arXiv:2108.13341v2 [cs.CV] 30 Nov 2021

Hire-MLP: Vision MLP via Hierarchical Rearrangement

Jianyuan Guo'?*? Yehui Tang'**, Kai Han', Xinghao Chen',
Han Wu3, Chao Xu?, Chang Xu?] Yunhe Wang''
"Noah’s Ark Lab, Huawei Technologies.
?Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
3School of Computer Science, Faculty of Engineering, University of Sydney.
{jianyuan.guo, kai.han, yunhe.wang} @huawei.com, c.xu@sydney.edu.au.

Abstract

Previous vision MLPs such as MLP-Mixer and ResMLP
accept linearly flattened image patches as input, mak-
ing them inflexible for different input sizes and hard to
capture spatial information. Such approach withholds
MLPs from getting comparable performance with their
transformer-based counterparts and prevents them from be-
coming a general backbone for computer vision. This pa-
per presents Hire-MLP, a simple yet competitive vision MLP
architecture via Hierarchical rearrangement, which con-
tains two levels of rearrangements. Specifically, the inner-
region rearrangement is proposed to capture local infor-
mation inside a spatial region, and the cross-region re-
arrangement is proposed to enable information communi-
cation between different regions and capture global con-
text by circularly shifting all tokens along spatial direc-
tions. Extensive experiments demonstrate the effectiveness
of Hire-MLP as a versatile backbone for various vision
tasks. In particular, Hire-MLP achieves competitive re-
sults on image classification, object detection and seman-
tic segmentation tasks, e.g., 83.8% top-1 accuracy on Im-
ageNet, 51.7% box AP and 44.8% mask AP on COCO
val2017, and 49.9% mloU on ADE20K, surpassing previ-
ous transformer-based and MLP-based models with better
trade-off for accuracy and throughput. Code is available at
https://github.com/ggjy/Hire-Wave-MLP.pytorch.

1. Introduction

Attention mechanism based transformers have shown
great superiority in the realm of natural language process-
ing in recent years. Several works such as ViT [1] and
DeiT [43] propose to transfer the transformers into visual
recognition tasks [14], and have achieved awesome results

*Equal contribution.
Corresponding author.

which are comparable with conventional convolutional neu-
ral networks (CNNs). However, the heavy computational
burdens caused by the self-attention modules in transform-
ers withhold the models from better trade-off between ac-
curacy and latency. Recently, models composed of only
multi-layer perceptrons (MLPs) have become a new trend in
vision community [41,42]. These MLP-based models can
achieve comparable results with CNNs while discarding the
heavy self-attention module. For example, MLP-Mixer [4 1]
extracts per-location information through MLPs that are ap-
plied to every image patch, and captures long-range infor-
mation through MLPs that are applied across patches.

Although MLP-Mixer can obtain the global receptive
field, there are two intractable flaws that prevent the model
from becoming a more general backbone for vision tasks:
(i) The number of the patches (tokens) will change as the
input size changes, which means it cannot be directly fine-
tuned at other resolutions that are different from those used
in pre-training phase, making MLP-Mixer infeasible to be
transferred into downstream vision tasks such as detection
and segmentation. (ii)) MLP-Mixer rarely explores the lo-
cal information, which is demonstrated as an useful in-
ductive bias in both CNNs and transformer-based architec-
tures [17,49]. The above challenges naturally motivate us
to explore an efficient MLP-based architecture which can
encode both local and global information while being com-
patible with flexible input resolutions at the same time.

To address the two aforementioned challenges, we pro-
pose the Hire-MLP, which innovates the existing MLP-
based models by using hierarchical rearrangement opera-
tions. Taking the first challenge into account, the sequence
of tokens in MLP-Mixer [41] are denoted as X € REWxC|
where HW and C' denote the number of tokens and chan-
nels, respectively. MLP-Mixer first uses a token-mixing
MLP which acts on the columns of X to map RW
RZW and then uses a channel-mixing MLP which acts on
the rows of X to map R® +— RC. The parameters of the
token-mixing MLP are configured by the number of tokens

https://github.com/ggjy/Hire-Wave-MLP.pytorch

Patch Embedding k Hire-MLP Block

1

Hire Module

Stage 1 K -
Hire-MLP Block x 2 1 TOSS-TegIo!

- @
BatchNorm Rearrange

H

TOSS-Tegio!
Restore

Inner-regio
Restore

Inner-region | Fc |=»| rc |- n(_ G n|_
Rearrange

Patch Embedding

Stage 2

Height direc
Hire Module

tion

Hire-MLP Block x 2

Cross-regio
Rearrange

Patch Embeddin

o

TOSS-Tegio!
Restore

Inner-regio
Restore

¥

Inner-region |__ Fc |=»| Fc |- n|_ | © n|
Rearrange

Stage 3
Hire-MLP Block x 4

BatchNorm

\
\
1
\
\
= \
Patch Embedding \
\
\

Channel MLP

Stage 4
Hire-MLP Block x 2

i“

S

Width direction

i

Figure 1. The overall architecture of the proposed Hire-MLP-Tiny. More details and other variants of Hire-MLP can be found in Table A.1
in supplementary materials. Rearrangement layer and restoration layer in hire module are illustrated in Figure 2.

HW , which depends on the resolution of input images and
results in the first challenge. To this end, we construct our
Hire-MLP merely by channel-mixing MLPs applied on the
channel dimension. As for the second challenge, we build
the blocks of Hire-MLP based on hierarchical rearrange-
ments and channel-mixing MLPs. The hierarchical rear-
rangement operation consists of the inner-region rearrange-
ment and the cross-region rearrangement, in which both the
local and global information can be easily captured in both
height and width directions. We first split the input tokens
into multiple regions along the height/width directions, and
leverage the inner-region rearrangement operation to shuffle
all adjacent tokens belonging to the same region into a one-
dimensional vector, followed by two fully connected lay-
ers to capture local information within these features. Af-
ter that, this one-dimensional vector is restored back to the
initial arrangement, as illustrated in Figure 1. For the com-
munication between tokens from different regions, a cross-
region rearrangement operation is implemented by shifting
all the tokens along a specific direction, as shown in Fig-
ure 2(c)(d). Such hierarchical rearrangement operation en-
ables our model to obtain both local and global information,
and can easily handle the flexible input resolutions.

