
PARAMIXER: PARAMETERIZING MIXING LINKS IN SPARSE
FACTORS WORKS BETTER THAN DOT-PRODUCT

SELF-ATTENTION

A PREPRINT

Tong Yu∗, Ruslan Khalitov∗, Lei Cheng, Zhirong Yang†
Norwegian University of Science and Technology

ABSTRACT

Self-Attention is a widely used building block in neural modeling to mix long-range data elements.
Most self-attention neural networks employ pairwise dot-products to specify the attention coefficients.
However, these methods require O(N2) computing cost for sequence length N . Even though some
approximation methods have been introduced to relieve the quadratic cost, the performance of the dot-
product approach is still bottlenecked by the low-rank constraint in the attention matrix factorization.
In this paper, we propose a novel scalable and effective mixing building block called Paramixer. Our
method factorizes the interaction matrix into several sparse matrices, where we parameterize the
non-zero entries by MLPs with the data elements as input. The overall computing cost of the new
building block is as low as O(N logN). Moreover, all factorizing matrices in Paramixer are full-rank,
so it does not suffer from the low-rank bottleneck. We have tested the new method on both synthetic
and various real-world long sequential data sets and compared it with several state-of-the-art attention
networks. The experimental results show that Paramixer has better performance in most learning
tasks.3

Keywords parameterization · mixing links · sparse · matrix factorization

1 Introduction

Transformer models have been widely used on many tasks such as text classification [1], text summarization, promoter
region prediction [2], and image classification [3]. The main engine in Transformer is the self-attention mechanism,
which can work in parallel to mix long-range tokens in a long sequence. This fundamental innovation eliminated the
sequential dependency in recurrent neural networks and was used as a building block for many powerful models, such
as Bert [4], GPT[5] and Ernie[6].

However, the original self-attention is not scalable because it requires computing and storing all pairwise dot-products,
which incurs O(N2) cost for sequence length N . The scalability issue significantly restricted the application of neural
models based on self-attention.

Various methods have been introduced to alleviate the quadratic cost of full attention. Some of them attempt to shorten
the sequence length [7, 8], even though much information is lost. Others try to break up the softmax by a certain
kernel factorization. Another family of methods sparsify the attention matrix with predefined attention [2, 9, 10, 11, 12].
However, most Transformer variants stick to the dot-product self-attention, of which the expressive power is restricted
by the low-rank bottleneck [13] because the dimensionality of the dot-product space is much smaller than the sequence
length. Therefore, they cannot accurately model the transformation if the attention is intrinsically high-rank.

This paper proposes a scalable and effective attention building block called Paramixer without dot-product and softmax.
Our method directly parameterizes the mixing links in several sparse factors to form an attention matrix, where all
∗Equal contribution
†Corresponding author, zhirong.yang@ntnu.no
3https://github.com/wiedersehne/Paramixer
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factorizing matrices are full-rank. Therefore Paramixer does not suffer from the low-rank bottleneck. We present two
ways to specify the non-zero positions in each sparse factor. Both lead to an economical approximation of the full
attention matrix, with the computing cost as low as O(N logN). As a result, our method can easily model very long
sequential data.

We have tested Paramixer on various sequence data sets and compared it with many popular self-attention neural
networks based on dot-products. The experimental results show that Paramixer gets the best performance on very
long sequence tasks, including synthetic data inference, Genome classification, and character-level long document
classification. Paramixer also achieves state-of-art accuracy on the public Long Range Arena benchmark tasks.

We organize the rest of the paper as follows. Section 2 investigates dot-product self-attention and its related work.
Section 3 introduces the development clue and model architecture of Paramixer. The experimental settings and results
are presented in Section 4, and we conclude the paper in Section 5.

2 Related Work

Self-attention (SA) is a building block in neural networks which enables long range interaction between elements in a
sequence. The most widely used SA architecture is called Transformer [1], where the self-attention matrix is constructed
using scaled dot-product followed by softmax. Given an input sequence of N elements encoded in X ∈ RN×d, a
self-attention building block calculates a weighted average of feature representations V ∈ RN×dv , where the weights
are the result of scaled dot-product of Q ∈ RN×D and K ∈ RN×D: Q = XWq, K = XWk, and V = XWv. Then
the self-attention in Transformer is

Self-Attention(Q,K, V ) = AV, (1)

where

A = softmax
(
QKT

√
D

)
(2)

and the softmax applies row-wise on the scaled dot-products.

