,∀(xi, wi) ∈ (DU ,W)}. (8)

After querying their labels, the labeled and unknown sets
will be updated by adding Xquery

kno and Xquery
unk , respectively.

Classifier training. Based on the current labeled data
DL, we train the K-class classifier by minimizing the stan-
dard cross-entropy loss:

LC(xi, yi) = −
nL∑
i=1

yi ∗ log(f(xi; θC)) (9)

where (xi, yi) ∈ DL, and nL is the size of current DL.
The process of the approach is summarized in Algo-

rithm 1. Firstly, a small set of labeled data DL, query batch
size b and temperature T are given. Then the detector θD
and classifer θC are randomly initialized, and the invalid

4



Figure 3. Selection recall comparison on CIFAR10 (first row), CIFAR100 (second row) and Tiny-Imagenet (third row) with 20% (first
column), 30% (second column) and 40% (third column) mismatch ratio.

set DI is initialized as an empty set. At each iteration, we
train the detector by minimizing Eq. 3 to inference mavci
for all unlabeled examples. Next, for each class, we collect
the MAV set by the predictions of the detector and model
per-example MAV to obtain known probabilities. After that,
by merging and sorting these probabilities, the first b exam-
ples with highest probability are selected as the query set to
ask for annotation. As a result, the classifier θC , labeled and
invalid sets can be updated and output for the next iteration.

4. Experiments
To validate the effectiveness of the proposed approach,

we perform experiments on CIFAR10, CIFAR100 [14] and
Tiny-Imagenet [30] datasets, which contains 10, 100, 200
categories respectively. To construct open-set datasets, we
set mismatch ratio as 20%, 30% and 40% for all our experi-
ments, where the mismatch ratio denotes the proportion of

the number of known classes in the total number of classes.
For example, when the mismatch ratio is set as 20%, on
CIFAR10, CIFAR100 and Tiny-Imagenet, the first 2, 20, 40
classes are known classes for classifier training, and the last
8, 80, 160 classes are seen as unknown classes respectively.

Baselines. To validate the effectiveness of the proposed
LfOSA approach, we compare the following methods in
the experiments. i) Random: it randomly selects examples
from unlabeled pool for labeling. ii) Uncertainty [16,17]: it
selects the examples with largest uncertainty of predictions.
iii) Certainty [16, 17]: it selects the examples with largest
certainty of predictions. iv) Coreset [24]: it selects the
representative examples by diversity. v) BALD [29]: it
uses dropout as an approximation to Bayesian inference for
active sampling. vi) OpenMax [1]: a representative open-
set recognition approach. vii) LfOSA (ours): the proposed
approach.
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Figure 4. Selection precision comparison on CIFAR10 (first row), CIFAR100 (second row) and Tiny-Imagenet (third row) with 20% (first
column), 30% (second column) and 40% (third column) mismatch ratio.

Active learning setting. For all AL methods, we ran-
domly sampling 1%, 8% and 8% examples as initializa-
tion labeled set on CIFAR10, CIFAR100 and Tiny-Imagenet
datasets, that is, each category contains only 50, 40 and 40
examples respectively. It is worth to note that the labeled
sets only contain known classes. In each AL cycle, we train
a ResNet18 model for 100 epochs, SGD [32] is adopted
as the optimizer with momentum 0.9, weight decay 5e-4,
initialization learning rate 0.01, and batch size of 128, while
a batch of 1500 examples is selected to query their labels for
the next AL round.

Performance measurement. We compare the proposed
LfOSA approach with other compared methods in the per-
formance of selection recall (as Eq. 1), precision (as Eq. 2)
and classification accuracy. Moreover, we perform the ex-
periments for 4 runs and record the average results over 4
seeds (seed = 1, 2, 3, 4).

4.1. Performance Comparison

We evaluate the performance of the proposed LfOSA and
compared methods by plotting curves with the number of
queries increasing. The average results of recall, precision,
accuracy are demonstrated in Figure 3, 4 and 5 respectively.
The first, second and third rows represent the results on
CIFAR10, CIFAR100 and TinyImagenet respectively. The
first, second and third columns represent the results with
20%, 30% and 40% mismatch ratio.

