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Abstract

Deep networks have strong capacities of embedding data
into latent representations and finishing following tasks.
However, the capacities largely come from high-quality an-
notated labels, which are expensive to collect. Noisy la-
bels are more affordable, but result in corrupted represen-
tations, leading to poor generalization performance. To
learn robust representations and handle noisy labels, we
propose selective-supervised contrastive learning (Sel-CL)
in this paper. Specifically, Sel-CL extend supervised con-
trastive learning (Sup-CL), which is powerful in represen-
tation learning, but is degraded when there are noisy labels.
Sel-CL tackles the direct cause of the problem of Sup-CL.
That is, as Sup-CL works in a pair-wise manner, noisy pairs
built by noisy labels mislead representation learning. To
alleviate the issue, we select confident pairs out of noisy
ones for Sup-CL without knowing noise rates. In the selec-
tion process, by measuring the agreement between learned
representations and given labels, we first identify confident
examples that are exploited to build confident pairs. Then,
the representation similarity distribution in the built con-
fident pairs is exploited to identify more confident pairs
out of noisy pairs. All obtained confident pairs are finally
used for Sup-CL to enhance representations. Experiments
on multiple noisy datasets demonstrate the robustness of
the learned representations by our method, following the
state-of-the-art performance. Source codes are available at
https://github.com/ShikunLi/Sel-CL

1. Introduction
Deep networks are powerful in various tasks, e.g., im-

age recognition [19, 62], object detection [58], visual track-
ing [11] and text matching [3]. The power is largely at-
tributed to the collection of large-scale datasets with high-
quality annotated labels. In supervised learning, with the

*Shiming Ge is the corresponding author.

Figure 1. Left: learning a classifier with ideal representations in-
duced by clean labels; Right: learning a classifier with corrupted
representations caused by noisy labels. Circles represent the repre-
sentations of positive examples while triangles represent the rep-
resentations of negative examples. When the representations are
corrupted by noisy labels, the decision boundary of the classifier
will be largely changed. Therefore, the learned classifier in this
case cannot generalize well on test examples.

data (i.e., the instance and label pairs) in such datasets, deep
networks first learn ideal latent representations of the in-
stances and then complete following tasks with the repre-
sentations [14, 57]. However, it is extremely expensive to
obtain large-scale high-quality annotated labels. Alterna-
tively, we can collect labels based on web search and user
tags [36, 55]. These labels are cheap but inevitably noisy.

Noisy labels impair the generalization performance of
deep networks [15, 60]. It is because, supervised by the
datasets with noisy labels, the mislabeled data provide in-
correct signals when inducing latent representations for the
instances. The corrupted representations then cause inac-
curate decisions for following tasks and hurt generaliza-
tion [29, 52]. For example, as shown in Fig. 1, the cor-
rupted representations result in an inprecise classification
boundary. Therefore, it is crucial to induce robust latent
representations of instances for learning with noisy labels,
which is also our focus in this paper.

Recent works [7, 8, 13, 18, 65] show that, working in a
pair-wise manner, contrastive learning (CL) methods can
bring good latent representations to help following tasks.
Based on whether supervised information is provided, the
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CL methods can be grouped into supervised contrastive
learning (Sup-CL) [27] and unsupervised contrastive learn-
ing (Uns-CL) [7, 8, 18]. It has been shown that Sup-CL
can exploit the supervised information to learn better rep-
resentations than Uns-CL, but relies on the quality of su-
pervised information [41]. If the supervised information
is corrupted by noisy labels, built pairs by training exam-
ples are noisy, following corrupted representations learned
by Sup-CL. Motivated by this phenomenon, prior meth-
ods use general-purpose techniques in tackling noisy labels
for robust representation learning with Sup-CL, e.g., intro-
ducing regularization [41] or generating pseudo-labels [32].
Although these methods can work fine in some cases, the
general-purpose techniques fail to consider the remarkable
pair-wise characteristic of Sup-CL in strengthening repre-
sentation learning. The achieved performance by them is
thus argued to be sub-optimal.

In this paper, we propose selective-supervised con-
trastive learning (Sel-CL) to address the above issue. Sel-
CL can make use of the pair-wise characteristic to learn ro-
bust latent representations. The core idea of Sel-CL is (1)
select confident pairs out of noisy pairs; (2) employ the con-
fident pairs to learn robust latent representations. Note that
it is hard to identify confident pairs directly for representa-
tion learning. The main reason is that we always need to
set a threshold with the noise rate for precise identification,
e.g., see [15, 16, 26]. Nevertheless, it is difficult to estimate
the noise rate of noisy pairs. To handle this problem, we
propose to first employ confident examples [16, 41], which
is much easier to identified, to build a reliable set of confi-
dent pairs at each epoch. Then, based on the representation
similarity distribution of confident pairs in this set, we set a
dynamic threshold to selected more confident pairs out of all
noisy pairs. By this pair-wise selection, we can make better
use of not only the pairs whose class labels are correct, but
also the pairs whose class labels are incorrect, but the ex-
amples in them are misclassified to the same class. All se-
lected confident pairs are utilized to enhance representation
learning with Sup-CL. As the selected confident pairs are
less noisy, the learned representations with this selective-
supervised paradigm will be more robust, naturally follow-
ing promising generalization.