The attention matrix in Eq. 2 is not scalable because it requires computing and storing N2 attention values, which is
infeasible for a large N . The quadratic cost becomes a significant bottleneck when applying self-attention applications
for long sequences. Many research teams have proposed Transformer variants to relieve this problem.

The first branch of methods attempts to reduce N . The Linformer approximation [14] uses random projection to reduce
the rows of K and V from N to r with r < N . However, because r ∝ ε−2 with ε the approximation error bound,
Linformer has to use a large r to achieve satisfactory approximation quality. Another method called Enformer [8]
shortens the sequence length by convolutional network pooling.

The second branch of methods tries to break up the softmax by a certain kernel factorization A ≈ φ(Q)φ(K)T , where
φQ and φK ∈ RN×r′ with r′ < N . Then by the association rule of multiplication, we can calculate φ(Q)

[
φ(K)TV

]
and avoid the quadratic cost. For example, Nyströmformer [15] uses a few landmarks as surrogates to construct φ(Q)
and φ(K). Linear Transformer [16] directly chooses φ(x) = elu(x) + 1. Performer [17] uses r′ orthogonal random
features to obtain φ(Q) and φ(K). Random features were also used in another work [18], with gating mechanism
combined.

The third branch of methods chooses only a subset of (i, j) pairs in each attention layer. These include Sparse
Transformers [10, 11] that use a set of neighboring tokens, Sinkhorn Transformer [12] that uses blockwise sparsity,
Longformer [9] that uses dilated sparse connections, and BigBird [2] that uses both blockwise and dilated sparse
connections.

3 Paramixer

Despite many variants of Transformers, there are still several drawbacks because they stick to dot-product + softmax or
their approximation. Below we discuss the disadvantages of these two components and propose our solution without
them.

3.1 Drawbacks of dot-products and softmax

The first drawback is the low-rank bottleneck: dot-product self-attention requires D � N ; otherwise, the Q and K
matrices are unaffordable for a large N . Bhojanapalli et al. have shown that the low-rank bottleneck restricts the
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(a) (b) (c) (d)

Figure 1: Illustration of (a & b) the CHORD and (c & d) the CDIL protocols for N = 16. Each node in the circular
graph represents a sequence element. The links between nodes correspond to the non-zero entries in W (m) (here
m = 1) output from f (m). Note that the sparse structure of all factors in CHORD is the same, while it varies at different
m’s in CDIL.

representation power and attention performance [13]. However, their workaround that uses D = N does not apply for
long sequences due to the quadratic cost.

Another limitation comes from the pairwise definition of dot-product. Although dot-products have a theoretical
connection to Reproducing Kernel Hilbert Space (RKHS), self-attention cannot benefit from more than two factors in
the matrix product because the kernels are defined in pairs.

Another key component, softmax, in Transformer is also problematic. First, such nonlinearity over dot-products leads
to quadratic cost. Comprehensive approximation methods are required to approximate softmax for more economical
matrix products.

Second, softmax limits the mixing capability. The softmax layer output probabilities and the mixing result are thus
constrained in the convex hull of the existing elements. The constraint is more severe in sparse attention methods such
as [2, 9, 10, 11, 12], where the mixing result is in a rather constrained convex hull of a few involved elements.

Moreover, softmax is incompatible with sparse attention. The latter was introduced to relieve the quadratic computing
cost caused by softmax. However, after each sparse attention layer with softmax, the network can output probabilities
for only a few sequence elements.

3.2 Parameterizing mixing links

Seeing the drawbacks of dot-products and softmax, we rethink self-attention as a transformation block and redesign the
neural model. First, we drop the softmax because it is not compulsory for the mixing function but limits the mixing
capability. Then the transformation becomes V new = AV for an unconstrained mixing matrix A.

Next, we consider parameterizing the mixing links or coefficients for each matrix row Ai: = f(Xi; θ), where
f : Rd 7→ RN is a neural network with weights θ. However, such simple parameterization does not solve the quadratic
cost. We thus consider a sparse factorization of the mixing matrix A:

A =

M∏
m=1

W (m), (3)

where each sparse factor W (m) is a full-rank sparse square matrix. Then we parameterize each sparse factor W (m) as

W
(m)
i: = f (m)(Xi; θm), (4)

where i = 1, . . . , N and f : Rd 7→ RK is a Multilayer Perceptron (MLP) that outputs the K non-zero entries4 of each
row in W (m). If the total number of non-zeros in the factors is much smaller than N2, we obtain a new economical
self-attention method without dot-product and softmax. We call the new method Paramixer.