To be specific, our Hire-MLP has a hierarchical archi-
tecture similar to conventional CNNs [17] and recently pro-
posed transformers [32,46] to generate pyramid feature rep-
resentations for downstream vision tasks. The overall archi-
tecture is shown in Figure 1. After the first projection layer,
the resulting feature X € RH*Wx*C g then fed into a se-
quence of Hire-MLP blocks. Hire module is a key compo-
nent in Hire-MLP block, which consists of three indepen-
dent branches. The first two branches consist of a cross-
region rearrangement layer, an inner-region rearrangement
layer, two channel-mixing fully connected (FC) layers, an
inner-region restore layer and a cross-region restore layer
to capture local and global information along specific di-
rection, i.e., the height and the width direction. The last
branch is built upon a simple channel-mixing FC layer to

capture channel information. Compared to existing MLP-
based models that spatially shift features in different direc-
tions [28,51] or leverage a new cycle fully connected opera-
tor [5], our Hire-MLP needs only the channel-mixing MLPs
and rearrangement operations. Furthermore, the rearrange-
ment operations can be easily realized by commonly used
reshape and padding operations in Pytorch/Tensorflow. And
our Hire-MLP is completely capable to serve as a versatile
backbone for various computer vision tasks.

Experiments show that Hire-MLP can largely improve
the performances of existing MLP-based models on vari-
ous tasks, including image classification, object detection,
instance segmentation, and semantic segmentation. For
example, the Hire-MLP-Small attains an 82.1% top-1 ac-
curacy on ImageNet, outperforming Swin-T [32] signifi-
cantly with a higher throughput. Scaling up the model to
larger sizes, we can further obtain 83.2% and 83.8% top-
1 accuracy. Using Hire-MLP-Small as backbone, Cascade
Mask R-CNN achieves 50.7% box AP and 44.2% mask AP
on COCO val2017. In addition, Hire-MLP-Small obtains
46.1% single-scale mloU on ADE20K, which has an im-
provement of +1.6% mloU over Swin-T, demonstrating that
Hire-MLP can achieve a better accuracy-latency trade-off
than prior MLP-based and transformer-based architectures.

2. Related Work

CNN-based Models. LeCun et al. proposed the classical
LeNet [27] in 1990s, which contained most of the basic
components of modern CNNs (e.g., convolution and pool-
ing). In ILSVRC 2012 contest, AlexNet [26] achieved far
higher performance than others and drew much attention to
CNNs. VGGNet [37] constructed a plain model by stack-
ing only convolutional layers with kernel size of 3 x 3.
GoogleNet [38] designed an inception module containing
multiple branches to fuse features from diverse receptive
fields. To train an extremely deep model for better per-
formance, ResNet [17, 18] skipped multiple layers with an
identity projection to alleviate gradient vanishing or explod-

. g .
J Inner-region {1 Inner-region ,f

£ D O R Rearrange .~ ’,/ Restore 1
H — HUNNEe ¥ — H
H/2 2C
c w c
w (a) Height direction inner-region rearrange and restore w
& P &t
0 I Inner-region p 1 Inner-region ¢ I
i Rearrange B Restore i
[[
Hi - Hi — Hi
e = e
[o [
o c o 2 o c
4 w2 w
(b) Width direction inner-region rearrange and restore
Cross-region 45 Cross-region
Rearrange Restore
" —_ —_
2t ")
[T f ,) [1)’
L e N L L v
" (c) Height direction cross-region rearrange and restore
L, a - ~a
|] L. et]
e | V] . r" . L L M
« vdh Cross-region 1 i Cross-region []
[I v
vk Rearrange 1 Restore b1
" oy — — =
op I s
ufh = =11
Ch " Wl
=14 [1.4
[Lo L
w

(d) Width direction cross-region rearrange and restore

Figure 2. Illustration of the inner-region and cross-region rear-
rangement operations in hire module.

ing. In addition to accuracy, efficiency also plays a crucial
part in the practical implementation of CNN-based mod-
els, especially on resource-limited devices such as mobile
phones. MobileNet [21] adopted depth-wise convolutions
to aggregate spatial information. ShuffleNet [57] intro-
duced the shuffle operation to complement the information
loss caused by group convolutions. Such operation can ex-
change the information across different groups. These well-
designed CNNs have been widely used in various tasks such
as image recognition [17], object detection [36], semantic
segmentation [4] and video analysis [24].

Transformer-based Models. The classical transformer
model [44] was originally designed to tackle natural lan-
guage processing (NLP) tasks such as machine transla-
tion and English constituency parsing. Recently, Dosovit-
skiy et al. [11] introduced it to vision community by split-
ting an image into multiple patches and taking each patch
as a token in NLP. Vision transformers can accommodate
more training data and achieve higher performance com-
pared to CNNs when the dataset is large enough. Tou-
vron et al. [43] explored how to train data-efficient vision
transformers and proposed a new distillation strategy. Ex-
tensive works [0, 12, 15,32,46,47,52,53] were proposed
to design the architecture of transformers. For example,
PVT [46] designed a pyramid-like structure, where the spa-
tial sizes of feature maps are reduced stage-by-stage, and
validated the efficiency of transformers on dense prediction

tasks such as object detection and semantic segmentation.
TNT [15] embedded small transformer blocks in original
modules to capture local information. T2T-ViT [54] im-
proved the tokenization process of input images, and pro-
posed a layer-wise Tokens-to-Token transformation module
by recursively aggregating neighboring tokens. The infor-
mation of images can be preserved more sufficiently com-
pared to the simple tokenization with a single layer. Con-
sidering the high computational cost of self-attention mech-
anism, Swin Transformer [32] calculated the attention be-
tween different tokens in shifted local windows, reducing
the computational cost from quadratic to linear complex-
ity. However, the self-attention mechanism is still computa-
tional expensive and relatively slow on devices like GPUs.