The main contributions of this paper are summarized
as three aspects: 1) We propose selective-supervised con-
trastive learning with noisy labels, which can obtain robust
pre-trained representations by effectively selecting confi-
dent pairs for performing Sup-CL. 2) Without knowing the
noise rate of pairs, our approach selects the pairs built by
identified confident examples, and the pairs built by the ex-
amples with high representation similarities. It fulfils a pos-
itive cycle, where better confident pairs result in better rep-
resentations and better representations will identify better
confident pairs. 3) We conduct experiments on synthetic

and real-world noisy datasets, which clearly demonstrate
our approach achieves better performance compared with
the state-of-the-art methods. Comprehensive ablation stud-
ies and discussions are also provided.

2. Related Works
In this section, we review recent methods on learning

with noisy labels and contrastive learning.

2.1. Learning with Noisy Labels

There are a large body of recent works on learning with
noisy labels, which include but do not limit to estimating
the noise transition matrix [9, 20, 53, 54], reweighting ex-
amples [38, 44, 45, 47], selecting confident examples [4, 25,
33, 56], designing robust loss functions [10, 12, 49, 64], in-
troducing regularization [5, 23, 61], generating pseudo la-
bels [17,34,46,63,66], and etc. In addition, some advanced
start-of-the-art methods combine serveral techniques, e.g.,
DivideMix [30] and ELR+ [37].

2.2. Contrastive Learning

Recent works in unsupervised contrastive learning (Uns-
CL) [7, 8, 18, 48] have demonstrated the potential of con-
trastive based similarity learning frameworks for represen-
tation learning. These methods maximize (minimize) sim-
ilarities of positive (negative) pairs at the instance level.
That is to say, the positive pair is only built by two cor-
related views of the same instance. The other data pairs are
negative. To make use of supervised information for learn-
ing better representations, Uns-CL is extended to the fully-
supervised setting, named supervised contrastive learning
(Sup-CL) [27]. Sup-CL aims to make examples belonging
to the same class lie closer in the representation space than
those of examples from different classes. With clean labels,
Sup-CL achieves promising performance.

In consideration of the strong power of Sup-CL, some
works tend to use it to learn latent representations and han-
dle noisy labels. For example, the methods MOIT+ [41]
and MoPro [32] work in two stages. First, they pre-train
the networks with Sup-CL and use general-purpose tech-
niques, e.g., adding regularization, to reduce the side effect
of noisy labels. Second, the network is fine-tuned on a reli-
able dataset. Additionally, the methods ProtoMix [31] and
NGC [51] work in one stage. They jointly perform the gen-
eration of pseudo labels and Sup-CL to combat noisy la-
bels. In this paper, we follow the two-stage learning style.
The pair-wise characteristic of contrastive learning is inves-
tigated to enhance representation learning and further better
handle noisy labels.

3. Selective-Supervised Contrastive Learning
We begin by fixing notations. Scalars are in lowercase

letters. Vectors are in lowercase boldface letters. Let I[A]
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Figure 2. The illustration of the proposed Sel-CL, which progressively selects better confident pairs G for supervised contrastive learning
based on the representation similarity. Without the noise rate prior, confident examples T are also obtained to help identify the pairs.

be the indicator of the event A. Let [z] = {1, . . . , z}. Con-
sider a classification task, there are C classes. We are given
a noisily-labeled dataset D̃ = {(xi, ỹi)}ni=1, where n is
the sample size, xi is the instance of the i-th example and
ỹi ∈ [C] is the corresponding noisy label. For ỹi, the asso-
ciated but unobservable true label is denoted by yi.

Overview. Following the two-stage learning style [13, 32,
41, 65], our aim is to induce robust pre-trained representa-
tions of instances for learning with noisy labels.

To achieve it, our approach progressively selects better
confident pairs G out of noisy pairs for performing super-
vised contrastive learning at each epoch. Without the noise
rate prior, to help identify the pairs, confident examples T
are also obtained in this process. The used pre-training net-
work consists of three components: (1) a deep encoder f
(a convolutional neural network backnone) that maps the
instance xi to a high-dimensional representation vi; (2) a
classifier head (a fully-connected layer followed by the soft-
max function) that receives vi as an input and outputs class
predictions p̂(xi); (3) a linear or non-linear projection that
maps vi into a low-dimensional representation zi. The il-
lustration of the proposed Sel-CL can be seen in Fig. 2. Af-
ter that, with the robust representations, we only keep the
pre-trained deep encoder, and apply one new classifier head
on the top to output the predictions for fine-tuning stage. In
the following, we present our method step by step.

3.1. Selecting Confident Examples

To help identify the confident pairs, we first select confi-
dent examples base on the representation similarity. In ad-
dition, we warm up the training in the first few epochs to ob-

tain low-dimensional representations of instances for iden-
tifying confident examples later. Specifically, we use Uns-
CL [7] for the warm-up training. Note that our method is
robust to the choice of warm-up methods (See Section 4.6).