There are different ways or protocols to specify the sparse structure or the non-zero entries. We have studied two
protocols and present them below. For short, we abbreviate f (m)

ik
def
=
[
f (m)(Xi; θm)

]
k
.

4Non-zero entries are those stored, including both non-zeros and explicit zeros.
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Figure 2: Illustration of an example Paramixer neural network (M = 4). After adding the positional embedding, it
applies L Paramixer blocks and obtains the transformed tensor Xnew.

The first protocol CHORD modifies from an algorithm with the same name in peer-to-peer lookup service [19], where
the i-th row of each sparse factor W (m) is parameterized as

W
(m)
ij =


f

(m)
i1 if j = i

f
(m)
ik if j = i+ 2k−2 mod N

0 otherwise.
(5)

where j = 1, . . . , N and k = 1, ...,K. That is, each row has K non-zeros, and in total all W (m)’s have MNK
non-zeros. In this work, we follow the original CHORD algorithm to use K = M = logN . Therefore the number of
stored entries is N log2N .

Each factor W (m) can be treated as the adjacency matrix of a directed graph, where the (i, j)-th non-zero entry can be
seen as a link from i to j. The graph visualization and the parameterization are illustrated in Figure 1.

The product of the factorizing matrices corresponds to the connections in the circular graph after multiple sparse factors.
Theorem 2 in [19] guarantees that the graph will become complete with high probability after M = logN sparse
factors. That is, the resulting A matrix will become full after the matrix product.

The second protocol CDIL (Circular DILated) originates from Temporal Convolution Networks (TCN) [20], where we
modify the dilated connections at both sides and along a circular graph to ensure the receptive fields are symmetric. The
i-th row of W (m) is parameterized as

W
(m)
ij =


f

(m)
i1 if j = i

f
(m)
ik if j = i+ pk−12m mod N

0 otherwise,
(6)

where p =
[
1, 2, ..., K−1

2 ,−1,−2,−K−1
2

]
and k = 2, . . . ,K. Similar to CHORD, the CDIL protocol includes self

links but the other links appear on both sides, and the dilation 2m varies at different m’s. The CDIL protocol and
parameterization are illustrated in Figure 1.

In CDIL, each factor contains KN non-zero entries, and in total, there are KN logN non-zeros if M = logN , which
is more economical than CHORD if K < logN . It can be proven that the product A =

∏M
m=1W

(m) is a full matrix
with the CDIL protocol.

The following proposition states that the factorizing matrices constructed by the two protocols are full-rank. The proof
in given the supplemental document.

Proposition 1. W (1), . . . ,W (M) constructed in Eq. 5 or Eq. 6 are in general full-rank.

3.3 Paramixer neural networks

A Paramixer block transforms an N × d tensor X to another tensor of the same size. See Figure 2. Here we use an
MLP g : Rd 7→ Rd with weights ζ to mix the columns of the input tensor, which is similar to the product with Wv in

4
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Transformer. In this work, we used simple three-layer MLPs (Linear-GELU-Linear) for both f (m)’s and g. Stacking L
such blocks forms a neural network backbone, denoted by ParamixerNet, for representation learning.

We have tried two options for parameterization in multi-block setting: W (l,m) = f (l,m)
(
X(l−1); θ

(l)
m

)
and W (l,m) =

f (l,m)
(
X(0); θ

(l)
m

)
, where the superscript l indexes the l-th block and X(l−1) is the input to the l-th block, with

X(0) = X + PE. We find that the latter option makes the network easier to train and works better.

The ParamixerNet output can then be fed to a loss function J , and overall, the learning task can be formulated as the
following optimization problem:

minimize
Θ

J (ParamixerNet(X + PE; Θ)), (7)

where Θ =
{
θ

(l)
1 , . . . , θ

(l)
M , ζ(l)

}L

l=1
. The optimization can be implemented with back-propagation, and a gradient-based

algorithm such as Adam [21].