MLP-based Models. Considering the large computa-
tional cost of attention modules in transformers, simple and
efficient models that consist of only multi-layer percep-
trons (MLPs) are proposed [41,42]. For example, MLP-
Mixer [41] used token-mixing MLP and channel-mixing
MLP to capture the relationship between tokens and be-
tween channels, respectively. Concurrently, the perfor-
mance of MLP-based models are further improved by de-
signing new architectures [5,20,28,50,51]. CycleMLP [5]
introduced a cycle fully connected layer to capture the spa-
tial information, which replaces token-mixing MLP in [41].
AS-MLP [28] shifted tokens along vertical and horizontal
directions to get an axial receptive field. S2-MLP [51] also
used the shift operation to achieve cross-patch communica-
tions. Different from them, our method can simultaneously
capture both local and global spatial information by a hi-
erarchical rearrangement operation, i.e., rearranging tokens
in/cross local regions, which also achieves a better trade-off
between high performance and computational efficiency.

3. Method
3.1. Hire-MLP Block

The proposed Hire-MLP architecture is constructed by
stacking multiple Hire-MLP blocks, as detailed in Figure 1.
Similar to ViT [11] and MLP-Mixer [41], each Hire-MLP
block consists of two sub-blocks, i.e., the proposed hire
module and channel MLP in [41], aggregating spatial in-
formation and channel information, respectively. Given the
input feature X € R7*WxC with height H, width T, and
channel number C, a Hire-MLP block can be formulated as:

Y = Hire-Module(BN(X)) + X,

1
Z = Channel-MLP(BN(Y)) 4,)

where Y and Z are intermediate feature and output feature
of the block, respectively. BN denotes the batch normaliza-
tion [23]. The whole Hire-MLP architecture is constructed
by iteratively stacking the Hire-MLP block (Eq. 1). Com-
pared with MLP-Mixer [41], the major difference is that

we replace token-mixing MLP in MLP-Mixer with the pro-
posed hire module and have successfully managed to cap-
ture the relationship between different tokens effectively.

3.2. Hierarchical Rearrangement Module

In MLP-Mixer [41], the token-mixing MLP takes lin-
early flattened tokens as input, and uses fully connected
layers to capture the cross-location information. As the di-
mension of fully connected layers is fixed, it is not compat-
ible with sequences of variable lengths on dense prediction
tasks such as object detection and semantic segmentation.
Besides, each token-mixing operation captures and aggre-
gates the global information, while some crucial local in-
formation might be neglected. In this section, we propose
the hierarchical rearrangement (hire) module to replace the
token-mixing MLP in [4 1] and address these challenges ac-
cordingly. Briefly, the inner-region rearrangement opera-
tion in hire module can help capture the local information of
tokens in a pre-defined region, while the global information
can be captured through cross-region rearrangement opera-
tion. And credited to the proposed region partition, the size
of each region remains the same when taking inputs of dif-
ferent sizes. Therefore, our hire module can naturally tackle
with sequences of variable lengths and has linear compu-
tational complexity with respect to input size. In the fol-
lowing, we will introduce the region partition, inner-region
rearrangement, and cross-region rearrangement in details.

Region Partition. We first split the input features into mul-
tiple regions, and perform the inner-region rearrangement
on tokens in each region. The feature can be split along both
width and height directions. Taking the height direction
inner-region rearrangement as an example, the input feature
X of shape H x W x C will be divided into g regions, i.e.,
X = [X1, X2, -+, X,]. BEach region X; € R">*WxC ¢on-
tains h tokens along the height direction, where h = H/g.

Inner-region Rearrangement. Given an input feature
X; € R"*WXC of the j-th region along the height direction,
different tokens will exchange the information adequately
through inner-region rearrangement operation. Specifi-
cally, we concatenate all tokens in X; along the channel di-
mension, and get the rearranged feature X{ with the shape
of W x hC (h = 2 in Figure 2(a)). Then X7 is sent to an
MLP module F to mix information along the last dimension
and produce output feature X? € RW>*"C_ For efficiency,
the MLP F is implemented by two linear projections with
bottleneck, i.e., the feature is first reduced to W x % and
then restored to W x hC. A non-linear activation function
(e.g., ReLU [13] and GeLU [19]) and normalization layer
(e.g., BN [23] and LN [1]) can also be inserted into linear
projections to enhance representation ability and stabilize
training. At last, the output feature X¢ € R"W>hC ig re-
stored to the original shape for next module, i.e., it is split
into multiple tokens along the last dimension to get feature

X! € RMWXC Tn this way, different tokens in each region
can be mixed adequately for generating output features.

Cross-region Rearrangement. Although the inner-region
rearrangement enables the communication among tokens
in a local region, the receptive field of output feature is
limited by the size of each region. Here we introduce the
cross-region rearrangement operation that exchanges infor-
mation across different regions by shifting tokens along the
height/width direction, and in return enables the model to
aggregate global spatial information.

The cross-region rearrangement is implemented by re-
currently shifting all the tokens along a specific direction
with a given step size s, as illustrated in Figure 2(c) (s = 1
along the height direction) and Figure 2(d) (s = 1 along the
width direction). After shifting, tokens included in the lo-
cal region split by region partition will change. It is worth
noting that this operation can be easily accomplished by the
“circular padding” in Pytorch/Tensorflow. To get a global
receptive field, the cross-region rearrangement operations
are inserted before the inner-region rearrangement opera-
tion every two blocks. The positions of shifted tokens are
also restored after the inner-region restoration operation to
preserve the relative position between different tokens. And
this restoration can further boost the accuracy of our Hire-
MLP, as shown in Table 5.