The confident examples are identified by measuring
agreements between the obtained low-dimensional repre-
sentations and given labels. For this goal, given two low-
dimensional representations zi and zj , we first calculate the
representation similarity between them by the cosine dis-
tance, i.e.,

d (zi, zj) =
ziz
>
j

‖zi‖ ‖zj‖
. (1)

Then, to quantify the agreement, as did in [41], for each ex-
ample (xi, ỹi), we aggregate the original label from its top-
K neighbors based on the representation similarity to create
a pseudo-label ŷi. That is to say, we count the original labels
of its top-K neighbors (K=250 in the experiements) and
correct ỹi using the dominant class. In this way, we can bet-
ter use of representation similarities to improve the detec-
tion of mislabeled examples [41]. We use the pseudo-labels
to approximate clean class posterior probabilities, i.e.,

q̂c (xi) =
1

K

K∑

k=1
xk∈Ni

I[ŷk = c], c ∈ [C], (2)

whereNi denotes the neighbor set ofK closest instances to
xi according to the learned representation. Following [16],
we exploit the cross-entropy loss ` to identify confident ex-
amples. Denoted the set of confident examples belonging to
the c-th class as Tc, we have

Tc = {(xi, ỹi) | `(q̂(xi), ỹi)<γc, i ∈ [n]}, c ∈ [C], (3)
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where γc is a threshold for the c-th class, which is dynam-
ically defined to ensure a class-balanced set of identified
confident examples. To achieve this goal, we use the α
fractile of per-class agreements between the corrected la-
bel ŷi and the original label ỹi across all classes to de-
termine how many examples should be selected for each
class, i.e.,

∑n
i=1 I[ŷi = ỹi][ỹi = c], c ∈ [C]. Finally, we

can get the confident example set including all classes, i.e.,
T = ∪Cc=1Tc. This set is less noisy than original noisy
datasets and therefore more reliable.

3.2. Selecting Confident Pairs

As it is hard to achieve a precise estimation of the noise
rate of noisy pairs, we use identified confident examples to
help select confident pairs. Specifically, we transform iden-
tified confident examples into a set of associated confident
pairs. Denoted this set by G′, we have

G′ = {Pij | ỹi = ỹj , (xi, ỹi), (xj , ỹj) ∈ T }, (4)

where Pij is the pair built by the examples (xi, ỹi) and
(xj , ỹj). As G′ is built by T , it is reliable. It should
be noted that, even though two examples in one pair have
incorrect class labels, the similarity labels are still correct
when two examples are misclassified to the same class [50].
Such pairs are valuable for representation learning. We thus
identify more confident pairs from noisy pairs. We define
whether two instances xi and xj belong to the same class
as their similarity label, i.e., s̃ij = I[ỹi = ỹj ]. Note that
similarity labels are extremely imbalanced, i.e., the posi-
tive ones are less than negative ones [50]. For convenience,
we consider the noisy pairs with positive similarity labels.
Denoted by the set of confident pairs identified from noisy
positive pairs by G′′. We have

G′′ = {Pij | s̃ij = 1, d (zi, zj) > γ}, (5)

where γ is a dynamic threshold to control the number of
identified confident pairs; i and j are two indices sampled
from all training data. To avoid the noise rate estimation of
noisy positive pairs, we utilize the reliable information of T
to set γ. In more detail, the β fractile of the representation
similarities of the pairs in G′ is used here. Finally, we can
get the confident pair set G = G′ ∪ G′′.

3.3. Representation Learning with Selected Pairs

After selecting confident pairs, we can learn representa-
tions by utilizing them with supervised contrastive learning
at each epoch. As selected confident pairs can be less noisy,
this selective-supervised paradigm can enhance representa-
tions to handle noisy labels.

Contrastive learning. Following the original Sup-CL [27],
we randomly sample N instances in each mini-batch to ap-
ply two random data augmentation operations to each in-

stance, thus generating two data views. The resulting train-
ing mini-batch data is {(xi, ỹi)}2Ni=1, where i ∈ I = [2N ] is
the index of an arbitrary augmented instance. Given G, we
perform supervised contrastive learning with selected con-
fident positive pairs:

L =
∑

i∈I
Li(zi)

=
∑

i∈I

−1
|G(i)|

∑

g∈G(i)
log

exp (zi · zg/τ)∑
a∈A(i) exp (zi · za/τ)

,
(6)

where A(i) means the set of indices excluding i, i.e.,
A(i) = I\{i}; G(i) = {g | g ∈ A(i), Pi′g′ ∈ G}, and i′

and g′ are the original indices of xi and xg in D̃, respec-
tively. τ ∈ R

+ is a temperature parameter. Note that ex-
pect for the examples that are involved in selected confident
pairs, for the other examples, we perform unsupervised con-
trastive learning [7] on them.

Additionally, to further make representation learning ro-
bust, following MOIT [41], a Mixup technique [61] is added
into our framework. Mixup performs convex combination
of pairs of examples as xi = λxa + (1 − λ)xb, where
λ ∈ [0, 1] ∼ Beta(αm, αm) and xi denotes the training ex-
ample that combines two mini-batch examples xa and xb.
A linear relation in the contrastive loss is imposed as

LMIX
i (zi) = λLa(zi) + (1− λ)Lb(zi), (7)

where La and Lb have the same form as Li in Eq. 6. It
should be noted that the selection of positive/negative pairs
involves considering a unique label for each mixed example
[41]. Nevertheless, the input example always contain two
labels, where λ determines the dominant one. We assign
this dominant label to every example for positive/negative
sampling.