4 Experiments

We conducted four groups of experiments. In the first group, we demonstrate the scalability of Paramixer on long
synthetic sequences with lengths up to tens of thousands of positions. Then, we tested the performance of Paramixer on
the pubic Long Range Arena benchmark data sets. In the third group, we built a character-level document classification
task to evaluate if Paramixer can handle real-world long text sequences with tens of thousands of tokens on average.
Finally, we showcase if Paramixer performs well in modeling long genome sequences. We ran all experiments on a
Linux machine with 3×NVIDIA Tesla V100 32GB, Intel Xeon Gold 6240 CPU @ 2.60GHz processors, with 754GB
of system memory.

4.1 Synthetic Scalability Test

In this section, we examine the scalability of Paramixer and compare its performance with several competitors. We used
two synthetic data sets composed of long sequences for supervised learning tasks. An experimental setup was inspired
by [22], where similar synthetic sequences appeared for scalability tests. The details of both tasks are given below:

• Adding Problem. This is a sequence regression task. Each element of an input sequence is a pair of numbers
(ai, bi), where ai ∼ U(−1, 1), bi ∈ {0, 1}, i = 1, . . . , N . We generated signals at two randomly selected

positions t1 and t2 such that bt1 = bt2 = 1 and bi = 0 elsewhere. The learning target is y = 0.5 +
at1 + at2

4
.

For example, an input sequence [(0.5, 1), (−0.2, 0), (0.2, 1), (−0.8, 0), (0.6, 1)] will have the learning target
y = 0.825. Unlike [22], we did not restrict the t1 and t2 choice and made the task more challenging. That is,
the relevant signals can appear either locally or at a great distance from each other. In evaluation, a network
prediction ŷ is considered correct if |y − ŷ| < 0.04.

• Temporal Order. This is a sequence classification task. Each sequence consists of randomly chosen symbols
from the alphabet {a, b, c, d,X, Y }, where the first four are noise symbols. Each sequence has two signal
symbols, either X or Y , which appear at two arbitrary positions. The four target classes correspond to the
ordered combinations of the signal symbols (X,X), (X,Y ), (Y,X), and (Y, Y ). For example, an input
sequence [a, d, Y, c, b, a, Y, c, d] should be classified as Class 3.

We generated data of different sequence lengths for each problem: from N = 128 to N = 215, progressively increasing
the length by the factor of two. For each sequence length, a model can access 100 000 training sequences and 5 000
testing instances for evaluation.

We compared Paramixer with a group of popular methods based on scaled dot-product attention (referred as X-formers),
including Linformer [7], Performer [17], Reformer [23] and Nyströmformer, which all [15] have claimed to be scalable.
For completeness, we also included the original Transformer [1]. We used the open-source PyTorch implementations5

of these models.

We fine-tuned the main hyperparameters in a standard cross-validation manner for Paramixer and X-formers, including
the number of layers and heads, dimensionality of the token embedding, and query/key/value dimensions. For the
Temporal Order problem, we directly fed the data instances to the embedding layers. For the Adding problem, the input

5available at https://github.com/lucidrains

5
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Figure 3: Error percentage of Paramixer and the X-formers for both the Adding problem and the Temporal Order
problem with increasing sequence lengths.

Image, automobile Image, horse Pathfinder, Negative Pathfinder, Positive

Figure 4: Example data from the Image Classification (left two) and Pathfinder tasks (right two).

data was only two-dimensional, and one of them was real-valued. Directly using such a low-dimensional embedding
space would limit the expressive power. So we added a linear layer to augment the dimensionality to allow sufficient
freedom for the scaled dot-products in the X-former architectures. All the models were optimized using the Adam
optimizer [21] with the learning rate of 0.001 using a batch size of 40.

The results are shown in Figure 3. For the Adding problem, we see that all models obtain 100% accuracy for N ≤ 256.
The X-former models become weak or ineffective when scaling to longer sequences, while Paramixer still performs well.
Linformer and Reformer get an error rate of 33.38% and 30.20% for N = 1024, and become invalid on N = 2048.
Transformer starts to lose some performance (99.94%) on N = 1024, and becomes not working when N = 2048.
Performer survives when N ≤ 2048, however, gets an error rate of 29.24% for N = 4096 and becomes as bad as
random guessing for N ≥ 8192. Nyströmformer achieves 100% accuracy for N = 4096 and fails on N ≥ 8192.
Instead, Paramixer reaches 100% accuracy for all the tested lengths.