It can be observed that no matter which dataset or mis-
match ratio is used, the proposed LfOSA approach always
outperforms other methods in all cases. LfOSA can achieve
higher selection recall and precision during the AL process,
while achieving better classification performance. i) For the
performance of recall, the proposed LfOSA approach consis-
tently outperforms other compared methods by a significant
margin. Especially on CIFAR10 and CIFAR100, when the
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Figure 5. Classification performance comparison on CIFAR10 (first row), CIFAR100 (second row) and Tiny-Imagenet (third row) with 20%
(first column), 30% (second column) and 40% (third column) mismatch ratio.

Figure 6. Classfication recall (first column), precision (second column), F1 (third column) performance comparison on CIFAR100 with 20%
mismatch ratio.

mismatch ratio is set to 20%, 30% and 40%, the average mar-
gins between the LfOSA and Random methods are 68.8%,

53.4% and 35.7% in the former and 34.3%, 26.7% and 20.5%
in the later. ii) For the performance of precision, the pro-
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posed LfOSA approach always maintain a higher selection
precision than other baselines with a clear gap. It worth to
note that adding invalid examples can significantly improve
the detection ability (the precision of the first three queries
is improving). Besides, as the number of known examples
decreases, the precision is forced to decrease (the precision
of the 10-th query is only 20% on “CIFAR10 with 20%
mismatch ratio” because its recall has reached 96.7%). iii)
For the performance of classification, LfOSA consistently
exhibits the best performance in all cases. Especially on CI-
FAR100, compared to other AL methods, LfOSA achieves
about 20%, 15% and 12% performance improvement under
the 20%, 30%, 40% mismatch ratios respectively. More-
over, with the increase of unknown ratio, the superiority of
LfOSA over the other methods becomes more significant.
These results indicate that the proposed LfOSA method can
effectively solve the open-set annotation (OSA) problem.

Compared methods analysis. It is interesting to observe
that two popular AL methods, Uncertainty and BALD, per-
form worse even than the random method in most cases.
One possible reason is that these informativeness-based AL
methods tend to select unknown classes, because these un-
known examples are more likely to be the most informative
ones. On the other hand, the Certainty method also fails
in the OSA problem, which means it may not be accurate
to measure the certainty of examples by using the model’s
prediction entropy. The diversity-based Coreset method and
the open-set recognition method OpenMax show limited ef-
fectiveness in OSA tasks. The former has no recognition
ability for unknown classes, and the latter lacks sufficient
supervision.

4.2. Results Using More Metrics

To further validate the effectiveness of the proposed
LfOSA approach, we compare with other methods in terms
of classification recall, precision, and F1 on CIFAR100 with
20% mismatch ratio. The experimental results are demon-
strated in Figure 6.

It can be observed that the proposed LfOSA approach
always significantly outperforms other methods in all cases.
LfOSA can achieve higher classification recall, precision,
and F1 score. These results consistently show that the pro-
posed method can find more known examples and thus more
effective training models.

4.3. Ablation Study

To analyze the contribution of each component of our
proposed LfOSA approach, we conduct following ablation
study on CIFAR100 with 20% mismatch ratio. The experi-
mental results of classification accuracy are demonstrated in
Figure 7.

w/o temperature and high temperature denote the tem-
perature T is set to 1 and 2 respectively. Compared with

Figure 7. Ablation study on CIFAR100 with 20% mismatch ratio.

the LfOSA, the selection recall and classification accuracy
decreased by 1.89% and 3.1% respectively. w/o Detector
denotes the detector is not used, which means it employs for
both detection and classification tasks. Similarly, w/o Clas-
sifier denote the classifier is not used. Without decoupling
detection and classification, its performance is significantly
deteriorated. w/o invalid set denotes the detector training
without using the invalid set. The rapid decline of perfor-
mance shows that negative examples play an essential role
for detector training.

5. Conclusion
In this paper, we formulate a new open-set annotation

(OSA) problem for real-world large-scale annotation tasks.
It introduces a practical challenge on how to maintain a
high recall in identifying the examples of known classes
for target model training from a massive unlabeled open-set.
To overcome this challenge, we propose an active learn-
ing framework called LfOSA to precisely select examples of
known classes by decoupling detection and classification. By
minimizing low-temperature cross-entropy loss, it exploits
both known and unknown supervision to train a detector,
whose activation values will be fed into a mixture Gaus-
sian model to estimate the per-example max activation value
(MAV) distribution. Based on MAV distribution, we can dis-
tinguish examples of known classes against unknown classes
in unlabeled data to build a query set for annotation. The
classifier is then updated with labeled data. Experimental
results on various tasks show the superiority of the LfOSA
approach. In the future, we will extend the OSA problem to
other computer vision tasks, e.g., object detection.
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