Classification learning. A classification objective with
confident examples is also employed to stabilize the con-
vergence and achieve better representations. Given the con-
fident examples of T , classification learning is conducted
by using

LCLS =
∑

(xi,ỹi)∈T
Lcls
i (xi) =

∑

(xi,ỹi)∈T
`(p̂(xi), ỹi), (8)

where xi can also refer to the augmented image.
Moreover, inspired by recent methods [22, 50] that learn

classifiers with similarity labels, we add a learning objec-
tive to directly learn from similarity labels using class-
fier predictions. Given a multiviewed mini-batch data
{(xi, ỹi)}2Ni=1, the added similarity loss is:

LSIM =
∑

i∈I

∑

j∈A(i)

`(p̂(xi)p̂(xj), I[Pi′j′ ∈ G]). (9)
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Lastly, combining the above analyses, the total objective
loss is:

LALL = LMIX + λcLCLS + λsLSIM, (10)

where λc and λs are loss weights, which we set as λc =
1, λs = 0.01 in all experiments. Note that, by alternately
identifying confident pairs and learning robust representa-
tions at each epoch, it fulfils a positive cycle that better con-
fident pairs will result in better learned representations and
better representations will identify better confident pairs.
The similar idea of the positive cycle is shared by [2].

3.4. Classification Fine-tuning

With the pre-trained robust representation before, we
only keep the pre-trained deep encoder f , and apply one
new classifier head on top to form a classifer network f ′ and
output the predictions. The existing methods on handling
noisy labels can be can be applied to fine-tune the classi-
fier. To avoid the complexity of the method, we fine-tune
the deep networks on identified confident examples, with
a simple robust loss function [41]. In order to better distin-
guish the two stages in our framework, we call the proposed
method with fine-tuning as Sel-CL+. Also, we empirically
verify that our method is also applicable with complex fine-
tuning algorithms, e.g., DivideMix [30] and ELR+ [37].

4. Experiments
In this section, we employ comprehensive experiments

to verify the effectiveness of our method.

4.1. Datasets and Implementation Details
Simulated noisy datasets. We validate our method on two
simulated noisy datasets, i.e., CIFAR-10 [28] and CIFAR-
100 [28]. Both CIFAR-10 and CIFAR-100 contain 50k
training images and 10k test images of the size 32× 32× 3.
Following previous works [30,41,46], we consider two set-
tings of simulated noisy labels: symmetric and asymmetric
noise. Symmetric noise is generated by randomly replac-
ing the labels for a percentage of the training data with all
possible labels. Asymmetric noise uses label flips to incor-
rect classes: “truck → automobile, bird → airplane, deer
→ horse, cat↔ dog” in CIFAR-10, whereas in CIFAR-100
label flips are done circularly within the super-classes.

For CIFAR-10/100 datasets , we use a PreAct ResNet-18
network, and train it using SGD with a momentum of 0.9,
a weight decay of 10−4, and a batch size of 128. The net-
work is trained for 250 epochs and the warm-up training has
1 epoch. We set the initial learning rate as 0.1, and reduce it
by a factor of 10 after 125 and 200 epochs. The fine-tuning
stage of Sel-CL+ has 70 epochs, where the learning rate is
0.001. We always use the Mixup parameter αm = 1, scalar
temperature τ = 0.1, and loss weights λc = 1, λs = 0.01.
The noise detection fractiles on the synthetic datasets are

Table 1. Noise detection fractiles on simulated noisy CIFAR-10
and CIFAR-100.

Fractiles
CIFAR-10 CIFAR-100

Sym. Asym. Sym. Asym.
α 50% 50% 75% 25%
β 25% 25% 35% 0%

Table 2. Weighted KNN evaluations (%) on CIFAR-100. The best
results are in bold.

Methods
Clean Symmetric Asymmetric

0% 20% 80% 10% 40%
Uns-CL [7] 56.23 – – – –
Sup-CL [27] 72.66 58.32 41.00 71.11 68.00
MOIT [41] 77.48 67.42 55.58 74.86 72.60

Sel-CL 77.94 75.36 62.49 76.77 72.71

shown in Tab. 1. We apply the strong data augmentations
SimAug [7] in the pre-training stage, and the standard weak
data augmentations in the fine-tuning stage. To save com-
puting resources, the MOCO trick [18] is used, and the size
of queue is set to 30k.

Real-world noisy dataset. We validate our method on
a real-world noisy dataset, i.e., WebVision [35]. WebVi-
sion contains 2.4 million images crawled from the web us-
ing the 1,000 concepts in ImageNet ILSVRC12. Follow-
ing previous works [30, 41], we compare baseline meth-
ods on the first 50 classes of the Google image subset,
called WebVision-50. For WebVision-50, we use a stan-
dard ResNet-18, and train it using SGD with a momentum
of 0.9, a weight decay of 10−4, and a batch size of 64. The
network is trained for 130 epochs and the warm-up training
has 5 epochs. We set the initial learning rate as 0.1, and
reduce it by a factor of 10 after 80 and 105 epochs. The
fine-tuning stage has 50 epochs, where the learning rate is
0.001. We use the Mixup parameter αm = 1, scalar temper-
ature τ = 0.1, loss weights λc = 1, λs = 0.01. The noise
detection fractiles are α = 40% and β = 0%. The data
augmentation techniques are similar to those of the CIFAR-
10/100 datasets. The MOCO trick [18] also is used, and the
size of queue is 60k.

For all baselines, we use similar configurations for the
same datasets for a fair comparison. We acquire the results
of some baselines based on published codes. The results
with underlines mean that we obtain them based on pub-
lished codes. Implementation details for baselines are pro-
vided in Appendix B. We also borrow other experimental
results from the related works [30, 37, 41, 42, 51, 65].

4.2. Representation Learning Evaluations

We start by analyzing the behaviors of different con-
trastive learning methods in the presence of noisy labels.
We show how the selective module for confident pairs im-
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Table 3. Comparison with state-of-the-art methods in the test accuracy (%) on CIFAR-10 and CIFAR-100. The best results are in bold.