Note that Zhang et al. [57] uses the channel shuffle op-
eration to communicate across different groups, which dis-
organizes channels totally. In the contrast, our proposed
cross-region rearrangement preserves the relative position
between different tokens. We argue that the relative posi-
tion is vital to achieve high representation ability, and re-
lated ablation study for these two strategies is investigated
in Table 6. We also visualize the feature maps after two
cross-region rearrangement manners (ShuffleNet [57] man-
ner vs. our shifted manner) in supplementary materials.

Hire Module. Considering an input feature X of size
H x W x C, the spatial information communication is con-
ducted within two branches, i.e., along the height direction
and the width direction. Inspired by shortcut connections in
ResNet [17] and ViP [20], an extra branch without spatial
communication is also added, where only a fully connected
layer is leveraged to encode information along the channel
dimension. The input X is sent to above three branches to
get features X7, X}, and X, respectively. Then the out-
put feature X' is obtained by summing up these features,
ie, X' = X, + X}y + X[, as depicted in Figure 1.

Complexity Analysis. In hire module, the fully connected
layer (FC) consumes the major memory and computational
cost. Consider the height direction branch in Figure 1, given
an input feature X € RF*XWXC e first split it into H/h
regions with the shape of h x W x C. And the shape of the
feature after inner-region rearrangement is H/h x W x hC.

We empirically set the channel dimension in bottleneck to
C'/2, thereby this branch occupies hC' x % x 2 = hC? pa-
rameters and 2 x W x hC x § x 2 = HWC? FLOPs.
Considering a hire module with three branches (height,
width, and channel), the total parameters and FLOPs are

(2hC? + C?) and 3BHW C?, respectively.

3.3. Overall Architecture

An overview of the Hire-MLP-Tiny architecture is
shown in Figure 1, more details and other variants of Hire-
MLP are presented in Table A.1 in supplementary materials.
We adopt a pyramid-like architecture for Hire-MLP follow-
ing the commonly used design of CNNs [17,37] and vi-
sion transformers [32,46]. It first splits the input image into
patches (tokens) by a patch embedding layer [45]. Then two
Hire-MLP blocks referred to as “Stage 17 are applied on the
tokens above. As the network gets deeper, the number of to-
kens is reduced by another patch embedding layer and out-
put channels are doubled at the same time. Especially, the
whole architecture contains four stages, where the feature
resolution reduces from % X % to 3% X % and the output
dimension increases accordingly. The pyramid architecture
aggregates the spatial feature for extracting semantic infor-
mation, which can be applied to image classification, object
detection, and semantic segmentation.

We develop diverse variants of Hire-MLP architectures
with different memory and computational cost. The “Base”
model (Hire-MLP-Base) contains {4, 6, 24, 3} layers for
each stage. “Tiny” and “Small” variants have fewer lay-
ers to realize efficient implementation, while the “Large”
variant has larger representation capacity to achieve higher
performance. Detailed configurations can also be found in
supplementary materials.

4. Experiments

In this section, we investigate the effectiveness of Hire-
MLP architectures by conducting experiments on several
vision tasks. We first compare the proposed Hire-MLP with
previous state-of-the-art models for image classification on
ImageNet-1K [10], and then we ablate the important de-
sign elements of Hire-MLP. We also present the results of
object detection and semantic segmentation on COCO [30]
and ADE20K [59], respectively.

4.1. Image Classification on ImageNet

Experimental Settings. We conduct experiments on the
challenging ImageNet-1K [10], which is a image classifica-
tion benchmark containing 1.28M training images and 50K
validation images of 1000 classes. ImageNet-1K is also

' AS-MLP [28] reported the throughput under the mixed precision train-
ing mode, here we reproduce it and report the throughput under the pure
precision training mode for a fair comparison with other methods.

Network Params | FLOPs Throughput Top-1
(image / s)
CNN-based
RegNetY-4GF [34] 39M 4.0G 1156.7 81.0
RegNetY-16GF [34] 84M | 16.0G 334.7 82.9
EfficientNet-B4 [40] 19M 4.2G 3494 82.9
EfficientNet-B5 [40] 30M 9.9G 169.1 83.6
EfficientNet-B6 [40] 43M | 19.0G 96.9 84.0
Transformer-based
DeiT-S [43] 22M 4.6G 940.4 79.8
T2T-ViT-14 [53] 22M 5.2G - 80.7
Swin-T [32] 20M 4.5G 755.2 81.3
CPVT-S-GAP [7] 22M 4.6G 942.3 81.5
PVT-M [46] 44M 6.7G 528.1 81.2
PVT-L [46] 61M 9.8G 358.8 81.7
T2T-ViTy-24 [53] 64M | 15.0G - 82.6
TNT-B [15] 66M 14.1G - 82.9
Swin-B [32] 88M | 154G 278.1 83.5
MLP-based
gMLP-Ti [31] 6M 1.4G - 72.3
CycleMLP-B1 [5] 15M 2.1G 1038.4% 78.9
Hire-MLP-Tiny (ours) 18M 2.1G 1561.7 79.7
ResMLP-S12 [42] 15M 3.0G 1415.1 76.6
ViP-Small/7 [20] 25M - 719.0 81.5
AS-MLP-T* [28] 28M | 4.4G 863.6 | 81.3
CycleMLP-B2 [5] 27TM 3.9G 640.6 81.6
Hire-MLP-Small (ours) | 33M 4.2G 807.6 82.1
Mixer-B/16 [41] S5OM | 12.7G - 76.4
S2-MLP-deep [51] 5IM | 10.5G - 80.7
ResMLP-B24 [42] 116M | 23.0G 231.3 81.0
ViP-Medium/7 [20] 55M - 418.0 82.7
CycleMLP-B4 [5] 52M | 10.1G 320.8* 83.0
AS-MLP-S* [28] 50M 8.5G 478.4% 83.1
Hire-MLP-Base (ours) 58M 8.1G 440.6 83.2
S2-MLP-wide [51] 71IM | 14.0G - 80.0
CycleMLP-BS5 [5] 76M | 12.3G 246.9% 83.2
gMLP-B [31] 73M | 15.8G - 81.6
ViP-Large/7 [20] 88M - 298.0 83.2
AS-MLP-B* [28] 88M | 15.2G 312.4% 83.3
Hire-MLP-Large (ours) | 96M 13.4G 290.1 83.8