For the Temporal Order problem, the performance of all the models is 100% or nearly 100% when N ≤ 256, and
starts to drop for N ≥ 512. When N = 2048, the results of Performer (99.52%) and Nyströmformer (100%) are still
solid while Transformer, Linformer, and Reformer have an error rate around 1.4%. When increasing N to 4,096 and
8,192, Linformer and Transformer fail in succession. When N = 16384, Reformer does not work while Performer and
Nyströmformer give a weaker performance with error rates, 7.6% and 7.9%, respectively. On the contrary, Paramixer
achieves 100% accuracy for N ≤ 8192, and 98.84% accuracy for N = 16384.

In summary, Paramixer has better scalability than the attention neural networks based on scaled dot-products. When
scaled to tens of thousands, Paramixer still gives very high prediction accuracy. The results suggest we can evaluate our
model on more real-world tasks with very long sequences.

4.2 Long Range Arena Public Bechmark

Next, we evaluate the performance of Paramixer on Long Range Arena (LRA), a publicly available benchmark for
modeling long sequential data [24]. The details of the tasks are the following:

• ListOps. ListOps is a classification task designed for measuring the ability of models to parse hierarchically
constructed data [26]. Each sequence is composed of operators, digits, and left or right brackets. The brackets
define lists of items. Each operator in a sequence takes the items in a list as input and returns a digit.

• Text Classification. We use the IMDb Review dataset [27] which requires the model to classify each review
as positive or negative. The task uses a character-level representation for each sequence, which makes the

6
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Table 1: Classification accuracy by Paramixer and X-formers on the four LRA tasks. Methods that are absent in the
corresponding paper are signed by a dash (“-”). For Paramixer, we present the mean (µ) and standard deviation (σ)
across multiple runs in the µ± σ format.

Model ListOps Text Image Pathfinder
N = 2000 N = 4000 N = 1024 N = 1024

Transformer [24] 36.37 64.27 42.44 71.40
Transformer [25] 37.13 65.35 - -
Transformer [15] 37.10 65.02 38.20 74.16
Sparse Transformer [24] 17.07 63.58 44.24 71.71
Longformer [24] 35.63 62.58 42.22 69.71
Linformer [24] 37.70 53.94 38.56 76.34
Linformer [25] 37.38 56.12 - -
Linformer [15] 37.25 55.91 37.84 67.60
Reformer [24] 37.27 56.10 38.07 68.50
Reformer [25] 36.44 64.88 - -
Reformer [15] 19.05 64.88 43.29 69.36
Performer [24] 18.01 65.40 42.77 77.05
Performer [25] 32.78 65.21 - -
Performer [15] 18.80 63.81 37.07 69.87
BigBird [24] 36.06 64.02 40.83 74.87
Linear Transformer [24] 16.13 65.90 42.34 75.30
Transformer-LS [25] 38.36 68.40 - -
RFA-Gaussian [18] 36.80 66.00 - -
Nyströmformer [25] 37.34 65.75 - -
Nyströmformer [15] 37.15 65.52 41.58 70.94
Paramixer (CHORD) 39.57±0.32 83.12±0.33 45.01±0.21 80.49±0.13
Paramixer (CDIL) 37.78±0.28 83.32±0.19 46.58±0.05 67.13±0.42

tasks more challenging than the word-level version. We truncated or padded every sequence to a fixed length
(N = 4k).

• Image Classification. This task is to classify images into one of ten classes. Each image is flattened to form a
sequence of length 1024. Unlike conventional computer vision, the task requires the predictors to treat the
grayscale levels (0-255) as categorical values. That is, each image becomes a sequence of symbols with an
alphabet size of 256. Two example matrices are shown in Figure 4.

• Pathfinder. This task is motivated by cognitive psychology [28], and constructed using synthetic images. Each
image (size 32 × 32) contains two highlighted endpoints and some path-like patterns. The models need to
classify whether there is a path consisting of dashes between two highlighted points. Similar to the Image
Classification task, the predictors must flatten the image to a sequence of symbols with length 1024. Two
example matrices are shown in Figure 4.

For a fair comparison, we followed the experiment settings in the original paper [24] and evaluated multi-block
ParamixerNet in the above tasks. We constructed Paramixer in variable blocks and used cross-validation to report the
model with the best hyperparameters. We ran the model four times with a different random seed for each task.

We compared Paramixer with many X-former architectures in prediction accuracies. If a method has different
implementations, we quote all the alternatives and their results. The results show that Paramixer beats all the other
self-attention-based transformers on all the tasks, having the best classification accuracy. Such stable cross-task wins
suggest that forming an attention matrix with parameterizing mixing links works better than those based on scaled
dot-products.