Dataset CIFAR-10 CIFAR-100

Methods/Noise rate
Symmetric Asymmetric Symmetric Asymmetric

20% 50% 80% 90% 10% 20% 30% 40% 20% 50% 80% 90% 10% 20% 30% 40%
Cross-Entropy 82.7 57.9 26.1 16.8 88.8 86.1 81.7 76.0 61.8 37.3 8.8 3.5 68.1 63.6 53.3 44.5
Mixup [61] 92.3 77.6 46.7 43.9 93.3 88.0 83.3 77.7 66.0 46.6 17.6 8.1 72.4 65.1 57.6 48.1
Forward [43] 83.1 59.4 26.2 18.8 90.4 86.7 81.9 76.7 61.4 37.3 9.0 3.4 68.7 63.2 54.4 45.3
GCE [64] 86.6 81.9 54.6 21.2 89.5 85.6 80.6 76.0 59.2 47.8 15.8 7.2 68.0 58.6 51.4 42.9
P-correction [59] 92.0 88.7 76.5 58.2 93.1 92.9 92.6 91.6 68.1 56.4 20.7 8.8 76.1 68.9 59.3 48.3
M-correction [1] 93.8 91.9 86.6 68.7 89.6 91.8 92.2 91.2 73.4 65.4 47.6 20.5 67.1 64.5 58.6 47.4
DivideMix [30] 95.0 93.7 92.4 74.2 93.8 93.2 92.5 91.4 74.8 72.1 57.6 29.2 69.5 69.2 68.3 51.0
ELR [37] 93.8 92.6 88.0 63.3 94.4 93.3 91.5 85.3 74.5 70.2 45.2 20.5 75.8 74.8 73.6 70.0
GCE (Uns-CL init.) [13] 90.0 89.3 73.9 36.5 91.1 87.3 82.2 78.1 68.1 53.3 22.1 8.9 70.2 60.2 52.6 44.1
ELR (Uns-CL init.) 94.4 93.0 88.3 86.2 95.0 94.7 94.4 93.3 76.2 71.9 57.9 40.8 77.2 75.5 74.3 70.4
MOIT+ [41] 94.1 91.8 81.1 74.7 94.2 94.3 94.3 93.3 75.9 70.6 47.6 41.8 77.4 76.4 75.1 74.0
Sel-CL+ 95.5 93.9 89.2 81.9 95.6 95.2 94.5 93.4 76.5 72.4 59.6 48.8 78.7 77.5 76.4 74.2

(a) (b)

(c) (d)

Figure 3. The learning process of Sel-CL on CIFAR-100 with
20% symmetric noise. (a) the number of selected examples vs.
epochs; (b) the number of selected positive pairs vs. epochs; (c)
the label precision of selected examples and pairs (%) vs. epochs;
(d) weighted KNN evaluations of Sel-CL (%) vs. epochs.

pacts the learned representations. We evaluate the quality of
representations using a weighted KNN (K=200) evaluation
in unsupervised learning [24].

The results are shown in Tab. 2. As can be seen,
when there is no noise, MOIT greatly improves the qual-
ity of learned representations. Benifiting from the appli-
cation of the similarity loss, Sel-CL achieves 0.46% quality
gains. Then, for noisy datasets, Sup-CL is seriously affected
by noisy labels. Although MOIT improves its robustness
through the Mixup technique and semi-supervised strategy,
its performance is still unsatisfactory. For example, in the
case with 80% symmetric noise, the weighted KNN accu-

racy of MOIT is 55.58%, which is even less than the result
of Uns-CL, i.e., 56.23%. In contrast, our Sel-CL signifi-
cantly alleviates the side effect of noisy labels, by selecting
confident pairs for supervised contrastive learning. We can
see that Sel-CL consistently outperforms baselines across
different cases.

We illustrate the numbers of the selected confident ex-
amples and pairs, the label precision of selected confident
examples and pairs, and the quality of learned representa-
tions during training. The experiments are conducted with
20% symmetric noise. The results are provided in Fig. 3.
It can be seen that the selection of confident examples/pairs
and representation learning form a positive cycle. Sel-CL
can progressively achieve effective selection and improve
learned representations.

4.3. Results on Simulated Noisy Datasets

We compare the proposed Sel-CL+ with multiple base-
lines. We report the averaged test accuracy over the last
10 epochs. All baselines use the PreAct ResNet-18 net-
work. Note that for a fair comparison, we report the results
of DivideMix [30] without model ensembles, and equip
ELR [37] with Mixup and weight averaging techniques.

As shown in Tab. 3, we first observe that the meth-
ods pre-trained by Uns-CL [7] can outperform the origi-
nal ones, e.g., GCE vs. GCE (Uns-CL init.) and ELR vs.
ELR (Uns-CL init.). When the noise level is high, e.g.,
80% and 90%, the improvement is clearer, which is con-
sistent with the observations in related works [13, 65]. For
MOIT+ which exploits Sup-CL by adding regularization,
its performance is promising. For symmetric noise, MOIT+
achieves comparable results with other state-of-the-art al-
gorithms, e.g., ELR and DivideMix. For asymmetric noise,
MOIT+ can perform better in most cases. As for our Sel-
CL+, it achieves competitive performance with symmetric
noise. For asymmetric noise, Sel-CL+ consistently achieves
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Table 4. Weighted KNN evaluation (%) of Sel-CL with different
selected sets on CIFAR-10/100 with 40% asymmetric noise.