Table 1. Experimental results of different networks on ImageNet-
1K. Throughput is measured as the number of images that we
can process per second on a single V100 GPU following [32,43].
* means AS-MLP [28] accelerates the AS operation by CUDA im-
plementation. ¥ means the throughput result is reproduced by us'.

utilized to conduct the ablation studies. For fair compar-
isons with recent works, we adopt the same training and
augmentation strategy as those in DeiT [43], i.e., models
are trained for 300 epochs using the AdamW [33] optimizer
with weight decay 0.05 and the batch size of 1024. We use a
linear warmup for early 20 epochs, the initial learning rate is
set to 1e-3 and gradually drops to le-5. The data augmenta-
tion methods include Rand-Augment [9], MixUp [56], Cut-
Mix [55], Label Smoothing [39], Random Erasing [58], and
DropPath [22]. All models are trained on 8 NVIDIA Tesla

Num. of h and w | Top-1 (%) | Num. of h and w | Top-1 (%)

2,2,2,2) | 8162 | (2233 | 8173
(3,2,2,2) | 8182 | (3,322 | 8178
(3,3,3,2) | 8187 | (3,333 | 8179
4,3,3,2) | 807 | (43,33 | 8186
4,4,3,3) | 8181 | (44,44 | 8172
(5.4,3,3) | 8174 | (6,433 | 8149

Table 2. Ablation study on the number of tokens in each region
in Region Partition. Given an input feature of size H xW xC, we
splititinto H/h (W /w) regions along the height (width) direction,
and the size of each region is hx W xC. We set h=w as default
for 224 %224 input resolution. For example, (4, 3, 3, 2) indicates
h and w are set to 4, 3, 3, and 2 for stage 1, stage 2, stage 3, and
stage 4, respectively. The step size s here is set to (2, 2, 1, 1).

Num. of s | Top-1(%) | Num. of s | Top-1 (%)
0,0,0,0) \ 81.18 \ (1,1,1,1) \ 81.88
2,2,1,1) \ 82.07 \ 2,2,2,2) \ 81.71
Table 3. Ablation study about the step size of shifted tokens (s) in
cross-region rearrangement. For example, (2, 2, 1, 1) means s is
setto 2,2, 1, and 1 for stage 1, stage 2, stage 3, and stage 4, respec-

tively. (0, 0, 0, 0) indicates there is no cross-region rearrangement
in Hire-MLP. The h and w here are set to (4, 3, 3, 2).

Padding mode | Top-1 (%) |
Zero padding | 81.62
Reflect padding | 81.48

Padding mode | Top-1 (%)
| Circular padding | 82.07
| Replicated padding | 81.60

Table 4. Different padding modes for inner-region rearrangement.

Model | Top-1 (%)
Hire-MLP-Small | 82.07
w/o cross-region restore | 8170
w/o cross-region rearrange and restore \ 81.18
w/o inner-region rearrange and restore \ 80.17
w/o extra FC branch | 8132

Table 5. Impact of different components in hire module.

Model | Top-1 (%)
Shifted manner | 82.07
ShuffleNet manner [57] | 80.90

Table 6. Different manners for cross-region communication.

V100 GPUs, we report the experimental results with single-
crop top-1 accuracy, parameters, FLOPs and throughput.

Main Results. We compare the proposed Hire-MLP with
previous CNN-based, transformer-based, and MLP-based
models on Imagenet as shown in Table 1. The resolution
of input image is set to 224 x 224. For example, our

Num. of FC layer | # Params | # FLOPs | Top-1 (%)

1 | 49.65M | 565G | 82.15
2 | 33.11IM | 424G | 8207
3 | 3298M | 423G | 818l
4 | 3326M | 424G | 8185

Table 7. Ablation study about the number of intermediate FC lay-
ers in first two branches in hire module.

Hire-MLP-Small achieves 82.1% top-1 accuracy with only
4.2G FLOPs, which is better than all other existing MLP-
based models. When compared to recently proposed AS-
MLP [28] and CycleMLP [5], our Hire-MLP can obtain
better performances (+0.5~0.8) without any complicated
shift operations or variants of fully connected layer. Scal-
ing up our model to 8.1G and 13.1G can achieve 83.2%
and 83.8% top-1 accuracy, respectively. The superiority of
Hire-MLP demonstrates that the proposed hire module can
better capture both local and global information, which is
crucial for classification. In addition, we show the compar-
ison with conventional CNN-based and transformer-based
models. When compared to transformer-based models such
as DeiT [43], Swin Transformer [32], and PVT [15], our
model can get better results with a faster inference speed.
When compared to CNN-based architectures such as Reg-
NetY [34], our Hire-MLP can achieve better results with
smaller model size and lower computational cost. However,
there is still a small gap between our model and the state-of-
the-art EfficientNet-B6. We argue that MLP-based architec-
tures have their unique advantages of simplicity and faster
inference speed (290.1 vs. 96.9), and there are still oppor-
tunities for further enhancements for MLP-based models.