Remarkably, Paramixer has achieved state-of-the-art performance on Text and Pathfinder tasks. For Text Classification,
ParamixerNet achieves 83.32%, which is 14.92 p.p. higher than the best Transformer variant, Transformer-LS (68.4%).
Our method also wins with the accuracy of 80.49% on Pathfinder, where it gains about 5 percentage points higher than
the runner-up model. The compelling improvement brought by ParamixerNet is a probable cause of the high-rank
nature of Natural Language [29].

7
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Table 2: Test accuracies on long document classification.

Model N = 16k N = 32k

Transformer 25.62 25.62
Linformer 64.69 65.36
Performer 25.62 25.20
Reformer 25.04 25.04
Transformer-LS 70.25 60.93
Nyströmformer 71.70 67.69
Paramixer 83.89 84.55

For Paramixer, we reported two variants for this task, using the CHORD and CDIL protocols independently. As shown
in Table 1, CHORD wins on ListOps and Pathfinder, while CDIL gains the best results on Text and Image. However,
CHORD still has a competitive accuracy on Text (83.12%) and Image (45.01%), which demonstrates that Paramixer
has more stable performance using the CHORD protocol. Consequently, we used CHORD as a default protocol for the
following experiments.

4.3 Long Document Classification

The goal of this subsection is to study the benefits of modeling long sequences in NLP tasks. The character-level
text classification task from the LRA benchmark is not long enough to conclude this pattern, so we seek for Longer
Document Data with tens of thousands of tokens.

Long-document-dataset is a publicly available dataset. It contains a collection of academic papers, which are parsed
using the arXiv sanity preserver program and published on Github [30]. There are eleven diverse research areas a paper
may belong to. Similar to the source article, we used only four classes of documents: cs.AI, cs.NE, math.AC, math.GR,
having a final set of 11 956 documents in total. We used 70% of the data for training, 20% for validation, and 10%
for the test. Unlike the original study [30], we transformed each article into a sequence of characters and finally got a
challenging task with an average training sequence length of 52 112.

We truncate every sequence to a fixed length. Since NLP task is known to benefit from using longer sequence length, we
tested Paramixer on sequence lengths of 16 384 and 32 768 to see if Paramixer can be in favor of using longer context.
We studied other transformer-like variants as well.

As shown in Table 2, Paramixer outperforms the follow-up transformer-based competitors by 12.19 and 16.86 percentage
points on two sequence lengths, respectively. Paramixer achieves higher accuracy when using 32k tokens, which signals
a better generalization from using more extended context. Among all the competitors, only Linformer, Transformer-LS,
and Nyströmformer can handle the sequences of this length to a certain degree. Nevertheless, the gap in performance
between sequence lengths 32k and 16k is severe, suggesting that the low-rank factorization weakens the prediction
power on high-rank NLP tasks.

4.4 Genome Classification

Inspired by a recent rise in using deep learning models in biological applications, such as Chromatin-profile prediction
[2] and genome analysis [8]. However, directly processing genome and protein sequences with tens of thousands
of positions are problematic. The standard preprocessing pipeline includes chunking a long sequence into many
fragments, which are modeled independently. This approach is associated with inevitable information loss caused by
the long-distant nature of interaction processes in the DNA sequences [31]. We tested our design on this type of data.
By design, Paramixer can treat a full sequence as an input without the need for its preliminary segmentation, allowing it
to capture highly non-local effects.

We built two data sets for this task. The first group of DNA sequences were downloaded from NONCODEv6 [32]6. We
used human and fruitfly DNA sequences to construct a binary-classification task. We filtered out the sequences shorter
than 5k and thus got 9 536 human DNA sequences and 4401 fruitfly DNA sequences with mean sequence lengths
10 586 and 9 793, respectively. We name the data set HFDNA. As shown in Figure 5, the two species in HFDNA have
similar sequence length distributions, which means they can not be directly distinguished based on a sequence length

6http://www.noncode.org/download.php
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Figure 5: Sequence length distributions for HFDNA (top) and MTcDNA (bottom). X-axis is the range of genome
sequence length, and y-axis is the percentage of total instance numbers for each bin.