Sel-CL with different selected sets CIFAR-10 CIFAR-100
All examples and all pairs 90.58 68.66
Confident examples T and pairs G′ 90.64 70.25
Confident examples T and pairs G′ ∪ G′′ 92.97 72.71
Clean examples and associated pairs 94.21 71.45
Clean examples and all pairs 94.76 73.43
Clean examples and clean pairs 95.52 76.56

the best performance over all baselines. The results verify
the effectiveness of our method well.

4.4. Pair-wise Selection Analysis

As the results on simulated noisy datasets show that Sel-
CL+ work better in the case of asymmetric noise, where la-
bel flips happens between semantically similar classes. It is
because Sel-CL not only exploits confident pairs associated
with T , but also extracts more confident positive pairs based
on the representation similarity. To detail this phenomenon,
we conduct some analysis about the pair-wise selection in
our approach under the asymmetric noise cases.

There are several observations provided in Tab. 4. The
results show that, it is useful to employ the confident ex-
amples and associated positive pairs G′. However, the im-
porvement is limited compared with selecting clean exam-
ples and clean pairs. Our method further employ G′′, which
is based on the similarity representations. By this proce-
dure, we can make better use of the confident pairs whose
class labels are incorrect but similarity labels could be cor-
rect, which is much common in the asymmetric cases and
real-world scenarios. Besides, an interesting phenomenon
is that it is not bad for selecting clean examples and all pairs,
since the noise rate of pairs is smaller. This phenomenon
may explain why MOIT+ also has advantages with asym-
metric noise, which uses all noisy pairs.

4.5. Results on the Real-World Noisy Dataset

We validate our method on the real-world dataset
WebVision-50 [35], which contains noisily-labeled images
collected from Flickr and Google. As shown in Tab. 5,
Sel-CL+ achieves the best results on both top-1 and top-
5 accuracy on the WebVision validation set and ImageNet
ILSVRC12 validation set than the other state-of-the-art
methods, including four recent methods that also utilize
contrastive learning. The results means that our method is
better to handle realistic scenes.

4.6. Ablation Study and Discussions

Influence of each component. To study the impact of each
component in our method, we use CIFAR-100 for eval-
uations. We report test accuracy/weighted KNN evalua-
tions (%) for Sel-CL, and test accuracy (%) for Sel-CL+

Table 5. Accuracy (%) on the WebVision and ILSVRC2012 val-
idation sets. The model is trained on WebVision-50. The best
results are in bold.

Methods
WebVision ILSVRC12

top-1 top-5 top-1 top-5
Forward [43] 61.12 82.68 57.36 82.36
Decoupling [40] 62.54 84.74 58.26 82.26
D2L [39] 62.68 84.00 57.80 81.36
MentorNet [26] 63.00 81.40 57.80 79.92
Co-teaching [16] 63.58 85.20 61.48 84.70
Iterative-CV [6] 65.24 85.34 61.60 84.98
DivideMix [30] 77.32 91.64 75.20 90.84
ELR [37] 76.26 91.26 68.71 87.84
ELR+ [37] 77.78 91.68 70.29 89.76
ELR (Uns-CL init.) 79.93 92.00 71.23 88.23
ProtoMix [31] 76.3 91.5 73.3 91.2
MoPro [32] 77.59 – 76.31 –
NGC [51] 79.16 91.84 74.44 91.04
Sel-CL+ 79.96 92.64 76.84 93.04

Table 6. Ablation study for Sel-CL and Sel-CL+ on CIFAR-100.
The best results are in bold.

Methods Sym. 20% Asym. 40%
Sel-CL w/o Mixup Data Aug. 70.3/70.6 64.2/66.2
Sel-CL w/o MOCO Trick 73.3/74.1 69.2/71.5
Sel-CL w/o Selection 67.2/68.9 49.9/68.7
Sel-CL w/o Classfier Learning — /69.9 — /70.2
Sel-CL w/o LSIM 74.5/74.9 71.8/72.5
Sel-CL 74.9/75.4 72.0/72.7
Sel-CL+ w/ Strong Data Aug. 74.5 72.7
Sel-CL+ w/o Retraining Cls. 76.4 73.4
Sel-CL+ 76.5 74.2

in Tab. 6. It shows the contribution of each component into
our method.

Discussions on warm-up methods. We use different
warm-up methods, i.e., Uns-CL [7] and Sup-CL [27] for
Sel-CL+. The experiments are conducted on CIFAR-10 and
CIFAR-100 with symmetric and asymmetric noise. The re-
sults in Tab. 7 demonstrate that Sel-CL+ is robust to the
choice of warm-up methods.

Discussions on fine-tuning methods. We further test
two complex but advanced methods for fine-tuning stage,
i.e., DivideMix [30] (be better with symmetric noise) and
ELR+ [37] (be better with asymmetric noise). As shown in
Tab. 8, using more advanced fine-tuning methods can fur-
ther improve the performance. Both the representations ob-
tained by Uns-CL [7] and Sel-CL can promote the robust-
ness of two methods, and our Sel-CL brings better results.