4.2. Ablation Study

The core component in Hire-MLP is the hierarchical re-
arrangement module (Sec. 3.2). We conduct the ablation
studies about the number of tokens in each region in re-
gion partition, the number of shifted regions and different
rearrangement manners for cross-region rearrangement, the
padding mode in inner-region rearrangement, and the num-
ber of FC layers in hire module. All ablation experiments
are conducted based on the Hire-MLP-Small.

The number of tokens in each region in region partition.
Table 2 investigates how region partition affects the final
performance based on Hire-MLP-Small, where h and w de-
note the size of each region. Consider that the resolution
of input image is 224 x 224 in ImageNet, we set h = w
if not specified. A small region size implies few adjacent
tokens are mixed via the inner-region rearrangement oper-
ation, which emphasizes more on local information. We
empirically find that a larger region size is required in lower
layer to tackle the feature maps with more tokens and obtain

RetinaNet 1 x

Mask R-CNN 1 x

Backbone Param / FLOPs | AP [APs APy, APy | Param/FLOPs |AP® APS, APD, [AP™ APE, AP
ResNet18 [17] | 21.3M/188.7G |31.8[16.3 34.3 432[312M/207.3G [340 540 367 [312 510 327
PVT-Tiny [46] | 23.0M/189.5G |36.7|22.6 38.8 50.0| 32.9M/208.1G [36.7 59.2 393 |35.1 567 37.3
CycleMLP-B1 [5] | 24.9M /195.0G |38.6(21.9 41.8 50.7| 34.8M/213.6G |39.4 614 430|368 58.6 39.1
Hire-MLP-Tiny | 27.8M/195.3G |38.9(24.9 42.7 50.7| 37.7M/213.8G |39.6 617 43.1 |37.0 59.1 39.6
ResNet50 [17] | 37.7M/239.3G | 363|193 40.0 48.8| 44.2M/260.1G [38.0 58.6 414 344 551 367
PVT-Small [46] | 342M/226.5G |40.4(25.0 429 55.7| 44.1M/245.1G |404 629 438|378 60.1 403
CycleMLP-B2 [5] | 36.5M/230.9G |40.9(234 44.7 534 46.5M/249.5G |41.7 63.6 458 382 604 41.0
Swin-T [37] 38.5M/244.8G |41.5]25.1 449 55.5|47.8M/264.0G [422 646 462 |39.1 61.6 42.0
Hire-MLP-Small | 42.8M/237.6G |41.7(25.3 454 54.6| 52.7M/256.2G |42.8 65.0 46.7 |39.3 62.0 42.1
ResNet101 [17] | 56.7M/3154G |38.5|21.4 42.6 51.1| 63.2M/3364G [404 61.1 442|364 577 388
PVT-Medium [46] | 53.9M /283.1G |41.9(25.0 449 57.6| 63.9M/301.7G |42.0 644 456|390 61.6 42.1
CycleMLP-B3 [5] | 48.1M/291.3G |42.5(25.2 45.5 56.2| 58.0M/309.9G |43.4 650 477 [395 620 424
CycleMLP-B4 [5] | 61.5M /356.6G |432(26.6 46.5 57.4| 71.5M/375.2G |44.1 65.7 48.1 |402 627 43.5
Swin-S [37] 59.8M /334.8G |44.5(27.4 48.0 59.9| 69.IM/353.8G 448 66.6 489 |40.9 634 44.2
Hire-MLP-Base | 68.0M/316.5G |44.3(28.0 48.4 580 | 77.8M/334.9G |45.2 66.9 493 |41.0 64.0 44.2
PVT-Large [46] | 71.IM/345.7G |42.6]25.8 46.0 58.4| 81.0M/3643G [42.9 650 466|395 619 425
CycleMLP-B5 [5] | 85.9M /402.2G |42.7(24.1 463 57.4| 95.3M/421.1G |44.1 65.5 484 |40.1 628 43.0
Hire-MLP-Large | 105.8M /424.5G |44.9(28.9 48.9 57.5|1152M/443.5G 459 67.2 504 |41.7 64.7 45.3

Table 8. Object detection and instance segmentation results on COCO val2017. We compare Hire-MLP with other backbones based on
schedule. FLOPs is calculated on 1280 800 input.

RetinaNet and Mask R-CNN frameworks, all models are trained in “1x”

Backbone Mask R-CNN 3 x Cascade Mask R-CNN 3 x

FLOPs \ APP APE’0 AP?5 AP™ APz, AP% | FLOPs \ APP APE0 AP'?5 AP™ APz, APY:
ResNet50 [17] 260.1G |41.0 61.7 449 |37.1 584 40.1 |738.7G|46.3 643 505 |40.1 61.7 434
AS-MLP-T [28] | 260.1G | 46.0 67.5 50.7 | 415 64.6 445 |739.0G|50.1 688 543|435 663 469
Swin-T [32] 264.0G | 46.0 68.2 50.2 | 41.6 65.1 448 [7424G|50.5 693 549 | 437 666 47.1
Hire-MLP-Small | 256.2G | 46.2 68.2 50.9 | 42.0 65.6 45.3 |734.6G|50.7 694 55.1 |44.2 66.9 48.1
Swin-S [32] 353.8G|48.5 70.2 535|433 673 46.6 |8324G|51.8 704 563|447 679 485
AS-MLP-S [28] | 346.0G |47.8 689 525|429 664 463 |823.8G|51.1 69.8 556|442 673 48.1
Hire-MLP-Base |334.9G |48.1 69.6 527 |43.1 668 46.7 | 813.2G|51.7 70.2 56.1 | 44.8 67.8 48.5

Table 9. Instance segmentation results on COCO val2017. Mask R-CNN and Cascade Mask R-CNN are trained in “3x” schedule.

larger receptive fields. When the region size is further in-
creased, the performance will drop slightly. We conjecture
that there might be some information loss in the bottleneck
structure with the increasing region size.