Table 3: The performance of Paramixer in comparison to Xformers on the Genomic classification task. The metric is
Area Under the Receiver Operating Characteristic Curve (ROC AUC) ×100%

Model HFDNA MTcDNA
Transformer 94.32 79.38
Linformer 91.65 77.06
Performer 93.46 78.92
Reformer 92.32 74.94
Transformer-LS 93.19 75.81
Nyströmformer 92.26 71.98
Paramixer 100.00 84.86

threshold. We split the data set to 60% training, 20% validation, and 20% test. Each sequence is either padded or
truncated to a fixed length of 16 384.

The other data set, namely MTcDNA (mouse and turtles’ cDNA), was built following the same preprocessing/split
strategy. The original cDNA sequences were downloaded from Ensembl genome browser7 [33, 34]. The task is to
predict a binary class, given either mouse or turtles cDNA sequence. The mouse class presented in 12 300 cDNA
sequences with a mean sequence length of 7 235, including two sub-species: Mus musculus and Mus spretus. The turtle
class contains 4 193 cDNA sequences of Chelonoidis abingdonii and Gopherus agassizii with a mean sequence length
of 7 072. The percentage histograms of sequence lengths are shown in Figure 5. It is clearly seen that the two species
have a big overlap in terms of sequence length, which makes it hard to discriminate between them only by length.

We compared ParamixerNet with several transformer-based models on this task. Because both data sets are imbalanced,
so we report ROC AUC values for this experiment. As shown in Table 3, Paramixer achieves 100% ROC AUC on
HFDNA, outperforming the runner-up result from Transformer (94.32%). Notably, our design holds the best score
at 84.86% ROC AUC on MTcDNA, which is higher than Transformer by 5.48 percentage points. The experimental
results show that Paramixer can successfully handle long DNA sequences and has the potential to assist in the biological
applications that require modeling long-distant gene interactions.

5 Conclusion

We have proposed a scalable and effective building block called Paramixer for attention neural networks. Our method
replaced the dot-products and softmax with parameterization of the mixing links in full-rank sparse factors of the
attention matrix and thus got rid of the low-rank bottleneck in most existing attention models. Our method has
complexity as low as O(N logN) and can efficiently deal with sequences up to tens of thousands. Besides scalability,
Paramixer has also demonstrated strong performance in terms of accuracy. Neural networks, by stacking the proposed
Paramixer blocks, have defeated Transformer and many of its variants in a variety of tasks, including synthetic

7http://www.ensembl.org/info/data/ftp/index.html

9



Parameterizing Mixing Links in Sparse Factors Works Better than Dot-Product Self-AttentionA PREPRINT

data inference, the public Long Rang Arena benchmark, and classification of very long text documents and genome
sequences.

In the future, we could study other applications beyond classification, for example, gene expression prediction from
sequence and pretraining with unsupervised data. The basic Paramixer block could be extended using other existing
attention techniques such as multiple heads and relative positional encoding. Later, in addition to the CHORD and
CDIL protocols, we could consider the other predefined protocols or even adaptively learned protocols for the sparse
structure.
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Appendix. Sparse Factorization of Large Square Matrices

1 Synthetic Data Experiments

For both problems in the scalability test, we generated sequences using the setup described in the main paper. We ran
the experiments on sequences with variable lengths: from 128 to 32k. The longer sequences, the more complex the
retrieval process. There is a slight difference in the pre-processing part. For the Adding problem, the input data was
only two-dimensional. To avoid using such a low-dimensional embedding space, we augmented the dimensionality with
an additional linear layer to assure sufficient freedom for dot-product attention architectures. The training configuration
and hyperparameters are the same for both the Adding problem and the Temporal Order problem. Their summary is in
Table A1

2 Long Range Arena

The data set for the LRA benchmark is publicly available. The information about data and the download link can be
found in the official GitHub repository: https://github.com/google-research/long-range-arena.

• ListOps The raw data for this problem is organized as three separate files basic_train.tsv,
basic_test.tsv, basic_val.tsv for training, testing, and validation data, respectively. The split is
fixed. In addition to the tokens described in the main paper, each sequence has "(" and ")" symbols, which
should be removed. To equalize the lengths of the sequences, we used the built-in PyTorch padding functional.
After the sequences are prepared, the embedding layer processes each unique value, thus mapping elements to
the embedding space. The rest of the training process is straightforward.

• Text Classification We downloaded IMDB data set using the tensorflow-dataset package, and got 25000
instances for training and another 25000 for testing. We went through the whole corpus and extracted the
character vocabulary. Then we mapped each sequence to a vector of indices using this vocabulary. Finally, we
truncated or padded each sequence to a fixed length of 4096. For every review, we add [”CLS”] token to each
sequence and use the embedding of ["CLS"] token for final classification. We used three blocks Paramixer for
this task.