Comparison with one-stage methods for handling noisy
labels. We compare our method with two recent one-stage
methods, which also employ contrastive learning to handle
noisy labels. For a fair comparison, we use AugMix [21]
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Table 7. Comparison with different warm-up methods in the test
accuracy (%) of Sel-CL+.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Asym.
Noise rate 20% 90% 40% 20% 90% 40%
Uns-CL [7] 95.5 81.9 93.4 76.5 48.8 74.2
Sup-CL [27] 95.5 81.6 93.4 76.8 51.4 74.5

Table 8. Comparison with using different fine-tuning methods in
the test accuracy (%). The best results are in bold.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Asym.
Noise rate 20% 40% 20% 40%
DivideMix [30] 95.7 92.1 76.9 53.8
ELR+ [37] 94.6 93.0 77.5 72.2
DivideMix (Uns-CL init.) [65] 96.2 90.8 78.3 52.9
ELR+ (Uns-CL init.) [65] 94.8 94.3 77.7 72.3
DivideMix (Sel-CL init.) 96.3 91.6 78.7 55.2
ELR+ (Sel-CL init.) 95.2 94.6 77.7 72.9

Table 9. Comparesion with one-stage methods in the test accuracy
(%). † denotes fine-tuning using AugMix data augmentation. The
best results are in bold.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Asym.
Noise rate 20% 90% 40% 20% 90% 40%
ProtoMix [31] 95.8 75.0 91.9 79.1 29.3 48.8
NGC [51] 95.9 80.5 90.6 79.3 29.8 –
Sel-CL+ 95.4 67.5 92.8 76.4 35.5 74.2
Sel-CL+† 95.2 67.4 92.5 76.0 35.4 74.2

Table 10. Comparison with different example selection strategies
in the test accuracy/label precsion (%) of Sel-CL+.

Noise type Sym. Asym.
Noise rate 20% 90% 20% 40%
w pseudo-labels 76.5/99.1 48.8/62.0 77.5/97.5 74.2/92.2
w/o pseudo-labels 76.5/99.1 46.2/55.4 76.8/96.6 69.4/83.9

as data augmentations of the pre-training stage. As shown
in Tab. 9, our approach has advantages in the asymmetric
noise cases. In addition, we also try to adopt AugMix aug-
mentation in the fine-tuning stage and find that the weak
augmentation is more suitable, which is consistent with the
ablation study. The results may reflect the difference be-
tween representation learning and classification learning.

Role of pseudo-labels ŷ. Following [41], we use the rep-
resentation similarity with the weighted KNN to create
pseudo labels. In this way, we can make better use of repre-
sentation similarities. To make it clear, we use CIFAR-100
for evaluations. We report test accuracy/label precsion eval-
uations (%) for Sel-CL+ with and without pseudo-labels,
and here label precsion is the average over all epochs. As
Tab. 10 shows, this practice results in better performance

due to improved label precision. Besides, we also can just
use the pseudo labels to define confident examples rather
than to estimate clean class posterior probabilities. By
comparing them from empirical observations, our method
brings a higher label precision, which is shown in Fig. 4.

Figure 4. Comparison of label precision. The experiments are
conducted on CIFAR-100 with 20% asymmetric noise.

The ablation studies about the hyperparameters are pro-
vided in Appendix A, which show that our method is robust
to the choices of the hyperparameters.

5. Limitations
Our work still has certain limitations, including: 1) This

work exploits contrastive learning, and therefore, the perfor-
mance of our approach relies on adequate data augmenta-
tion and large amounts of negative samples. A larger batch
size or memory bank is needed, which places higher de-
mands on the storage of computing devices. 2) The use
of the KNN algorithm brings greater computational con-
sumption. In this work, we have used some faster KNN
algorithms (see source codes) to alleviate the above issue,
which facilitates the application of our method to large-
scale datasets.

6. Conclusion
This paper proposes selective-supervised contrastive

learning (Sel-CL), a new method to handle noisy labels in
training data by learning robust pre-trained representations.
We make use of the pair-wise characteristic of contrastive
learning to better enhance network robustness. Without the
noise rate prior, the confident pairs are selected out of noisy
pairs for supervised contrastive learning. We demonstrate
the state-of-the-art performance of our method with exten-
sive experiments on multiple noisy datasets. For future
work, we are interested in extending our method to other
tasks such as object detection and text matching.
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A. Hyperparameter Sensitivity Analysis

Analysis of λs. λs is the balancing weight of a added sim-
ilarity loss LSIM . In the paper, we set it as 0.01 for all
experiments. As shown in Tab. 1, our approach is robust to
selection of λs.

Table 1. Test accuracy (%) of Sel-CL+ with different λs on
CIFAR-10 with 20% symmetric label noise.

Parameter 0.1 0.05 0.01 0.005 0.001 0.0001
λs 95.3 95.6 95.5 95.5 95.6 95.2

Analysis of α and β. Noise detection fractiles α and β
are used to determine the dynamic thresholds for selecting
confident examples and pairs. We use CIFAR-10 datasets
for analysis. In the paper, we set α = 50%, β = 25% for
CIFAR-10 with simulated label noise. As shown in Tab. 2
and Tab. 3, our approach is robust to choices of noise detec-
tion fractiles.

Table 2. Test accuracy (%) of Sel-CL+ with different α and β on
CIFAR-10 with 20% symmetric label noise.

Parameter 0% 15% 25% 35% 50% 75%
α 94.6 94.7 95.3 95.2 95.5 95.6
β 94.9 95.4 95.5 95.5 95.0 95.1

Table 3. Test accuracy (%) of Sel-CL+ with different α and β on
CIFAR-10 with 40% asymmetric label noise.