The step size s of shifted token in cross-region rear-
rangement. The cross-region rearrangement is imple-
mented by shifting tokens with a given step size s, whose
impact is investigated in Table 3. When the tokens are not
shifted, ie., s = (0,0,0,0), there is no communication
between different regions (without cross-region rearrange-
ment operation). Obviously, the lack of global information
leads to a bad performance.

The impacts of different padding methods. The reso-
lution of the input image from ImageNet [10] is of size
224 x 224, therefore the shape of output feature in stage 4
is 7 x 7, which is not divisible by any & and w. In conse-
quence, we need to pad the feature map. Table 4 evaluates
the influence of different padding methods. And we find

that the “Circular padding” is the most suitable for the de-
sign of hire module.

The impacts of different components in hire module. Ta-
ble 5 ablates the impacts of different components in hire
module (Sec. 3.2). We can find that the inner-region rear-
rangement is the most important component to capture lo-
cal information. The cross-region restoration operation can
bring about 0.3% improvement on top-1 accuracy. If we dis-
card the cross-region rearrangement (including the restora-
tion), the model cannot exchange information across dif-
ferent regions, and the performance would drop to 81.18%.
And removing the third branch in Figure 1 would harm the
top-1 accuracy by 0.7%.

Different strategies for cross-region communication. We
compare two different strategies for cross-region communi-
cation in Table 6. The shifted manner achieves better result
compared to ShuffleNet manner, indicating shifted manner
can preserve more relative position information for model.

Semantic FPN I UperNet
Backbone | Param | FLOPs | FPS | SS mloU || Backbone | Param | FLOPs | FPS | SS mloU | MS mloU
PVT-Small [46] 28M 163G | 43.9% 39.8 Swin-T [32] 60M | 945G | 18.5 44.5 46.1
CycleMLP-B2 [5] | 3IM 167G | 44.5% 424 AS-MLP-T [28] 60M | 937G | 17.7¢ - 46.5
Hire-MLP-Small 37M 174G | 47.3 44.3 Hire-MLP-Small | 63M | 930G | 19.3 46.1 47.1
CycleMLP-B3 [5] | 42M | 229G 31.0% 44.5 ResNet-101 [17] | 86M | 1029G | 20.1 43.8 44.9
GFNet-Base [35] 75M | 261G 44.8 Swin-S [32] 81IM | 1038G | 15.2 47.6 49.5

CycleMLP-B4 [5] | 56M | 296G |23.6%| 45.1 AS-MLP-S [28] | 8IM | 1024G | 14.4* - 49.2
Hire-MLP-Base 62M | 255G | 31.8 46.2 Hire-MLP-Base | 88M | 1011G | 16.0 48.3 49.6
Swin-B [5] 53M | 274G |23.4%] 452" || Swin-B [32] 121M | 1188G | 13.3%] 48.1 49.7
CycleMLP-B5 [5] | 79M | 343G | 22.9%| 456 AS-MLP-B [28] | 12IM | 1166G | 11.0* - 49.5
Hire-MLP-Large | 99M | 366G | 24.5 46.6 Hire-MLP-Large | 127M | 1125G | 13.7 48.8 49.9

Table 10. Results of semantic segmentation on ADE20K validation set. FLOPs is calculated with the input size of 2048 x512. FPS is
measured by using a 32G Tesla V100 GPU. T indicates the results are from GFNet [35]. ¥ indicates the results are measured by us.

More details and corresponding visualization of these two
strategies can be found in supplementary materials.

The number of FC layers in hire module. The bottleneck
design of MLP F in hire module (Sec. 3.2) can help elim-
inate the heavy burden of FLOPs brought by the increase
in channels. Ablation studies about the number of FC lay-
ers are reported in Table 7. Although using one FC layer
achieves the best performance, the parameter and FLOPs
are larger than other counterparts. A bottleneck with two
FC layers can obtain a better trade-off between accuracy
and computational cost. Furthermore, adding more FC lay-
ers cannot bring more benefits, demonstrating that the im-
provements come from our hierarchical rearrangement op-
eration rather than the increase in the number of FC layers.

4.3. Object Detection on COCO

Experimental Settings. We conduct the object detection
and instance segmentation experiments on COCO 2017
benchmark [30], which contains 118K training images and
5K validation images. Following PVT [46] and Swin Trans-
former [32] , we consider three typical object detection
frameworks: RetinaNet [29], Mask R-CNN [16] and Cas-
cade Mask R-CNN [2] in mmdetection [3]. We utilize the
single-scale training and multi-scale training for the “1x”
and “3x” schedules, respectively. More details are intro-
duced in the supplementary materials.

Results. We report the results of object detection and in-
stance segmentation under different frameworks and train-
ing schedules in Table 8 and Table 9, respectively. As
shown in Table 8, Hire-MLP based RetinaNet and Mask
R-CNN consistently surpasses the CNN-based ResNet [17],
transformer-based PVT [46] and MLP-based CycleMLP [5]
under similar FLOPs constraints. Consider RetinaNet [29]
as the basic framework, our Hire-MLPs bring consistent
+5.8~7.1 AP gains over ResNets [17] and bring +0.3~2.2
AP gains over CycleMLPs [5] with slightly larger model

size and FLOPs. The results indicate that Hire-MLP can
serve as an excellent backbone for object detection. Further-
more, Hire-MLP based Cascade Mask R-CNN surpasses
the AS-MLP counterpart by 0.6~0.7 in both box AP and
mask AP with less FLOPs, as shown in Table 9.

4.4. Semantic Segmentation on ADE20K

Experimental Settings. We conduct semantic segmenta-
tion experiments on ADE20K benchmark [59], which con-
tains 20,210 training images and 2,000 validation images.
Following [5,32,46], we consider two typical frameworks:
Semantic FPN [25] and UperNet [48] in mmsegementa-
tion [8]. See supplementary materials for more details.