• Image Classification CIFAR10 is a well-known dataset, which can be downloaded from the torchvision
package. The train/test splitting is fixed. To make images grayscaled, we used standard transformation
transforms—grayscale from the same package. An image is flattened to a sequence of length 1024. Then
each element is mapped to a dictionary of size 256 (all possible intensity values) and given to the embedding
layer.

• Pathfinder The problem data consists of two types of files: images and metafiles. Metafiles store information
about all the images and their corresponding labels (positive or negative). There are three classes of images:
curv_baseline (easy), curv_contour_length_9 (medium), curv_contour_length_14 (hard). An im-
age class corresponds to the distance between its endpoints (curve length), thus positively correlates with the
difficulty level. The exact data split is not provided. To separate the data into three parts, we iterated over all
metafiles from the catalogs and constructed the training/val/test (90%/5%/5%) sets such that all three types of
images are present equally. The rest of the processing is similar to the Image Classification task.

3 Long Document Classification

The task is a four-class classification problem. The class of a paper is defined by its arxiv categorization, namely, cs.AI,
cs.NE, math.AC, and math.GR. Each class in the data set is almost equally presented, with a slight class imbalance:
2995, 3012, 2885, and 3065 documents, respectively. To transform the raw articles into sequences, we first went through
the whole corpus and extracted the character vocabulary. Then we mapped each character sequence to a vector of
indices using this vocabulary. We fine-tuned Paramixer and X-formers to get the best results. The hyperparameters of
Paramixer were selected using a similar process. Final configurations are shown in Table A1. For every document, we
add [”CLS”] token to each sequence and use the result embedding of ["CLS"] token for the final classification.

4 Genome Classification

When building MTcDNA we downloaded cDNA sequences of Chelonoidis abingdonii and Gopherus agassizii, and
merged them as a turtle data set. Following the same strategy, we built the mouse data set using Mus musculus and

1
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Table A1: Hyperparameters details for every task. N , B, V , E, H , lr refer to max sequence length, batch size,
vocabulary size, embedding size, hidden states size, and learning rate, respectively. The vocabulary size includes
padding index and ["CLS"].

Task N Protocol n_links lr B V E H pos_embed Pooling Type
Adding 32768 CHORD 15 0.001 40 - 32 32 True FLAT
Temporal Order 16384 CHORD 14 0.001 40 6 32 32 True FLAT
ListOps 2000 CHORD 12 0.001 48 16 32 32 True FLAT
CIFAR10 1024 CDIL 3 0.001 64 256 32 32 True FLAT
Text 4096 CDIL 9 0.0001 32 97 32 128 False CLS
Pathfinder 1024 CHORD 11 0.001 64 256 32 32 True FLAT
Long Document 16384 CHORD 15 0.0001 16 4290 100 128 False CLS
Long Document 32768 CHORD 16 0.0001 16 4290 100 128 False CLS
Genome Classification 16384 CHORD 15 0.0001 16 5 32 128 True FLAT

Mus spretus. More details can be found in the main paper. For the HFDNA classification task, one Paramixer block is
enough to get 100% accuracy. However, ParamixerNn with two blocks result in the best test accuracy for MTcDNA.
The selected hyperparameters are listed in Table A1.

5 Proof of Proposition 3.1 in the main paper

Definition 1. An N ×N circulant matrix C takes the form

C =



c0 cN−1 · · · c2 c1
c1 c0 cN−1 · · · c2
... c1 c0

. . .
...

cN−2 · · ·
. . .

. . . cN−1

cN−1 cN−2
. . . c1 c0


Definition 2. The polynomial

f(x) = c0 + c1x+ · · ·+ cN−1x
N−1

is called the associated polynomial of circulant matrix C.

We have the following theorem in the literature [35]:
Theorem 2. The rank of a circulant matrix C is equal to N − d, where d is the degree of the polynomial
GCD(f(x), xN−1).

Now we can prove Preposition 3.1 for the CHORD protocol. The proof for CDIL follows similarly.

Proof. The associated polynomial of W (m) is

f(x) =

log2 N−1∑
k=0

xk

Because GCD(f(x), xN − 1) = 1 = x0, the rank of W (m) is N .
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