Parameter 0% 15% 25% 35% 50% 75%
α 92.1 92.5 92.6 93.0 93.4 89.9
β 91.4 93.3 93.4 92.6 92.8 92.5

B. Implementation Details For Baselines
For a fair comparison, except for the results borrowed

from related work, we obtain baselines based on published
codes with the recommended or well-tuned hyperparame-
ters. The details are as following.

Uns-CL For CIFAR-10/100 datasets, we train the network
for 1000 epochs with SimAug augmentation and cosine
learning rate, where the scalar temperature is 0.07, the
batch size is 1024 and the initial learning rate is 0.05. For
WebVison-50 dataset, we use the pre-trained ResNet-50
model provided by the source code of C2D method 1, which
is trained for 1000 epochs using SimCLR.

GCE For CIFAR-10 datasets, we train the networks for 120
epochs with q = 0.5 for 20%/50% sym. noise, q = 0.7 for
80%/90% sym. noise, and q = 0.5 for asym. noise. For

1https://github.com/ContrastToDivide/C2D

CIFAR-100 datasets, we train the networks for 150 epochs
with q = 0.3.

GCE (Uns-CL init.) For CIFAR-10 datasets, we train the
networks for 120 epochs with q = 0.7 for 20% sym. noise,
q = 1.0 for 50%/80%/90% sym. noise, and q = 0.5 for
asym. noise. For CIFAR-100 datasets, we train the net-
works for 150 epochs with q = 0.7 for sym. noise and
q = 0.5 for asym. noise.

ELR We train the networks for 250 epochs with λ = 3 and
β = 0.7 for CIFAR-10 with sym. noise, λ = 1 and β = 0.9
for CIFAR-10 with asym. noise, and λ = 7 and β = 0.9 for
CIFAR-100.

ELR (Uns-CL init.) We train the networks for 250 epochs
with λ = 5 and β = 0.7 for CIFAR-10 with 20%/50% sym.
noise, λ = 7 and β = 0.7 for CIFAR-10 with 80%/90%
sym. noise, λ = 3 and β = 0.9 for CIFAR-10 with asym.
noise, λ = 7 and β = 0.9 for CIFAR-100 with 20%/50%
sym. noise, λ = 10 and β = 0.9 for CIFAR-100 with
80%/90% sym. noise and asym. noise.

MOIT+ For pre-training stage, we train the networks with
recommended hyperparameter setting in the original paper,
except for CIFAR-100 dataset without label noise, where
we do not apply the semi-supervised strategy. For fine-
tuning stage, we refine it with recommended setting.

DivideMix (Uns-CL init.) We use the implementation of
C2D method to train the networks for with its recommended
hyperparameter setting.

ELR+ (Uns-CL init.) We train the networks for 250 epochs
using the same λ and β with ELR (Uns-CL init.).

ProtoMix For CIFAR-100 with asymmetric label noise, we
train the network for 300 epochs with 0.02 initial learning
rate, 128 batch size, 0.4 η0 and 0.9 η1.

Other baselines We obtain other reproduced baselines with
their recommended or default hyperparameters, which in-
clude Cross-Entropy, Mixup, Forward, P-correction, M-
correction and DivideMix.

C. Relations with MOIT

Both MOIT and Sel-CL select confident data in repre-
sentation learning with noisy labels, but Sel-CL is different
from MOIT in two aspects:

(1) The selected targets are different. MOIT perform
point-wise selection, which aims to select confident exam-
ples. While, Sel-CL performs pair-wise selection, which
aims to select confident pairs. Sel-CL can not only em-
ploy the pairs whose class labels are correct, but also use
the pairs whose class labels are incorrect.

(2) The roles of selection in representation learning are
different. In the pre-training stage, MOIT selects confident
examples for performing semi-supervised learning at the
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Figure 1. t-SNE visualization of representations for CIFAR-10 images. The first two rows denote that the experiments are conducted with
20% symmetric noise. The last two rows denote that the experiments are conducted with 40% asymmetric noise.

classification head. This operation plays a regularization
role in representation learning. However, contrastive learn-
ing is performed on all noisy pairs. While, Sel-CL performs
contrastive learning on the selected pairs, which improves
the robustness of representation learning more directly and
effectively. Besides, a series of experiments verify the ad-
vantages of Sel-CL compared with MOIT.

D. Visualization Results
By using t-SNE visualization, we compare the repre-

sentations achieved by Cross-Entropy and our method. As
show in Fig. 1, Sel-CL can obtain more robust representa-
tions and better combat noisy labels.

E. Pseudo-code of the Proposed Sel-CL
Algorithm 1 lists the pseudo-code of Sel-CL.

Algorithm 1: Selective-Supervised Contrastive
Learning with Noisy Labels

Input: Noisily-labeled dataset D̃ = {(xi, ỹi)}ni=1, noise
detection fractile α, β, mixup parameter αm, scalar
temperature τ , loss weight λc, λs, warm-up epochs Twarm ,
max epochs Tmax.

Output: learned deep encoder f .
1: for t = 1, 2, ..., Tmax do
2: if t ≤ Twarm then
3: Train the deep encoder f with Uns-CL or Sup-CL.
4: else
5: Selecting confident examples T by measuring the

agreement between learned representations and given
noisy labels.

6: Selecting confident pairs G by exploiting representation
similarity distribution in T .

7: Train the deep encoder f by performing supervised
contrastive learning on G and classfication learning on
T with Mixup technique.

8: end if
9: end for

10: return deep encoder f .