Results. Table 10 lists the parameters, FLOPs, FPS, single-
scale (SS) and multi-scale (MS) mloU for different back-
bones based on two typical frameworks. We first choose Se-
mantic FPN [25] as the basic framework following [5, 46].
It can be seen that Hire-MLP outperforms CycleMLP [5]
and PVT [46] by a large margin (44.3 vs. 42.4) with sim-
ilar FLOPs and higher FPS, indicating the superiority of
hierarchical rearrangement operation to model at various
input scales. In addition, we follow [28, 32] to validate
our Hire-MLP based on another commonly used frame-
work UperNet [48]. The proposed Hire-MLP achieves bet-
ter MS mloU compared to the state-of-the-art Swin Trans-
former [32], and is +1.6 mIoU higher than Swin-T on SS
mloU. It seems that Swin Transformer can obtain a larger
improvement during multi-scale testing. We speculate one
main reason is that the self-attention mechanism in Swin
Transformer can capture scale information easier than our
hire module. The related ablation studies can be found in
supplementary materials.

5. Conclusion

This paper proposes a novel variant of MLP-based ar-
chitecture via hierarchically rearranging tokens to aggregate

both local and global spatial information. Input features are
first split into multiple regions along the height/width di-
rections. Different tokens in each region can communicate
adequately via inner-region rearrangement operation, which
mixes channels from different tokens to extract local infor-
mation. Then tokens from different regions are rearranged
by token shifting. This cross-region rearrangement opera-
tion not only exchanges the information between regions,
but also preserves the relative position. Based on hierarchi-
cal rearrangement operations above, an effective and effi-
cient Hire-MLP is constructed and has achieved significant
performance improvements in various vision tasks.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2018. 8

Kai Chen, Jiagi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155,2019.
8

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV),2018. 3

Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping
Luo. Cyclemlp: A mlp-like architecture for dense prediction.
arXiv preprint arXiv:2107.10224, 2021. 2, 3,5, 6,7, 8
Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting spatial attention design in vision trans-
formers. arXiv preprint arXiv:2104.13840, 2021. 3
Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and
Huaxia Xia. Conditional positional encodings for vision
transformers. arXiv preprint arXiv:2102.10882, 2021. 5
MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open —
mmlab/mmsegmentation, 2020. 8

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020. 5

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 2009. 5, 7

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 3

Yuxin Fang, Xinggang Wang, Rui Wu, and Wenyu Liu. What
makes for hierarchical vision transformer? arXiv preprint
arXiv:2107.02174,2021. 3

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In Proceedings of the four-
teenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings,
2011. 4

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chun-
jing Xu, Yixing Xu, et al. A survey on visual transformer.
arXiv preprint arXiv:2012.12556, 2020. 1

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. arXiv preprint
arXiv:2103.00112,2021. 3,5, 6

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, 2017. 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778,2016. 1,2,3,4,5,7, 8
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630-645, 2016. 2
Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4
Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng,
Shuicheng Yan, and Jiashi Feng. Vision permutator: A per-
mutable mlp-like architecture for visual recognition. arXiv
preprint arXiv:2106.12368, 2021. 3,4, 5

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Euro-
pean conference on computer vision, 2016. 5

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, 2015. 3,4

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725-1732, 2014. 3

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollar. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019. 8

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
pages 1097-1105, 2012. 2

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haftner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
2

Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-
mlp: An axial shifted mlp architecture for vision. arXiv
preprint arXiv:2107.08391, 2021. 2, 3,5,6,7, 8

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dolléar. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, 2017. 8

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, 2014. 5, 8
Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay
attention to mlps. arXiv preprint arXiv:2105.08050, 2021. 5
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 2, 3,5, 6,7,
8

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 5
Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020. 5, 6
Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and
Jie Zhou. Global filter networks for image classification.
arXiv preprint arXiv:2107.00645, 2021. 8

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91-99, 2015. 3

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556,2014. 2,5

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1-9, 2015.
2

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2016. 5
Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, 2019. 5

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

10

(42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-
mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601,2021. 1,3,4,5

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Armand Joulin,
Gabriel Synnaeve, Jakob Verbeek, and Herve Jegou. Resmlp:
Feedforward networks for image classification with data-
efficient training. arXiv preprint arXiv:2105.03404, 2021.
1,3,5

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877,2020. 1, 3,5, 6

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017. 3
Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pvtv2: Improved baselines with pyramid vision transformer.
arXiv preprint arXiv:2106.13797, 2021. 5

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. arXiv preprint
arXiv:2102.12122,2021. 2,3,5,7, 8

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021. 3

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018. 8

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr
Dollér, and Ross Girshick. Early convolutions help trans-
formers see better. arXiv preprint arXiv:2106.14881, 2021.
1

Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li.
S2-mlpv2: Improved spatial-shift mlp architecture for vi-
sion. arXiv preprint arXiv:2108.01072, 2021. 3

Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li.
S2-mlp: Spatial-shift mlp architecture for vision. arXiv
preprint arXiv:2106.07477,2021. 2, 3,5

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei
Yu, and Wei Wu. Incorporating convolution designs into vi-
sual transformers. arXiv preprint arXiv:2103.11816, 2021.
3

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986,2021. 3,5

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021. 3

[55]

[56]

(571

(58]

[59]

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019. 5

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412,2017. 5

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6848-6856, 2018. 3,4, 6

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2020. 5
Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 2019. 5, 8

11

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Hire-MLP Block
	3.2 . Hierarchical Rearrangement Module
	3.3 . Overall Architecture

	4 . Experiments
	4.1 . Image Classification on ImageNet
	4.2 . Ablation Study
	4.3 . Object Detection on COCO
	4.4 . Semantic Segmentation on ADE20K

	5 . Conclusion

